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Abstract

We recently developed a family of image reconstruction algorithms that look like the emission maximum-likelihood
expectation-maximization (ML-EM) algorithm. In this study, we extend these algorithms to Bayesian algorithms. The
family of emission-EM-lookalike algorithms utilizes a multiplicative update scheme. The extension of these
algorithms to Bayesian algorithms is achieved by introducing a new simple factor, which contains the Bayesian
information. One of the extended algorithms can be applied to emission tomography and another to transmission
tomography. Computer simulations are performed and compared with the corresponding un-extended algorithms.
The total-variation norm is employed as the Bayesian constraint in the computer simulations. The newly developed
algorithms demonstrate a stable performance. A simple Bayesian algorithm can be derived for any noise variance
function. The proposed algorithms have properties such as multiplicative updating, non-negativity, faster
convergence rates for bright objects, and ease of implementation. Our algorithms are inspired by Green'’s one-step-
late algorithm. If written in additive-update form, Green’s algorithm has a step size determined by the future image

value, which is an undesirable feature that our algorithms do not have.
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Introduction
This work is inspired by Green’s one-step-late (OSL)
expectation-maximization (EM) algorithm [1, 2]. Green’s
algorithm became popular because it is user-friendly and
easy to implement. It has a wide range of applications,
such as in positron emission tomography (PET) and sin-
gle photon emission computed tomography (SPECT)
[3-7]. Green’s algorithm also has applications in other
fields, such as the minimization of the penalized I-diver-
gence [8]. Furthermore, Green’s algorithm may diverge
[9]. This study improves Green’s algorithm, making it
more stable and more applicable for various noise
models.

Green’s algorithm is a maximum a posterior (MAP)
algorithm, using image-domain constraints for emission
tomography. Other MAP algorithms exist [10-15]. In
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ref. [12], a method of projection onto convex sets
(POCS) was proposed to enforce data fidelity, total-
variation (TV) minimization, and image non-negativity.
In addition, a GPU algorithm was proposed in ref. [13]
to combat the long computation time in combined EM
and TV minimization. Filtered backprojection (FBP)
reconstruction was proposed for use as the initial image
for penalized weighted least-squares (PWLS-TV) recon-
struction [12]. Furthermore, in ref. [13] monotonic algo-
rithms for transmission tomography penalized likelihood
image reconstruction were developed based on parabol-
oidal surrogate functions. A similar idea using surrogate
functions was reported in refs.[16, 17].

Most recently, we developed a family of emission-EM-
lookalike algorithms [10]. These were iterative algo-
rithms in the form of multiplicative image updating,
which intrinsically enforced image non-negativity. The
unique feature of this family was that the scaling factor
was formed by the forward projection of the recon-
structed image at the previous iteration, which is a
unique feature in the “E-step” in an EM algorithm. Each
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member of the family had its own noise model. This
work will extend this family of emission-EM-lookalike
algorithms to Bayesian algorithms, by introducing a new
factor. The three main features of the proposed algo-
rithms comprise multiplicative updating with a non-
negativity constraint, weighting by a projection noise
model, and the incorporation of Bayesian constraints.

Many MAP algorithms in image reconstruction, espe-
cially in transmission tomography, employ the POCS
methodology, which is an alternating optimization
method. This breaks the objective function into different
parts and optimizes each part separately. Our proposed
method optimizes the objection function with all con-
straints considered simultaneously.

Methods

Modification of iterative Green’s OSL algorithm

We first provide a brief review of Green’s algorithm, be-
fore extending it. The iterative Green’s OSL algorithm
can be expressed as [1, 2].
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Thus, our proposed modification of Green’s algorithm is

(2019) 2:14

Page 2 of 10
( . ( x(”) »
n+t1) (1 ﬁu”) My Z k
Xij ij i, j)k n)
i,

(3)

We will gain further insight into this modification by
rewriting both the original Green’s algorithm (1) and the
modified algorithm (3) in the additive-update form (that
is, in the form of gradient descent). The additive form
can be expressed as

wy =y —AzZa,,m(Z el
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is the noise-weighting factor for the Poisson noise model
and
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is the step size for projection data fidelity minimization.
In algorithm (4), \; is the step size for Bayesian con-
straint minimization. For the original Green’s algorithm
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It is required that the image x;; is non—negative. It can
be observed from algorithm (3) that if SU f’j) > 1, then
the sign of x;; will alternate. Therefore, a necessary con-
dition for the image to be non-negative is [:a’L[f"l) <1.
This intrinsic non-negativity constraint is guaranteed by

the requirement that /)’L[l('? < 1 if the initial image is
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positive. This can be readily observed by noticing that
every factor in algorithm (3) is non-negative.

One way to prevent this from occurring is to introduce
a sigmoid function ¢, and to replace SU l(';) by ¢(BU l("]))
There are many ways to define a sigmoid function ¢. For
example, one may choose ¢(x) = x/v/1 + a2

In deriving the Green’s algorithm using prior informa-
tion [1], it is necessary to evaluate the derivative of the
energy function V, which carries the prior information.
This energy function is defined for the updated image,
which is not yet available. In Green’s algorithm, an ap-
proximation is performed to evaluate this derivative of
the energy function, using the current image to replace
the future image. This approximation is termed “one-
step-late”.

The derivation of the EM-lookalike algorithms in ref.
[10] was based on the noise variance model, unlike the
conventional approach based on a random variable dis-
tribution function. Our derivation only considered two
items: (1) the noise variance in the projections and (2)
the non-negativity constraint for the image.

The derivation of the MAP in this study can been con-
sidered as an approximation of Green’s MAP algorithm
using 1/(1+x)=~1-x when | x | <<1. The proposed algo-
rithms are in the form of “(1-8U) x (EM-lookalike).”
When =0, this form is exactly the EM-lookalike form.
The factor (1-BU) is new in this work, to minimize a
Bayesian function V whose gradient is the function U.
By driving U to zero, the Bayesian function V is mini-
mized. The additive form algorithm (4) reveals that the
proposed algorithms minimize the objective function

1 2
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For a different noise model, we can simply change the
noise weighting wy as in ref. [10].

This study builds on ref. [10], by considering a new
energy function V and forcing its gradient U to zero.
This point can be intuitively appreciated from the addi-
tive form algorithm (4).

From algorithm (6), we observe that the ML-EM algo-

rithm’s step size A, is scaled by the image pixel value xl('j)

at the nmth iteration. As a result, brighter objects con-
verge faster than darker objects.

From algorithm (5), we observe that the weighting fac-
tor wy is the reciprocal of the estimated mean value of
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the kth ray-sum at the nth iteration. Note that w; will
change with different noise models.

From algorithm (7), we observe that 1; depends on the
image value of the next iteration. This feature is undesir-
able, because it may cause the algorithm diverge. This
undesirable feature has been removed from the revised
algorithm, as shown in algorithm (8), where 1; depends
only on the current image value.

The parameter A, is intrinsically determined by the
conventional ML-EM algorithm. The parameter 1, is af-
fected by the parameter . For any penalty function V,
the parameter S is chosen by trial-and-error. When in
doubt, a smaller positive 3 value should be chosen.

If the true solution with Zz %07 ea j = p; and Uj;

= 0 exits, then it is straightforward to verify that the true
solution is a fixed point of the proposed algorithm (3).

In fact, letting Z Aa 4 })kxE ) = p; and L[ =0, the
L j
(n)

right-hand side of (3) becomes x;’ e

Modified algorithm for no weighting

We now consider a hypothetical imaging system, where
the noise in the measurements is identically distributed
with the same variance. In this case, noise weighting
should not be utilized in the image reconstruction algo-
rithm. The ML-EM lookalike algorithm for this hypo-
thetical case is given as [10].
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Modified algorithm for the transmission noise model

The variance of the transmission tomography sinogram
is proportional to the exponential function of the sino-
gram’s mean value [11]:

var(p)= exp(p) = e D a(ijyen))

ij

(13)

An ML-EM lookalike algorithm for the transmission
data is derived in ref. [10] as
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Fig. 1 Computer simulated phantom. The dotted horizontal line
indicates the location of line-profiles. Regions 1, 2, and 3 were used
for TV-norm evaluation
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It is straightforward to modify algorithm (14) to a

Bayesian algorithm, by introducing a new factor (1-f8

u l('j) ) as follows:
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In general, a Bayesian algorithm can be readily ob-
tained from a multiplicative-update image reconstruc-

tion algorithm by introducing a new factor (1—ﬁu§j>).
The resulting Bayesian algorithm remains multiplicative.

The TV penalty function

Any penalty function V can be employed in the pro-
posed algorithm (3). Some constraints encourage
smoothing, such as the maximum entropy constraint
[18], because their main goal is denoising. Maximum en-
tropy algorithms tend to over-smooth images, and as a
result sharp edges are not maintained. Thus, maximum
entropy algorithms are not popular for CT image recon-
struction. On the other hand, TV-type constraints can
reduce noise and maintain sharp edges when the param-
eters are suitably chosen. Here, we select the TV norm
for a feasibility evaluation:

(16)

V= Z \/(xi,j—xi,j+1)2 + (xi,j_xi+1,j)2a
ij

where x;; is a pixel value in a two-dimensional (2D)
image. The associated derivative (2) is given as

Image

IProfile

Iteration |10 100 500 1000 10000
TV norm [7.7540x107 [0.4774 0.8760 1.0212 1.5817
IMSE 1.6777 3.6061 6.2542 7.2644 10.9676

Fig. 2 Reconstructions of emission data using the conventional ML-EM algorithm
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N 0 o O O o
IProfile

Iteration |10 100 500 1000 10000

TV norm [1.6973x107% [2.5174x107% [.5771x107% [.5772x107 [2.5772x10
MSE 1.5472 0.7708 0.8006 0.8028 0.8034

Fig. 3 Reconstructions of emission data using Green'’s OSL algorithm with =12
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Here, the small value of ¢ is introduced to prevent the de-
nominator being zero. In this study, £ = 0.0001 is adopted.

Computer simulations

Two sets of computer simulations were conducted, using
emission and transmission noise models, respectively.
The simulation setup for the emission data is as follows.

There were 180 projection views over 360°. The im-
ages were reconstructed in an array of size 128 x 128
(pixels). A parallel-hole collimation was assumed for the
data generation. The detector had 128 detection bins,
and the bin size was the same as the image pixel size.

A 2D circular phantom with a diameter of 120.32
pixels was employed in the simulations. The phantom,
based on SPECT imaging, contained two small cold
disks and two small hot disks, all with a diameter of 25.6
pixels, as shown in Fig. 1. The image intensity of the
large circular disk was defined as 1 unit. The cold disks
had an intensity value of 0.5, and the hot disks had an
intensity value of 1.5. The projections were generated
analytically, without using discrete pixels, and noisy pro-
jections were generated using the Poisson noise model.
The total number of counts was approximately 2 x 10°.

h O O O O O
IProfile

Iteration |10 100 500 1000 10000

TV norm [2.2193x1072 [2.5388x107% [2.5545x102 [2.5405%x107 [2.5579x1072
IMSE 1.5562 0.6616 0.6659 0.6673 0.6669

Fig. 4 Reconstructions of emission data using the proposed algorithm with =0.01
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Image
IProfile
Iteration |10 100 500 1000 10000
TV norm [1.4310x10* [1.0318x107 [3.1736x10° [4.3850x10™ [9.1151x107
MSE 2.5019x107 [1.6944x107 14.4573x107 [5.6655x107 [0.9884x107
Fig. 5 Reconstructions of transmission data using algorithm (14) when I, = 10,000

The computer simulation setup for the transmission
data was as follows. A parallel-beam imaging geom-
etry was assumed. The image array was of size 512 x
512, the number of views was 400 over 180°, and the
number of detection channels was 512. The transmis-
sion phantom looked similar to the emission phantom
(Fig. 1), except four times larger. The pixel length
was 0.5 mm. Furthermore, the attenuation coefficient
was 0.0193mm™ ' for the large disc, 0.0269 mm™ ' for
the small circular bright regions, and 0.0083 mm™ '
for the small circular dark regions.

The transmission CT noise model was adopted for the
sinogram data with very low counts, where the sinogram
variance was proportional to the exponential function of
the sinogram value. Two x-ray influxes were considered:
Iy =100 and I, = 10,000.

Three regions were selected in the image for TV-norm
noise evaluation. Note that the TV norm can measure the
image fluctuation. These regions are depicted in Fig. 1.
The average of the TV norms in these regions was
employed as a figure-of-merit for noise evaluation.
Furthermore, a line profile was provided for each

Image
IProfile
Iteration |10 100 500 1000 10000
TV norm K.1764x10° [5.9662x10° [6.0980x107° 16.0977x10" [6.0974x107
MSE 2.5016x107 [9.5049x107 [9.1038%107 [0.1086x10° [9.1105%x107
Fig. 6 Reconstructions of transmission data using algorithm (15) with =0.01 when /, = 10,000
J
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Image

IProfile

Iteration |10 100 500 1000 10000

TV norm|1.1485x107 [9.6836x10° 2.0631x102 [2.2457x102 [2.5072x107

MSE  [3.1614x107 [1.6473x10" [3.5531x10"" [3.8334x10" 4.3727x10"'
Fig. 7 Reconstructions of transmission data using algorithm (14) when /o= 100

reconstructed image. The location of the line profile is in-
dicated in Fig. 1. As an additional figure-of-merit, the
mean-squared-error (MSE) was also calculated between
the reconstruction and true profiles, and this is reported
in the figures.

Results

Emission data simulation results

Three algorithms were used to reconstruct the images:
the conventional ML-EM algorithm (by setting S=0 in
either (1) or (9)), Green’s OSL algorithm (1), and the
proposed algorithm (9). The results are depicted in

Figs. 2, 3, and 4, respectively, for the three algorithms.
The proposed algorithm and Green’s OSL algorithm
yield similar performances.

The parameter S in the revised algorithm (3) is ap-
proximately equal to f in the original Green’s algorithm
(1) divided by the backprojection value of the constant 1.
Roughly speaking, the 8 value in the original Green’s algo-
rithm is the j3 value in the revised algorithm times the num-
ber of view angles. In our example, =12 for the original
Green’s algorithm and $=0.01 for the revised algorithm,
and the number of view angles is 180. Thus, the
regularization in Fig. 4 is a little stronger than that in Fig. 3.

Image
IProfile
Iteration [10 100 500 1000 10000
TV norm[3.9066x10* [5.9939x10* 16.1623x10* 16.1625x10* 16.1625x10™*
MSE  [2.6955x10% [2.8082x10% [3.0983x10% [3.1138x107% [3.1157x1072
Fig. 8 Reconstructions of transmission data using algorithm (15) with §=0.01 when I, =100
J
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Image

IProfile

m

Iteration |10 100

500

1000 10000

TV norm[1.2531x10* [3.6549x10*

7.5610x10™

8.0977x10* [8.1442x10°*

MSE  [5.6035x107 [1.6776x107

1.3777%107

1.4056x107 [1.4084x107

Fig. 9 Reconstructions with transmission data using the POCS algorithm in ref. [12] when /= 10,000
A\

Transmission data simulation results

Two algorithms were used to reconstruct the images:
the EM-lookalike transmission algorithm (14) and pro-
posed algorithm (15). For each algorithm, images were
reconstructed with two noise levels. The results are pre-
sented in Figs. 5, 6, 7, and 8, for the two algorithms and
two noise levels.

Finally, for comparison purposes we implemented the
POCS algorithm proposed in ref. [12] and used it to
reconstruct the transmission images. The results are pre-
sented in Figs. 9 and 10, for the lower and higher noise
cases, respectively. We observe that our proposed simul-
taneous optimization algorithm performs better than the

POCS algorithm proposed in ref. [12] in this task, in
terms of the TV norm and MSE results.

It can be observed that the central region of the phan-
tom appears darker in the Fig. 7. We hypothesize that
noise may affect the convergence rate in an iterative al-
gorithm. If a system of linear equations is more consist-
ent, then the convergence rate may be faster. If the data
is noisier and the system is less consistent, then the con-
vergence rate may be slower.

We point out that when large 512 x 512 images are
displayed as small binned-down images, as in Figs. 5-10,
image details are lost. At iteration 10,000, all algorithms
are considered converged. We zoom in on the upper-

Image
Profile
|

Iteration [10 100 500 1000 10000

TV normf.5075x10% [3.3712x107 [7.2389x107 [7.0975x107 16.9053%x10
MSE  [5.6344x107% [5.1815x107 [9.9242x10 [9.6469x107 [9.4062x107

Fig. 10 Reconstructions with transmission data using the POCS algorithm in ref. [12] when /o =100
J
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Fig. 11 Larger image display for lower noise transmission data
reconstructions. a: View of the upper-right image in Fig. 5 (EM-lookalike
algorithm); b: View of the upper-right image in Fig. 6 (proposed algorithm);
¢ View of the upper-right image in Fig. 9 (POCS algorithm in ref. [12])

right images in Figs. 5, 6, and 9 in Fig. 11. Here, one can
better observe the differences between them. It is ob-
served that the proposed Bayesian algorithms are effect-
ive in noise regularization, and stable as the iteration
number increases.

The iterative POCS algorithm in our patient study
provides better (yet noisier) spatial resolution than the
proposed algorithm. The spatial resolution of an image
reconstructed by the proposed iterative algorithms de-
pends on the iteration number as well as the Bayesian
penalty function. Usually, a larger iteration number gives
a better spatial resolution, but a noisier reconstruction.
The tradeoff between the spatial resolution and image
noise is a main decision factor in selecting the iteration
number. Suitable selection of the Bayesian penalty func-
tion, i.e., the constraints, plays an important role in the
quality of the final reconstruction.

Conclusions

Our proposed algorithms are inspired by Green’s OSL EM
algorithm. The main novelty of this study is to propose a
general methodology that extends EM-lookalike algo-
rithms into MAP algorithms through a new multiplication
factor (1-BU). We claim that our approach can be ex-
tended to any multiplicative updating reconstruction algo-
rithm, where image non-negativity is built in. Thus, the
proposed algorithms also have an intrinsic non-negativity
constraint. The proposed algorithms are simple to imple-
ment, and they simultaneously optimize all constraints
(instead of using POCS).

We implemented the POCS algorithm presented in ref.
[12] for transmission tomography, and we utilized the TV
norm and MSE to evaluate the reconstructions. We ob-
served that our proposed simultaneous optimization algo-
rithm outperforms the POCS algorithm proposed in ref.
[12] for our experiments.
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