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Abstract

Tissue texture reflects the spatial distribution of contrasts of image voxel gray levels, i.e., the tissue heterogeneity,
and has been recognized as important biomarkers in various clinical tasks. Spectral computed tomography (CT) is
believed to be able to enrich tissue texture by providing different voxel contrast images using different X-ray
energies. Therefore, this paper aims to address two related issues for clinical usage of spectral CT, especially the
photon counting CT (PCCT): (1) texture enhancement by spectral CT image reconstruction, and (2) spectral energy
enriched tissue texture for improved lesion classification. For issue (1), we recently proposed a tissue-specific texture
prior in addition to low rank prior for the individual energy-channel low-count image reconstruction problems in
PCCT under the Bayesian theory. Reconstruction results showed the proposed method outperforms existing
methods of total variation (TV), low-rank TV and tensor dictionary learning in terms of not only preserving texture
features but also suppressing image noise. For issue (2), this paper will investigate three models to incorporate the
enriched texture by PCCT in accordance with three types of inputs: one is the spectral images, another is the co-
occurrence matrices (CMs) extracted from the spectral images, and the third one is the Haralick features (HF)
extracted from the CMs. Studies were performed on simulated photon counting data by introducing attenuation-
energy response curve to the traditional CT images from energy integration detectors. Classification results showed
the spectral CT enriched texture model can improve the area under the receiver operating characteristic curve
(AUC) score by 7.3%, 0.42% and 3.0% for the spectral images, CMs and HFs respectively on the five-energy spectral
data over the original single energy data only. The CM- and HF-inputs can achieve the best AUC of 0.934 and 0.927.
This texture themed study shows the insight that incorporating clinical important prior information, e.g., tissue
texture in this paper, into the medical imaging, such as the upstream image reconstruction, the downstream
diagnosis, and so on, can benefit the clinical tasks.
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Introduction
Tissue texture reflects the spatial distribution of contrast
of image voxel gray levels across the field of view [1, 2],
which is an effective descriptor of tissue heterogeneity. It
has been recognized as an important biomarker in vari-
ous clinical tasks, such as tumor type classification,
tumor treatment response evaluation [3, 4]. Tissue tex-
ture can be enhanced by spectral computed tomography

(CT) because spectral CT can provide a set of CT im-
ages with different voxel contrast using different X-ray
energy. For example, by recent photon counting spectral
CT (PCCT) technology, typically five energy channel im-
ages can be obtained [5]. To make full use of energy
enriched texture by spectral CT for clinical tasks, this
paper aims to address two related issues: (1) texture en-
hancement in spectral CT image reconstruction; and (2)
spectral energy enriched tissue texture for lesion
classification.
Reconstructing high quality spectral CT images is es-

sential, where the tissue texture should be preserved
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because it contains high clinical importance. PCCT
image reconstruction is subjected to photon starving
problems [6, 7]. Photon counting technology enables de-
tector to discriminate photons in certain energy range. If
the total photon counts are the same with the traditional
CT, the low photon counts will be suffered in each indi-
vidual energy channel. Model based iterative reconstruc-
tion method under Bayesian law has been widely used to
deal with such a low photon counts problem [8, 9],
where the prior term enables us to incorporate our hu-
man prior knowledge or constraints for the purposes of
noise reduction, edge sharpness preservation, and so on.
To enhance the tissue texture information for PCCT, we
recently proposed a tissue-specific texture prior (TP)
[10–13] in addition to low rank (LR) prior, denoted as
low rank texture prior (LRTP) algorithm to reconstruct
images of multiple energy channels as a tensor [14].
Promising results were reconstructed for lung imaging.
Using the spectral enriched tissue texture for lesion

classification will be another important issue once we
would have obtained high quality spectral CT images.
To our best knowledge, only a few studies [15–19] are
reported using spectral CT enriched data for lesion clas-
sification. In ref. [16], the authors use the iodine concen-
trations in the lesions and lymph nodes measured from
the material-decomposition images for the gastric cancer
staging diagnosis. Similar studies are also performed in
refs. [17–19]. In ref. [15], the authors use the virtual
monochromatic images (VMI) obtained from dual en-
ergy CT for benign parotid tumors classification, where
six texture features such as mean, standard deviation,
entropy, etc., are used. It is realized that extracting
enriched texture information from spectral CT for the
classification task is challenging. As the artificial
intelligence (AI) being developed, the machine learning,
especially deep learning-based method has been applied
successfully in the medical imaging field [20–23]. To
benefit from the AI, the simplest way is to throw the
spectral CT images directly to the deep learning model
and ask machine to extract high level features. However,
this way may require huge data for training and some-
times impossible in medical field. Another way is to in-
corporate our human knowledge, e.g., the tissue texture
in the classification model. Hence, this paper investigates
three models in terms of three type inputs: one is the
spectral images, another is the co-occurrence matrices
(CMs) extracted from spectral images, and the third one
is the Haralick features (HF) extracted from CMs. The
second and third models basically use the texture
descriptor as inputs. We will describe three models de-
tailed in the method section. This investigation will not
only validate whether the enriched texture by spectral
CT will benefit the classification task but also provide us
guidelines for how to use the enriched texture.

By addressing the two important issues above, this
paper shows the insight of incorporating the clinically
important prior information, e.g., tissue texture in this
paper, to increase the PCCT potential by the upstream
image reconstruction, improve the outcome of the
downstream computer-aided diagnosis, and so on.

Methods
LRTP for spectral CT image reconstruction
As mentioned in introduction, the image reconstruction
for each individual energy channel is a low photon
counts problem, which can be relieved by the Bayesian
type image reconstruction method. We recently pro-
posed one tissue-specific TP in addition to LR prior
under the Bayesian law to enhance the tissue texture in
the image reconstruction. Firstly, to make use of the
synergy among the individual energy channel, the inter-
channel correlation is modeled by low-rank representa-
tion technique. Secondly, the inner-channel spatial
texture of the target corrupted images is characterized
by TP, which is convex and can well preserve the edges
and texture features. The proposed LRTP method
integrates the inter-channel correlation and the inner-
channel spatial texture into a unified Bayesian recon-
struction framework. The overall cost function can be
expressed as:

arg minχ∥A χð Þ−Y∥2
2 þ λ∥tr þ βR χð Þ ð1Þ

The TP prior is inspired by our previous studies in
traditional CT image reconstruction [16–20], which can
be formulated as:

R χð Þ ¼
X

k

XR

r¼1

X

j∈Region rð Þ

X

m∈Ω j

wFD
jmk xjk−xmk

� �2 ð2Þ

where index k denotes the energy channel, index j runs
over all the pixels in each channel image, Ωj represents
a small fixed neighborhood window of the j-th pixel in
the channel image, wFD

jmk is the weighting coefficient

which represent the correlation between pixel m and
pixel j in k-th channel predicting from full-dose images,
r specifies the tissue type, R is the total number tissue
regions.
In this study, the tissue type number is setting as R = 4

to represent lung, fat, muscle and bone for chest CT im-
aging. Reconstructed full dose CT (FDCT) images were
segmented using our previously reported vector
quantization algorithm [24]. Figure 1 shows one example
of reconstructed FDCT images of first and last (the 5th)
energy channel. The segmented tissue masks are also
shown in Fig. 1. Given the segmented masks of the four
tissues, we apply Eq. (2) to calculate the corresponding
markov random field (MRF) coefficients, of which the
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window size is setting to 7 × 7. Figure 2 demonstrates
the predicted MRF coefficients set of the four tissue re-
gions in the first (top panel) and last channel (bottom
panel). We can observe that MRF coefficients in the
same tissue region among different channels have strong

similarity. It agrees with our hypothesis that strong cor-
relation exists among energy channels, which motivates
us to use the LR prior in the image reconstruction.
However, there still have some differences. For example,
in the muscle plot of Fig. 2, the red region of the first

Fig. 1 Full dose computed tomography images and their segmented tissue masks. Images of first and last (5th) energy channel. Tissue masks of
lung, bone, fat and muscle

Fig. 2 The predicted markov random field coefficients for the four tissue regions of lung, bone, fat and muscle. The top panel is for the first
channel. The bottom panel is for the last channel. From left to right, markov random field weights of lung, bone fat and muscle are
shown respectively
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channel is larger than that of the last channel. This is
also expected because the attenuation coefficient differs
under different X-ray energy.
Since this paper focus on texture themed discussion,

details of the proposed LPTR is not included and can be
found in ref. [14]. Implementation of LRTP is summa-
rized in Table 1.

Enriched texture classification models
As introduced above, spectral CT can enrich tissue tex-
ture by providing set of CT images with different con-
trast. The first row in Fig. 3 showed an example set of
virtual monochromatic CT images with X-ray energy
from 35, 45, 55, 65 and 75 keV respectively. It is clearly
observed that the pixel contrast varies significantly under
different energy. The five-energy spectral CT much
enriched the texture and is expected to provide more in-
formation. However, it remains challenging and pioneer-
ing using the enriched texture for clinical tasks like
predict the tumor type, cancer stage, etc.
In this paper, we investigated three classification

models in terms of three type inputs: one is the spectral
images, one is the CMs extracted from the spectral im-
ages, and the third one is the HF extracted from the
CMs. As we discussed earlier, the spectral CT images
have already enriched the tissue textures. The simplest
way is to throw the set of images directly into a machine
learning model and ask the machine to extract the ef-
fective features from each energy image and then fuse
these features to generate higher level features for the
final prediction. However, this way may require huge
training data samples, which is impossible in medical
field at present or near future. Thus, we can incorporate
our prior knowledge of the texture into the model.
Since the texture reflects the voxel grey level distribu-

tion [2], we can quantify this distribution through the

mathematic process. Tremendous efforts have been de-
voted developing texture descriptors [26–28]. Among
them the Haralick model made a great success [29].
Some researcher developed the traditional Haralick
model from 2 dimensional (2D) to 3 dimensional (3D)
and adds more features [30]. Some research used the
CMs instead of HF in the convolutional neural network
(CNN) based model [31]. GLCM counts the frequency
of voxel-pairs of certain gray levels in the 2D/3D space
and is defined by two important parameters, i.e., direc-
tion and displacement as shown in Fig. 4. In 2D case,
there are 8 sampling directions considering first neigh-
boring pixels (Fig. 4a), while there are 26 different direc-
tions in volumetric space (Fig. 4b). Every direction
would create one GLCM. Since GLCM is symmetry in-
variant, we only need to calculate in one direction with-
out in its inverse direction. Therefore, we calculated 13
GLCMs in 3D space, where the calculating procedure
was illustrated in Fig. 4c.
This paper investigated these three type inputs, i.e.,

CT images, CMs and HF to validate the effectiveness of
the spectral enhanced texture and explore possible ways
for the classification tasks. An example of the CMs and
HF texture features is also presented in Fig. 3 (2nd and
3rd rows). It is noted the CMs and HF has 13 sampling
directions. We only demonstrate one direction as an ex-
ample. We could see both the texture features in HF
and CM also vary prominently among different energies.
For the three type inputs, three models were imple-
mented: the CT raw image-based CNN model (IM-
CNN), the CM based CNN model (CM-CNN) and the
HF based random forest model (HF-RF). The three
models are illustrated in the Fig. 5. Details of each model
are presented in the following.
IM-CNN: The slice with largest cross-section was

chosen as the input. A multi-channel network structure
was designed, which takes each energy 2D image as one
input channel and multiple channels are used to take all
energy images from spectral CT. A five-channel design
was shown in Fig. 5a. The model consists of seven layers
including three convolution layers, two max-pooling layers
and two fully connected layers. In each convolution layer,
batch normalization and activation function are per-
formed. It uses the rectified linear unit (ReLU) as the acti-
vation function, the cross-entropy loss as the training loss
and softmax function at the last fully connected layer.
CM-CNN: Texture-based Gray-level Co-occurrence

Matrix (GLCM) was used as inputs for this model. A
multi-channel network structure was designed, which
takes each energy 2D GLCM as one input channel and
multiple channels are used to take all energy GLCM
from spectral CT. The multiple-channels design (n
channels as an illustration) was shown in Fig. 5b. The
model consists of seven major layers including two

Table 1 Workflow for the proposed low rank texture prior
algorithm

Texture learning

Learning the tissue-specific
texture from corresponding
full-dose image.

Image reconstruction

Initialize X by algebraic
reconstruction technique [25];

Set parameters λ, μ, β.

While stop criterion is not met:

Setp1: X tþ1 ¼ argminXkAX−Yk22 þ βRðXÞ þ μkDt−X−V tk22 ;
Step2: Dtþ1 ¼ argminDλjDj� þ μkD−X tþ1−Vtk22;
Step3: V tþ1 ¼ Vt þ X tþ1−Dtþ1 ;

End until the stop
criterion is satisfied.
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convolution layers, two max-pooling layers and three
fully connected layers. In each convolution layer, batch
normalization and activation function are performed. It
uses the ReLU as the activation function, the cross-
entropy loss as the training loss and softmax function at
the last fully connected layer.
HF-RF: HF as a typical texture descriptor are extracted

from GLCM, which is also handcrafted texture features
defined in ref. [29]. According to ref. [29], every GLCM
could deduce 14 Haralick measures. Twenty-eight HF
would be generated by calculating means and ranges of
Haralick measures over 13 directions. Then the texture
descriptor consisting of 28 HFs is fed to random forest
(RF) classifier to perform classification [26]. For each

process of RF, the descriptors of all polyps are divided into
training groups and testing groups. Before classification,
we first calculate the priority of each variable in texture de-
scriptor. Gini coefficient is introduced to be the priority
measurement. Next, some variable sets are generated using
the forward step feature selection method on the ranked
variables. This architecture was shown in Fig. 5c. Classifi-
cations are performed under the parameters of 3000 trees
and

ffiffiffiffiffi
28

p
randomly selected variables for each node.

Evaluation strategies
Currently, the photon counting spectral CT is under re-
search and development and has not been utilized in

Fig. 3 An example of one polyp slice at different energy channel and the corresponding extracted texture features. The first row is the raw
computed tomography image; the second row is the co-occurrence matrices (CMs) extracted from the spectral images; the third row is the
Haralick features extracted from the CMs

Fig. 4 Illustration of grey level co-occurrence matrices of 2 dimensional /3 dimensional images. Left pannel: 2 dimensional grey level
co-occurrence matrices (GLCM) calculation; Middle pannel: 3 dimensional GLCM calculation; Right pannel: A GLCM example when
angle(θ) = 0°, displacement(d) = 1
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Fig. 5 Classification models for three different inputs: (a) the computed tomography raw image-based convolutional neural network (CNN)
model, (b) the co-occurrence matrice based CNN model and (c) the Haralick feature based random forest model
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clinical. Therefore, the evaluation was performed on
simulated spectral CT datasets.

Image reconstruction evaluation
VMI obtained from the dual energy CT can be used to
mimic the output of the PCCT. The procedure can be
described as follows. Due to different materials have dif-
ferent spectral attenuation response, the Dual energy CT
will generate VMI based on two measurements of differ-
ent energy. Then the photon counts for each energy
channel can be calculated using the forward projection.
Poisson noise is superimposed to the signal to consider
the statistical property. Then the low counts projection
was reconstructed by the proposed LRTP method.

Classification evaluation
The classification models should be evaluated on the
datasets with pathology reports as the ground truth.
Therefore, the evaluation was performed on our path-
ology proven colon polyp datasets. However, we do not
have VMI images for this dataset. As a way around, we
simulated the spectral CT data based on attenuation
physical model. Colon polyps consist of soft tissue,
which can be represented by three tissue types, i.e. fat,
cellular tissue and water. Each tissue type has different
attenuation coefficient or CT value at different X-ray en-
ergy. The CT-energy response curve of the three tissue
types [32] to the X-ray energy in Hounsfield units is
shown in Fig. 6. Water is used as the reference material
of which the CT value is zero. The cellular tissue has

positive values, while the CT values for fat tissue are al-
ways negative. Once we have the CT data at one energy,
we can use a linear scaling method to simulate the CT
data at other energies according to the response curve
for each tissue type.
A two-fold cross-validation method was used to evalu-

ate the performance via the mean and the standard devi-
ation of area under the receiver operating characteristic
curve (AUC). We compared the performance of all three
models at each individual X-ray energy and the combin-
ation of five energy channels. We also compared the
performance of all three models based on the difference
images. The difference images are obtained by subtract-
ing the CT data of the neighboring energy channels.
Then we extracted the CMs and HF features based on
the difference images. More details will be described in
experiments and results section.

Experiments and results
Dataset
Dataset 1 A patient who revealed suspected pulmonary
tumor appearing as nodules was scanned using a dual-
energy high-definition CT scanner (GE Discovery CT750
HD) of the chest in gemstone spectral imaging mode. The
VMI at 80 and 140 kVp with the thickness of 2.5 mm and
the spacing of 0.75mm were transferred to an AW 4.4
workstation for analysis. The VMI were generated at 10
keV monochromatic energy level increments from 60 to
100 keV, resulting in one set of 5 images, which represents
the VMI for each channel. A representative slice was

Fig. 6 Computed tomography values of three tissue types under different energy
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specified from the image volume to evaluate our method-
ology LRTP for PCCT image reconstruction
Dataset 2 Fifty-nine patients with 63 polyps, including

31 benign and 32 malignant, were scanned in conven-
tional CT facility with effective 75 keV X-ray energy.
Each abdominal CT image volume consists of more than
400 image slices. All polyps were resected with following
pathology reports to verify whether each polyp was ma-
lignant as an adenocarcinoma or benign as an adenoma-
tous. Summary of the polyp mass with its pathology
results are presented in Table 2. Based on the CT-
energy response curve in Fig. 6, those 63 volumetric
polyp CT images were used to simulate the CT data in
Hounsfield units at other effective energies from 35 keV
to 65 keV

Results of image reconstruction
The dataset 1 was used to evaluate the texture enhanced
image reconstruction algorithm, LRTP. For comparison
study, some well-established methods were employed,
including the simultaneous algebraic reconstruction
technique (SART), total variation minimization (TV)
[33], low-rank representation and total variation
regularization (LRTV) [34] as well as tensor dictionary
learning (TDL) [35].
The reconstructed images are zoomed in the lung re-

gion and shown in Fig. 7. The gray images are the mag-
nified lung ROI CT images. The corresponding absolute
difference images are shown in color. From top to
bottom are the reference images reconstructed from
full-dose projections by SART and the low-dose images
reconstructed by SART, TV, LRTV, TDL and LRTP
methods. The SART reconstructed images contain
strong noise artifacts and some texture features are
drowned out by noise. The strong random noise can be
clearly seen in the absolute difference images. TV and
LRTV methods significantly reduced the noise but most
of the small texture features, such as the blood vessels
were smoothened. The corrupted texture can be clearly
observed in their absolute difference images. TDL
method could identify these texture features, and the de-
tails were retained without blurring. The proposed LRTP

method yielded very clear images and the smallest differ-
ence with the reference image comparing with other
methods.
Quantitative measurements are shown in Table 3. The

proposed LRTP had the lowest root mean square error
(RMSE) and the highest peak signal to noise ratio for all
energy channels. The structure similarity index (SSIM)
and feature similarity index (FSIM) also employed to
measure the structure similarity and feature similarity
between the references and reconstructed images. In
Table 3, the proposed LRTP method obtain the greatest
SSIM and FSIM values than other competing methods
in all channels which further demonstrates that the
LRTP method has the best image quality in terms of
quantitative assessment.

Results of classification
We explored three machine learning models in terms of
three type inputs, i.e., raw CT images, texture images
(GLCMs images), hand crafted features from texture im-
ages. The three type inputs described above were fed to
the three models presented in Fig. 5. For each model,
each individual energy channel data was used then the
combination data of five-energy channels was used. For
each experiment, we randomly split the dataset into two
folds for 100 runs. At each run, we used one-fold data
for training and the other for testing. Then we swapped
the training and testing data. In the end, we obtained
the averaged AUC for the 100 runs and its standard de-
viation. The results are shown in Table 4.
For all three inputs, the five-energy spectral CT data

gives the best performance. An improvement of the
AUC score is obtained by 7.3%, 0.42% and 3.0% for the
spectral images, CMs and HFs respectively on the five-
energy spectral data over the original 75 kev data only.
Comparing results among three inputs, we observed that
GLCM feature image could provide more effective infor-
mation than the CT image for the CNN learning. This
agrees with our expectation that for the limited datasets
with pathological ground truth, CMs based learning is
more efficient than CT image-based learning since the
GLCM is extracted from the raw image as an effective
texture descriptor to reflect the lesion heterogeneity.
One alternative way to utilize the energy information

is to use difference images. We obtain difference images
by subtracting the CT data of the neighboring energy
channels. Such we obtained four sets of difference CT
images from the five energy channels. Similarly, we ex-
tract the CMs and HF from four difference CT images
and fed the three type inputs into the corresponding
models. The results of the difference image scheme are
summarized in Table 5. Similar with raw image scheme,
the five-energy spectral CT data gives the best perform-
ance. For individual difference images, the performance

Table 2 Summary of ployp mass for dataset 2

Category Pathology Count Male:
Female

Average size
(mm)

Benign (0) Serrated adenoma 3 2:1 34.3

Tubular adenoma 2 2:0 35.0

Tubulovillous
adenoma

21 11:10 37.6

Villous adenoma 5 4:1 55

Malignant
(1)

Adenocarcinoma 32 12:20 43.9
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from all energy pairs are almost the same and better
than the performance of corresponding raw image
scheme. The CM-CNN model HF-RF and model
achieves the best AUC of 0.934 and 0.927. Similarly,
CMs and HF performed better than CT image, which
have been discussed above.

Discussion
In this paper, the proposed LRTP reconstruction method
combines low-rank representation and TP under
Bayesian framework. This combination considers the
correlation among different channels while preserve the

texture information in the specific tissue regions. Com-
paring the LRTP with LRTV (Fig. 7), we can clearly
observe the tissue texture was much better enhanced by
the proposed method. While, the similarity of TP among
different energy channels demonstrates the LR property
of the spectral CT data, how to future enhance the tissue
texture using the TP similarity is one of our future re-
search interests.
In the computer aided diagnosis (CADx), tissue tex-

ture plays an important role. The tissue texture can be
enhanced by the spectral CT because each tissue always
has different attenuation coefficient under different X-

Fig. 7 Close-up views for comparison of lung region of interests reconstructed by different algorithms. The gray level images are the magnified
lung ROI CT images in the red box in Fig. 1. The corresponding absolute difference images are shown in color. From top to bottom are the
reference images reconstructed from full-dose projections by SART and the low-dose images reconstructed by SART, TV, LRTV, TDL and LRTP
methods, respectively. ROI Region of interest; CT Computed tomography; TV Total variation; LRTV Low rand total variation; TDLTensor dictionary
learning; SART Simultaneous algebraic reconstruction technique; LRTP Low rank texture prior
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ray energy. In spectral CT, multiple datasets are ob-
tained at multiple monotonic energy X-ray energies. By
compiling all energy channel CT data, the tissue texture
can be better represented and benefit the CADx. Using
PCCT enhanced texture for clinical task has not been
studied thoroughly as mentioned in introduction section.
This paper is serving as pioneering work to explore how
to utilize PCCT effectively especially given a limited
dataset, which is always true in medical imaging field.

We investigated three type inputs for the classification
task. The overall tendency remains the same across three
type inputs that the spectral CT model outperforms sin-
gle energy data or traditional CT data. This validates the
effectiveness of enriched texture by spectral CT. More-
over, the CMs and HF performs much better than the
raw CT images, which shows that incorporating our
knowledge into the model can help to improve the per-
formance, especially in the limited datasets.
For reconstruction evaluation, we used the VMI from

dual energy to mimic the signal of photon counting. For
classification evaluation, we used the basic physics model
to simulate the spectral CT data. This simulation as-
sumes that each voxel is pure material, which means no
partial volume effect was considered. Studies on real
spectral CT data is another of our future research
interests.

Conclusions
Spectral CT is believed to be able to enhance the tissue
contrast and enrich tissue texture information. In this
study, we addressed two texture related issues for the
spectral CT practical usage. One is to enhance the tissue
texture of spectral CT images by the proposed LRTP
algorithm. The other is to make use of the enriched tex-
ture for clinical tasks by investigating three type input
models. All three models showed improved AUC results
on the five-energy spectral CT data over the original sin-
gle CT data only. The outcome also demonstrated the
potential of PCCT in polyp classification tasks in the
future clinical practice. Our innovation lies in two mani-
folds: (1) LRTP algorithm for PCCT reconstruction,
which integrates the inter-channel correlation and the
inner-channel spatial texture into a unified Bayesian re-
construction framework; (2) pioneering exploration of
effective learning model using PCCT data for lesion clas-
sification task. This paper shows our effort to advance
the potential of PCCT in practical usage by considering
the upstream reconstruction and downstream classifica-
tion model. The comprehensive texture themed study
shows the insight of maximizing the application of clin-
ical important prior information, e.g. tissue texture in
this paper, into practical usage for performance
improvement.

Table 3 RMSE (10e-4), PSNR, SSIM, FSIM Index for region of
interest images in Fig. 7

Metrics Methods Reconstructed images (channel number)

1th 2th 3th 4th 5th

RMSE SART 6.5373 72,168 9.1134 9.8020 10.6390

TV 6.3068 5.7223 5.9562 6.0101 5.9182

LRTV 6.4144 5.5096 5.5894 5.4789 5.3151

TDL 6.7663 5.4743 5.4770 5.2326 4.9444

LRTP 4.7431 3.8528 3.8517 4.0398 4.2506

PSNR SART 30.624 29.054 27.027 26.270 25.401

TV 30.922 31.069 30.721 30.518 30.495

LRTV 30.775 31.398 31.273 31.322 31.429

TDL 30.311 31.453 31.449 31.721 32.057

LRTP 33.397 34.505 34.507 33.969 33.370

SSIM SART 0.9994 0.9993 0.9989 0.9987 0.9984

TV 0.9992 0.9993 0.9993 0.9993 0.9993

LRTV 0.9992 0.9993 0.9993 0.9994 0.9994

TDL 0.9992 0.9994 0.9994 0.9995 0.9995

LRTP 0.9995 0.9997 0.9997 0.9997 0.9997

FSIM SART 0.9981 0.9975 0.9958 0.9947 0.9920

TV 0.9950 0.9941 0.9942 0.9950 0.9952

LRTV 0.9944 0.9943 0.9942 0.9948 0.9952

TDL 0.9963 0.9970 0.9970 0.9973 0.9975

LRTP 0.9988 0.9992 0.9992 0.9991 0.9989

TV Total variation, LRTV Low rand total variation, TDL Tensor dictionary
learning, SART Simultaneous algebraic reconstruction technique, LRTP Low
rank texture prior, RMSE Root of mean square error, PSNR Peak signal to noise
ratio, SSIM Structure similarity index, FSIM Feature similarity index

Table 4 Classification performance of raw image scheme

Energy
(kev)

AUC (mean ± std)

CT image (single slice) Co-occurrence matrix Haralick features

75 0.585 ± 0.073 0.902 ± 0.061 0.887 ± 0.048

65 0.597 ± 0.069 0.899 ± 0.064 0.879 ± 0.050

55 0.606 ± 0.064 0.872 ± 0.070 0.909 ± 0.037

45 0.629 ± 0.055 0.867 ± 0.070 0.901 ± 0.044

35 0.631 ± 0.071 0.820 ± 0.086 0.913 ± 0.046

All 0.659 ± 0.069 0.906 ± 0.057 0.917 ± 0.039

AUC Area under the receiver operating characteristic curve, CT
Computed tomography

Table 5 Results of the difference image scheme

Energy AUC (mean ± std)

CT image (single slice) Co-occurrence matrix Haralick features

65–75 0.661 ± 0.061 0.923 ± 0.043 0.907 ± 0.040

55–65 0.656 ± 0.063 0.927 ± 0.037 0.914 ± 0.045

45–55 0.661 ± 0.062 0.918 ± 0.035 0.920 ± 0.042

35–45 0.671 ± 0.064 0.925 ± 0.034 0.914 ± 0.042

All 0.687 ± 0.068 0.934 ± 0.034 0.927 ± 0.044
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