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Analytic time-of-flight positron emission
tomography reconstruction: two-
dimensional case
Gengsheng L. Zeng1,2* , Ya Li3 and Qiu Huang4

Abstract

In a positron emission tomography (PET) scanner, the time-of-flight (TOF) information gives us rough event position
along the line-of-response (LOR). Using the TOF information for PET image reconstruction is able to reduce image
noise. The state-of-the-art TOF PET image reconstruction uses iterative algorithms. Analytical image reconstruction
algorithm exits for TOF PET which emulates the iterative Landweber algorithm. This paper introduces such an
algorithm, focusing on two-dimensional (2D) reconstruction. The proposed algorithm is in the form of
backprojection filtering, in which the backprojection is performed first, and then a 2D filter is applied to the
backprojected image. For the list-mode data, the backprojection is carried out in the event-by-event fashion, and a
profile function may be used along the projection LOR. The 2D filter depends on the TOF timing resolution as well
as the backprojection profile function. In order to emulate the iterative algorithm effects, a Fourier-domain window
function is suggested. This window function has a parameter, k, which corresponds to the iteration number in an
iterative algorithm.
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Introduction
One of the advantages of using time-of-flight (TOF) tech-
nology is its ability to reduce the image noise [1, 2]. The
state-of-the-art TOF positron emission tomography (PET)
image reconstruction methodology is to use the iterative
algorithms such as TOF ordered-subset expectation-
maximization algorithms [2].
The filtered backprojection (FBP) algorithm is not a pre-

ferred method nowadays, due to the concerns of potential
larger noise amplification with the FBP algorithm than the
iterative algorithms. These concerns are not well-founded.
As we demonstrated before, the FBP algorithm should
perform as well as an iterative algorithm when the
iteration number is emulated and the projection noise is
modeled in the FBP algorithm [3, 4]. We believe that ana-
lytical image reconstruction algorithm can achieve the
same noise level as a linear iterative image reconstruction

algorithm, e.g., the iterative Landweber algorithm. The
same can be said to the backprojection filtering (BPF)
algorithm, which is an analytic algorithm that performs
backprojection first and then performs filtering [5]. For
the list-mode data, it is computationally more efficient to
use a BPF algorithm than an FBP algorithm. We recom-
mend use of a BPF algorithm so that it is fast, robust and
rebinning error free. In the conventional BPF algorithm,
the backprojected image does not have a finite support,
and this makes the final filtering step not exact. However,
for a TOF backprojector, the backprojected image has a fi-
nite support if the backprojection profile function has a fi-
nite support. The TOF BPF algorithm has a potential to
have better accuracy if the TOF information is used. We
will show in the later part of this paper that the TOF
modified “ramp filter” is “more local” than the conven-
tional ramp filter. Here, “more local” means that the
spatial-domain convolution kernel's rolls-off rate is faster.
In the BPF algorithm the ramp filter is often referred to as
the ρ-filter; we will use the term “ramp filter” in this
paper.
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Fully three-dimensional (3D) TOF iterative reconstruc-
tion is computationally expensive. When the object is
completely measured, rebinning methods are available to
convert the 3D measurements into two-dimensional
(2D) measurements, so that faster 2D image reconstruc-
tion can be performed [6, 7]. This paper will only focus
on 2D image reconstruction.
The objective of this work is to develop an analytical

image reconstruction algorithm for the TOF PET. This
current paper develops a “first backproject, and then
filter” (BPF) algorithm for the 2D TOF PET. This algo-
rithm is computationally efficient as the conventional
FBP algorithm and is able to regulate noise as the itera-
tive reconstruction algorithm.

Methods
The TOF timing resolution is not perfect. A time uncer-
tainty of 100 p-seconds (ps) can be translated into a pos-
itional uncertainty of 1.5 cm full-width-at-half-maximum.
This note will investigate the TOF BPF algorithm, only fo-
cusing on the 2D case. Some attempts of using analytic
BFP and FBP algorithms for TOF PET have been reported,
for example, in refs. [1, 2], respectively.
In TOP FBP algorithm, one can bin list-mode data in to

view-by-view sinogram format in multiple sets; each set
corresponding to a range of TOF time difference. One can
also implement an event-by-event FBP algorithm, in
which each event is replaced by the convolution kernel
and then each of such kernel is backprojected into the
image space with a profile function.

List-mode TOF 2D backprojection point spread function
For list-mode data, a BPF algorithm is computationally
less expensive than an FBP algorithm, because each event
needs to be filtered and backprojected in FBP. In a list-
mode TOF PET data BPF algorithm, we first backproject
each measured event along the line-of-response (LOR)
with a profile function, which can be a normalized Gauss-
ian function centered at the estimated location by the

TOF information. The standard deviation of the Gaussian
function is related to the time uncertainty of the system.
Figure 1 illustrates the TOF backprojection of the projec-
tion obtained from a point source at the center of the
image plane. Then a 2D post filter is applied. This post fil-
ter will be derived by considering the point spread func-
tion (psf) next.
The traditional central slice theorem can be stated in

the following expression in the Fourier domain:

P ω; θð Þ ¼ Fpolar ω; θð Þ ð1Þ

where ω is the frequency, θ is the detection view angle, Fpo-
lar is the 2D Fourier transform (in the polar coordinates) of
the object f(ρ, θ), and P(ω, θ) is the one-dimensional (1D)
Fourier transform of the parallel projections p(t, θ) of the
object at view θ. In other words, Fpolar(ω, θ) = F1D {f(ρ,
θ)} and P(ω, θ) = F1D {p(t, θ)}. A “slice” is a function defined
on a straight line in the 2D plane.
The object f(x, y) can be considered as a ramp-filtered

version of a backprojection image whose 2D Fourier do-
main representation (in the polar coordinates) is Bpolar:

Fpolar ω; θð Þ ¼j ω j �Bpolar ω; θð Þ ð2Þ

where Bpolar(ω, θ) is the 2D Fourier transform of the
pure backprojection (without ramp filtering) bpolar(ρ, θ).
In other words, Bpolar(ω, θ) = F1D {b(ρ, θ)}. Combining
Eqs. (1) and (2) yields

P ω; θð Þ ¼j ω j �Bpolar ω; θð Þ ð3Þ

that is,

P ω; θð Þ
j ω j ¼ Bpolar ω; θð Þ ð4Þ

If the object is angular symmetric, Eq. (4) becomes

Fig. 1 Projection of a point source at the origin (shown on the right) and the associated time-of-flight (TOF) backprojection (shown on the left).
The TOF backprojection of a single event uses a profile function along the line-of-response
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P ωð Þ
j ω j ¼ Bpolar ωð Þ ð5Þ

Backprojection from one angle is equivalent to adding
a “slice” P(ω) in the Fourier domain to Bpolar(ω, θ). The
total effect of backprojection from all angles is

P ωð Þ
j ω j ð6Þ

Next, we consider a point source at the origin, its pro-
jection and TOF backprojection. The projection and
TOF backprojection are shown in Fig. 1. The TOF back-
projection uses the profile function.
To obtain the same effect, we can rotate the detector

by 90° and convolve the projections, which is an impulse
in our case, with a special convolution kernel. This con-
volution kernel is nothing but the TOF backprojection
profile function. This TOF backprojector only backpro-
jects to the line passing through the origin and parallel
to the detector (Fig. 2).
We must point out that this TOF backprojector is dif-

ferent from the standard backprojector. The standard
backprojector backprojects a function to the entire
image plane (Fig. 3). The main difference between these
two backprojectors is that the TOF backprojector only
adds a “slice” to the image plane in the spatial domain.
The standard backprojector adds a “slice” in the

Fourier domain; the TOF backprojector adds a “slice” in
the spatial domain.
It is known that when we add a “slice” P(ω) at each

view angle in the Fourier domain, the total effect for all
angles is P(ω)/ ∣ ω∣. The duality of the previous sen-
tence is as follows. When we add a “slice” g(r) at each
view angle in the spatial domain, the total effect for all
angles is g(r)/ ∣ r∣. Here, g(r) is a “slice” which repre-
sents the TOF backprojection profile function. The

“total effect” is the psf that we are looking for. Thus, we
have

g rð Þ ¼ r � psf rð Þ ð7Þ
with r ≥ 0 in the polar coordinate system.
The tomography filter depends on the 2D psf in the

TOF backprojected image. Using the Cartesion coordin-
ate systems, let the 2D psf be psf(x, y), the true image be
f(x, y), and the TOF backprojected image be b(x, y).
Then their relationship is

b x; yð Þ ¼ f x; yð Þ��psf x; yð Þ ð8Þ
where “ ∗∗ ” denotes the 2D convolution. If we select

the normalized Gaussian function

g rð Þ ¼ 1
2πσ2

e−
r2

2σ2 ð9Þ

as the TOF backprojection profile function, with r be-
ing the variable along the LOR, the psf(x, y) can be eval-
uated as backprojection of Eq. (9) over 2π, which is
the same as Eq. (10) by using Eq. (7):

psf rð Þ ¼ 1
2πσ2r

e−
r2

2σ2 ð10Þ

2D TOF BPF algorithm
Let the true 2D object be fpolar(r, θ) in the polar coordi-
nates and the TOF backprojected image be bpolar(r, θ) in
the polar coordinates. We have the relationship

bpolar r; θð Þ ¼ f polar r; θð Þ��psf rð Þ ð11Þ
which is an equivalent form of Eq. (8) when the psf is

only a function of r. A BPF algorithm is to deconvolve
bpolar(r, θ) with a 2D convolution filter h(r), which
satisfies

Fig. 2 The time-of-flight (TOF) backprojector is equivalent to a backprojector, in which the projection (here, the TOF profile function) is first
rotated by 90° and then is backprojected only to the line passing through the origin and parallel to the detector
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h rð Þ��psf rð Þ ¼ δ rð Þ ð12Þ
with δ(r) being the Dirac delta function.
Evaluating the function h(r) can be achieved by using

the 2D Fourier transform. Since the psf is not a function
of angle θ, the 2D Fourier transform of the psf can be
evaluated by the 1D Hankel transform as follows

Z∞
0

Z2π
0

1
2πσ2

e−
r2

2σ2

r
e
−2πi

r cosφ
r sinφ

� �
�

ω cosφω
ω sinφω

� �
rdrdφ

¼
Z∞
0

1
2πσ2

e−
r2

2σ2

r
rdr

Z2π
0

e−2πi cos φ−φωð Þdφ

¼
Z∞
0

1
2πσ2

e−
r2

2σ2

r
rdr

Z2π
0

e−2πi cosφdφ

¼
Z∞
0

1
2πσ2

e−
r2

2σ2

r
J0 2πωrð Þrdr

¼ 1
2πσ2

Z∞
0

e−
r2

2σ2 J0 2πωrð Þdr

¼ 1

2
ffiffiffiffiffiffi
2π

p e− πσωð Þ2 � I0 πσωð Þ2� �
;

ð13Þ
where J0 is the Bessel function of the first kind with
order 0 defined as J0ðzÞ ¼ 1

2π

R 2π
0 e−iz cosφdφ and I0 is the

modified Bessel function of the first kind with order 0
defined as I0ðzÞ ¼ 1

π

R π
0 e−z cosφdφ . The first line in Eq.

(13) is the 2D Fourier transform using the polar coordi-
nates. The fourth line in Eq. (13) is the 1D Hankel trans-
form. The last line in Eq. (13) is from an integration

formula 6.618.1 in ref. [8]:
R∞
0 e−αx

2
J0ðβxÞdx ¼

ffiffiffi
π

p
2
ffiffi
α

p e−
β2

8αI0ð
β2

8αÞ . The Eq. (13) is called the transfer function for the
projection and TOF backprojection procedure.

According to Eqs. (11) and (12), the post tomographic
filter H(ω) expressed in the 2D Fourier domain (in the
polar coordinates) can be obtained as reciprocal of the
transfer function (13), normalized by forcing H(0) = 1, as

H ωð Þ ¼ e πσωð Þ2

I0 πσωð Þ2� � : ð14Þ

In a list-mode TOF BPF algorithm, the list-mode
events are first backprojected into the image space using
a profile function. Then a 2D filter (14) is applied to the
backprojected image. Eq. (14) is in the Fourier domain
and contains a special function I0. A close approxima-
tion of Eq. (14) using elementary functions is

H ωð Þ ¼ e πσωð Þ2

I0 πσωð Þ2� � ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2πσωð Þ2

q
: ð15Þ

Fig. 3 The conventional two-dimensional backprojection for the parallel-beam geometry. The conventional backprojection copies the function
along the projection direction throughout the entire image space

Fig. 4 A typical plot for the noise-control Fourier-domain window
function W(ω) with k = 1000 and α = 0.0001. The horizontal axis is
the frequency ω: 0 ≤ ω ≤ 0.5. The vertical axis is the gain W(ω),
which suggests a low-pass filter
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Some examples of Eqs. (14) and (15) are shown in
Fig. 4 in the first and second columns, respectively.
When σ is very large (i.e., the timing resolution is

poor), the right-hand-side of Eq. (15) approaches to the
ramp filter 2πσ|ω|, which is the case for non-TOF tom-
ography. When σ is very small (i.e., the timing resolution
is good), the right-hand-side of Eq. (15) approaches to
the constant 1, which means that no filtering is needed
and the image can be reconstructed by pure TOF
backprojection.
Even though 2D Fourier-domain filtering can be im-

plemented as 2D spatial-domain convolution, we are un-
able to find the closed-form convolution kernels directly
from Eqs. (14) or (15). The convolution kernels can be
evaluated numerically. Since the convolution kernel is
radially symmetric, it is only necessary to evaluate the

values of the kernel along a radial ray via the 1D Hankel
transform, and the results are shown in Fig. 5.

Noise-control window function in the BPF algorithm
Noise control for an analytic algorithm is achieved by ap-
plication of a low-pass filter. Some low-pass filters work
better than others. We developed a Landweber window
function [4] that mimics the iterative Landweber
algorithm and is suitable to for image reconstruction
denoising. This window function has a parameter k that
emulates the iteration number in the iterative Landweber
algorithm. The window function is expressed as.

W ωð Þ ¼
(

1 ; ω ¼ 0

1− 1−
α
ω

� �k
; ω≠0

ð16Þ

where the parameter α is chosen such that we always
have ∣1 − α/ω ∣ < 1 for discrete samples of ω. A typical
plot for W(ω) is shown below in Fig. 4. In algorithm im-
plementation, the filter H(ω) in Eqs. (14) or (15) is real-
ized as the product H(ω)W(ω).

Results
The paper has derived a 2D TOF BPF image reconstruc-
tion algorithm. In this algorithm, the list-mode data is first
backprojected according to a profile function, which can
be assumed to be a normalized Gaussian function g(r) (9)
in this computer simulation. Then the backprojected
image is transformed into the 2D Fourier domain and is
filtered by the post filter H(ω) presented in Eqs. (14) or
(15). Figure 5 shows the comparison between Eqs. (14)
and (15) for four different timing resolutions σ. When σ =
10, the filter H is almost a ramp filter. When σ = 0.1, the
filter H is almost a constant.
We are unable to find a closed-form for spatial-

domain convolution kernel h(r) that correspond to the
transfer function H(ω) in Eqs. (14) or (15). When the 2D
function H is angular symmetric, so is h. Therefore, the
functions h(r) and H(ω) are related by the 1D Hankel
transform pair. A numerical evaluation of the 1D Hankel
transform can readily produce h(r) from a given H(ω). A
numerically obtained results of h(r) from Eqs. (14) and
(15) are shown in Fig. 5 for σ = 0.5. The conventional
ramp filter’s convolution kernel is also displayed in Fig. 6
for the comparison purpose. It is observed that the con-
ventional ramp filter has larger side-lobes than the other
curves. As σ→ 0, the convolution kernel tends to an im-
pulse with no side-lobes.
Finally, a computer phantom study is presented to test the

proposed analytical image reconstruction algorithm as fol-
lows. A computer simulated 2D Shepp-Logan head phan-
tom was used to generate the parallel projections [9]. The
phantom image was presented in a 128 × 128 array. The
Radon projections had 180 views over 180°. Two sets of the

Fig. 5 Some examples of the tomographic filters for the time-of-
flight backprojection filtering algorithm with different σ values. Left:
Fourier domain transfer functions (Eq. 14). Right: Square-root
function approximations (Eq. 15)
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projections were used for image reconstruction. One set was
noiseless, and the other set was incorporated with Poisson
noise.
The TOF timing resolution was modelled by a normal-

ized Gaussian function with σ = 10. To simulate the TOF
effect, the 1D projections were filtered with a filter
I0(2π

2σ2ω2)epx(−2π2σ2ω2). A conventional FBP algorithm
was used to reconstruct image from the filtered projec-
tions. According to the central slice theorem, regular
backprojection of the 1D filtered projection with the filter
I0(2π

2σ2ω2)epx(−2π2σ2ω2) gave the equivalent effect of the
TOF backprojection with a Gaussian profile function. The

above procedure gave the equivalent effect as obtaining
the pure TOF backprojected image that has a psf given by
Eq. (9).
A 2D post filter of H(ω)W(ω) was applied to the backpro-

jected image, where H(ω) and W(ω) were defined in Eqs.
(14) and (16), respectively. Two sets of reconstructions were
produced: one using noiseless data and the other using
noisy data. The reconstruction results are shown in Fig. 7,
where the noiseless simulations are in the upper row and
the noisy simulations are in the lower row. The left column
shows the equivalent TOF backprojection of the list-mode
data. The middle column shows the reconstruction with
the proposed BPF algorithm using the post filter H(ω). The
right column shows the reconstruction with the proposed
BPF algorithm using the post filter H(ω)W(ω).
We remind the readers that the BPF algorithm is dif-

ferent from the FBP algorithm, which is the popular FBP
algorithm, while the BPF algorithm is not as popular.

Conclusions
The list-mode TOF BPF algorithm has many advantages.
It is faster than the iterative algorithms. We have derived
psf for the pure list-mode TOF backprojection for the
2D case. Once this psf is obtained, a closed-form expres-
sion for the reconstruction filter is obtained for the 2D
case. Finally, we discuss how the backprojection profile
function and the Gaussian function in the tomography
filter are determined. We can assume that the TOF tim-
ing uncertainty can be modeled as a Gaussian propabil-
ity distribution with a standard deviation of σ1. The
parameter σ1 is determined by the PET system we are
using. The TOF backprojection profile function can also
be assumed to be a Gaussian function with a standard

Fig. 6 The two-dimensional convolution kernel is only a function of
radial distance r. The blue curve is for the conventional ramp filter.
The yellow and orange curves (on the top of each other) are for the
σ = 0.5: one is computed with the true H and the other is computed
square-root function approximation

Fig. 7 Two-dimensional reconstructions. Upper row: Noiseless simulations; Lower row: Noisy simulations; Left column: Equivalent time-of-flight
backprojection; Middle column: Backprojection filtering (BPF) reconstructions; Right column: BPF reconstructions with noise control window
function applied
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deviation of σ2. The system psf as defined in Eqs. (9) and
(10) is Gaussian with a standard deviation of σ3, which
must satisfy σ3 = σ1 + σ2. In Eqs. (9)-(15), the param-
eter σ is σ3. The parameter σ2 is only used in the TOF
backprojector's profile function and can be arbitrarily
chosen. It is an interesting special case that σ2 = 0, in
which the TOF backprojector simply backprojects an
event to a single point in the image domain. In this in-
teresting special case, the backprojector is much faster
than the conventional non-TOF backprojector and we
have σ3 = σ1. In conventional non-TOF tomography, we
have σ1 = σ2 = σ3 = ∞. Computer simulations are per-
formed to test the feasibility of the proposed algorithm.
Our immediate future plan is to perform list-mode data
simulations, because our simulations in this current
paper use non-list-mode data to emulate the list-mode
TOF effects by using the central slice theorem. The
modern PET can be operated in its 2D mode or 3D
mode. The 3D mode has a higher sensitivity by accept-
ing more photons. The 2D mode, on the other hand, has
less scattering problem. If the data is acquired using the
3D mode, a 2D data set can be obtained via rebinning,
for example, the Fourier rebinning. The reconstruction
algorithm for the 3D case is much more complicated
than that for the 2D case. The work for the 3D case will
be covered in a future paper.
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