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Non-iterative image reconstruction from
sparse magnetic resonance imaging radial
data without priors
Gengsheng L. Zeng1,2* and Edward V. DiBella1

Abstract

The state-of-the-art approaches for image reconstruction using under-sampled k-space data are compressed
sensing based. They are iterative algorithms that optimize objective functions with spatial and/or temporal
constraints. This paper proposes a non-iterative algorithm to estimate the un-measured data and then to
reconstruct the image with the efficient filtered backprojection algorithm. The feasibility of the proposed method is
demonstrated with a patient magnetic resonance imaging study. The proposed method is also compared with the
state-of-the-art iterative compressed-sensing image reconstruction method using the total-variation optimization
norm.

Keywords: Tomographic image reconstruction, Under-sampled measurements, Fast magnetic resonance imaging,
Analytics reconstruction

Introduction
This paper considers image reconstruction for under-
sampled magnetic resonance imaging (MRI) data, which is
a typical case for fast imaging such as dynamic imaging
and real-time imaging [1, 2]. Since the data is incomplete,
direct image reconstruction contains severe artifacts. The
state-of-the-art approaches are compressed sensing based
iterative reconstruction methods. The iterative methods
optimize an objective function that contains spatial and/or
temporal constraints. Some standard compressed sensing
papers suggest objective functions with an L1 norm to en-
courage sparseness [3–8]. The compressed sensing ap-
proaches can be considered as Bayesian methods, in
which the prior information is formulated as the con-
straints. It is a popular approach that the non-Cartesian k-
space measurements are interpolated into the Cartesian
grid before reconstruction [9–11].
Recently machine learning is becoming a popular solu-

tion for applications in almost all areas. An important
application of machine learning is image reconstruction

with limited data [12–15]. On the surface, machine
learning methods do not need any prior information
about the image except for a large training set. In fact,
the training data set is the prior information, and ma-
chine learning methods can also be considered as Bayes-
ian methods.
One drawback of Bayesian methods is that if the object

being imaged is quite different from the Bayesian as-
sumptions, the reconstructed image from the Bayesian
methods may not be trustworthy. The method proposed
in this paper does not assume any prior information.
Our method is non-iterative and efficient to implement.
Re-gridding data points may introduce errors to the

image. Due to the nature of the filtered backprojection
(FBP), our proposed method assumes radial sampling in
the k-space, and the measurements do not get interpo-
lated into the Cartesian grid.
Parallel MRI uses multiple receiver coils. The space-

dependent properties of receiver coils can be employed
to reduce under-sampling induced artifacts [16–18].
This paper considers only single-channel MRI. Parallel
MRI is beyond the scope of this paper.
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Methods
Linear interpolation causes rotated shadow images
In this paper, we only consider radial k-space sampling.
Under-sampled k-space here implies that the number of
views is not sufficient. In other words, the angular sam-
pling is sparse. Typically streaking aliasing artifacts will
appear in the reconstructed images if the angular sam-
pling is not fine enough. It is noticed that the simple lin-
ear interpolation method to estimate the unmeasured
measurements has never been used in under-sampled
MRI applications, and in the first section of this paper,
we investigate the reasons why the naïve linear
interpolation approach does not work well.
Here we use a simple example in the spatial domain to

illustrate our point. Let us refer to the one-dimensional
(1D) inverse Fourier transform in the radial direction of
the k-space measurements as the sinogram. Let the sino-
gram be p(n, m), where n is the index along the radial
direction and m is the view angle index. When m is odd,
p(n, m) is assumed to be measured. When m is even,
p(n, m) is not measured and needs to be estimated. A
simple linear interpolation scheme to estimate p(n, 2m)
from p(n, 2m - 1) and p(n, 2m + 1) is

pðn; 2mÞ ¼ 0:5� ½pðn; 2m−1Þ þ pðn; 2mþ 1Þ� ð1Þ

The ultimate effect of this interpolation scheme
after image reconstruction is exaggeratingly illustrated
as an outline drawing in Fig. 1, where the under-
sampling streaking artifacts are not shown. Figure 1a
shows the main image reconstructed from the original
sinogram, while Fig. 1b shows the image recon-
structed from the linearly interpolated sinogram using
Formula (1). It is interesting to observe from Fig. 1b
that the reconstructed image from the linearly
interpolated sinogram is a combination of three

components: the main reconstruction using the ori-
ginal under-sampled sinogram (with a weighting fac-
tor of 1), a rotated version of the main reconstruction
by Δγ (with a weighting factor of 0.5), and a rotated
version of the main reconstruction by -Δγ (with a
weighting factor of 0.5). Here 2Δγ is the angular gap
between two adjacent views in the original under-
sampled sinogram. In general, sinogram interpolation
via linear convolution yields an image that is a com-
bination of the main reconstruction and some rotated
versions of the main reconstruction. Similar phenom-
ena are expected for other convolution based sino-
gram estimation methods. The rotational artifacts are
severer at locations farther away from the center of
rotation.

Estimation of un-measured data via displacement
function interpolation
We believe that in order to significantly improve the
sinogram estimation, we must use some sort of nonline-
arity. The strategy of non-rigid deformation can be
modified for our sinogram estimation task. There are
many image deformation methods [19–21]. However,
these methods cannot be directly applied to our sino-
gram estimation. One nonlinear deformation approach
is sinewave fitting, which requires singular value decom-
position and is rather complicated to implement [22].
The main idea of our algorithm is sketched below. A

pair of measured sinogram views is provided: p(n, m1)
and p(n, m2), where n is the index along the radial direc-
tion and m1 and m2 are two angular indices. The goal is
to estimate p(n, m) with m between m1 and m2.
The first step of our proposed method is to find a dis-

placement function u(n) to connect p(n, m1) and p(n,
m2) so that

Fig. 1 Outline diagrams for images reconstructed from a the original under-sampled sinogram and b linearly interpolated sinogram
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p n;m2ð Þ ≈ p nþ um2
m1

nð Þ;m1

� �
ð2Þ

We can find the function um2
m1
ðnÞ by minimizing an ob-

jective function F, for given m1, m2, and n,

F ¼ p n;m2ð Þ−p nþ um2
m1

nð Þ;m1

� �h i2
þ λR um2

m1
nð Þ

� �
ð3Þ

with

um2
m1

nð Þ∈ℤ

and

um2
m1

nð Þ�� ��≤N

where ℤ is the set of all integers and N is a pre-selected
small positive integer. For example, N = 12. Here, λ is a
pre-set parameter to balance the weighting between con-
straints in the objective function F. We set λ = 0.001 in
our implementation of Formula (3). In Formula (3), R is
a regularization function. If we prefer that both sides of
Formula (2) have the similar trends of slopes (i.e., up-
ward trends or downward trends), the regularization
function R can be defined as

R ¼ ½sign�pðn;m2Þ−pðn−1;m2Þ
�
−sign

�
pðnþ um2

m1
ðnÞ;m1Þ

−pðnþ um2
m1
ðnÞ−1;m1Þ

��2
ð4Þ

The objective function of the optimization problem is
given in Formula (4), which contains two terms. The
first term enforces the function displacement, which is
defined in Formula (2) and can be understood as follows.
We have two functions: one is labeled as m1 and the
other is labeled by m2. We assume that the second func-
tion is the result of deformation from the first function.
For any function value in the second function, we can
find a corresponding function value in the first function.
However, their associated variables differ by u(n). The
second term in the objective function Formula (3) is the
constraint term. The constraint is defined in Formula
(4), which enforces that the slopes at the corresponding
points of the two function have the same sign. In other
words, if the second function at one point is increasing
(or decreasing), then at the corresponding point of the
first function is also increasing (or decreasing).
Normally, an objective function such as F in Formula

(3) is minimized by an iterative gradient decent algorithm.
However, if we restrict u(n) to be integers in [−N, N] with
N being a pre-set positive integer, it is faster to evaluate
the objection F with all possible u(n) values in [−N, N]
and use a ‘min’ function to determine the optimal dis-
placement function u(n). Here, ‘min’ is a built-in function
in Matlab® to find the minimum value in an array.

The motivation of using a limited range [−N, N] is to
convert an iterative optimization procedure into a one-
step procedure. The selection of the integer N is empir-
ical. The computation complexity is directly propor-
tional to 2N + 1. A small N is desirable from
computation cost point of view. However, if N is too
small, the true displacement value may be outside the
range of [−N, N]. The value of N can be selected accord-
ing to the data missing gap. If N were chosen to be
1000, the computation complexity is approximate that of
an iterative algorithm with 2001 iterations. In order to
obtain an efficient algorithm, the value of N must be
small enough. The selection of N = 12 is empirical and
data dependent. For different applications or different
data sets this value may vary.
After the displacement function u(n) is found, in the

second step, the un-measured sinogram p(n, m) with
index m between m1 and m2 can be readily obtained by
linearly interpolating the displacement function u(n).
For example, if m2 – m1 =M + 1, we can estimate M
views between m1 and m2 as

p n;mð Þ ≈ p nþm−m1

M
u nð Þ;m1

� �
ð5Þ

for

m ¼ m1;m1 þ 1;…;m2−1:

We must point out in Formula (5) that n + u(n) × (m −
m1)/M is most likely not an integer. Let

n1 ¼ nþ m−m1

M
u nð Þ

j k
ð6Þ

and

a ¼ m−m1

M
u nð Þ

j k
−n1 ð7Þ

where ⌊x⌋ is the largest integer that is not greater than
x. Then Formula (5) can be implemented as the linear
interpolation between two neighboring points as

p n;mð Þ ≈ 1−αð Þp n1;m1ð Þ þ αp n1 þ 1;m1ð Þ ð8Þ
for

m ¼ m1;m1 þ 1;…;m2−1:

Image reconstruction
The k-space data is complex in nature. Our proposed
sinogram estimation method described in Section "Esti-
mation of un-measured data via displacement function
interpolation" was developed for real functions. The 1D
inverse Fourier transform for the radial k-space mea-
surements is first performed view-by-view. The result is
the spatial-domain sinogram. This spatial-domain sino-
gram has a real part and an imaginary part. The
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sinogram extension method described in Section "Esti-
mation of un-measured data via displacement function
interpolation" is applied to the magnitude of the sino-
gram. The image reconstruction algorithm is chosen as
the FBP algorithm. This FBP algorithm in Matlab® is a
built-in function ‘iradon’.
In computer simulations, we demonstrate our method

with a real-valued (magnitude) sinogram. The original
under-sampled sinogram was generated analytically
without noise. We performed three computer simulation
studies and one patient study. In the first computer
simulation study, the original measured number of views
was 60 over 360°. After sinogram extension, the number
of views was increased to 180 over 360°. In the second
computer simulation study, the original measured num-
ber of views was 120 over 360°. After sinogram exten-
sion, the number of views was increased to 360 over
360°. The absolute error image between the estimated
sinogram and the true sinogram was calculated and re-
ported in the next section.
For the patient cardiac perfusion MRI study, a Siemens

3 T Trio scanner was used for data acquisition [23]. We

used a phased array of coils, one of which was chosen to
demonstrate the proposed method. The scanner parame-
ters for the radial acquisition were TR = 2.6 ms, TE = 1.1
ms, flip angle = 12°, Gd dose = 0.03 mmol/kg, and slice
thickness = 6 mm. Reconstruction pixel size was 1.8 ×
1.8 mm2. Each image was acquired in a 62 ms readout.
The acquisition matrix size for an image frame was
256 × 72, and 75 sequential images were obtained at 75
different times. At each time frame, the k-space is sam-
pled with 72 uniformly spaced radial lines over an angu-
lar range of 180°.
To illustrate our proposed algorithm, at each time

frame we under-sampled the 72 views into 24 views for
image reconstruction. The images with 72 views were
treated as the gold standard. Only one timeframe was
used at a time.
For the patient study, the state-of-the-art iterative

total variation (TV) algorithm was also used for image
reconstruction with under-sampled MRI data. The num-
ber of iterations was 1000. The reconstructions were
compared with the gold standard images obtained with
72 views in terms of root mean square error (RMSE).

Fig. 2 FBP reconstructions reconstructed by a 180 measured views, b 60 measured views, c 180 views created from 60 views by linear
interpolation, d 180 views created from 60 views by sinc function interpolation, and e 180 views created from 60 views by proposed method

a b c
Fig. 3 Absolute error between the estimated sinogram and the true sinogram of 180 views, using a linear interpolation, b sinc function
interpolation, and c proposed displacement function interpolation method
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Results
Computer simulations
Figure 2 shows the results from the computer simulations
with the FBP reconstruction algorithm. In this figure,
measurements from 180 views over 360° are considered as
a full sinogram, and measurements from 60 views over
360° are considered as an under-sampled sinogram. Fig-
ure 2a and b show the FBP reconstruction results from

the full and under-sampled sinograms, respectively. Figure
2c and d show the results with linear convolution sino-
gram interpolation methods: linear interpolation and sinc
function (convolution) interpolation. The linear
interpolation method is equivalent to the triangle function
(convolution) interpolation method. Figure 2e shows the
result of the proposed non-linear method.
The estimated sinograms and the true sinogram are

compared in terms of the absolute value of the differ-
ence in Fig. 3 for the estimation methods used in Fig. 2.
A summary of the absolute errors is listed in Table 1.

Patient study
A de-identified MRI data set was used for a comparison
study. Both state-of-the-art iterative TV algorithm and

Table 1 Computer simulation set #1 sinogram estimation errors

Methods Maximal absolute error Sum of absolute errors

Linear interpolation 0.1676 193.0636

Sinc interpolation 0.1762 128.5682

Proposed 0.1439 87.6291

Fig. 4 (Frame 10 ~ 40). MRI patient image reconstructions by using (1st column) 72-view FBP, (2nd column) 24-view FBP, (3rd column) 24-view
iterative TV, and (4th column) 24-view proposed method. The 1st column is treated as the gold standard for other columns to compare with. The
four rows of images correspond to time frames of 10, 20, 30, and 40, respectively
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proposed non-iterative algorithm were used to recon-
struct the images. The results of the patient cardiac per-
fusion MRI study are shown in figures radial data.
Figures 4 and 5’s second columns show the FBP recon-
struction using the under-sampled 24-view data. Figures
4 and 5’s third columns show iterative TV reconstruc-
tion using the under-sampled 24-view data. Figures 4
and 5’s forth columns show the FBP reconstruction
using the extended data by the proposed displacement
function method from the 24-view data. The values of
u(n) was restricted to be integers in the range of [− 12,
12].

The state-of-the-art iterative TV algorithm provides
the least noisy images. However, according to the RMSE
analysis shown in Table 2, the proposed non-iterative
method has the smallest error compared to the gold
standard, which uses 72 views.

Discussion and conclusions
This paper observes that linear convolution based sino-
gram interpolation method may produce rotation arti-
facts. To overcome this problem, we propose a
nonlinear method that relates the adjacent measure-
ments by a displacement function, and the linear
interpolation of the displacement function yields the es-
timation of un-measured data.
In this proposed method, two adjacent measured views

in the original under-sampled sinogram are used for
missing data estimation. A displacement function, u(n),
is estimated by minimizing an objective function, F. We
restrict the values of the displacement function u(n) to
be integers in a small range [−N, N], say, N = 12. The
minimization procedure can be non-iterative. We use
the ‘min’ function to find the optimal solution for each
index n. Then linear interpolation of u(n) is performed
for each un-measured view between the two adjacent

Fig. 5 (Frame 50 ~ 70). MRI patient image reconstructions by using (1st column) 72-view FBP, (2nd column) 24-view FBP, (3rd column) 24-view
iterative TV, and (4th column) 24-view proposed method. The 1st column is treated as the gold standard for other columns to compare with. The
three rows of images correspond to time frames of 50, 60 and 70, respectively

Table 2 RMSE for various reconstruction methods

72 views
FBP

24 views
FBP

24 views
Iterative TV

24 views
Proposed

Time frame 10 0 0.0907 0.0717 0.0647

Time frame 20 0 0.0996 0.0704 0.0661

Time frame 30 0 0.0893 0.0690 0.0631

Time frame 40 0 0.0986 0.0720 0.0623

Time frame 50 0 0.0893 0.0693 0.0592

Time frame 60 0 0.0905 0.0633 0.0615

Time frame 70 0 0.0932 0.0699 0.0581
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measured views. For example, if the un-measured view is
exactly at the middle between the two measured views,
the interpolated displacement function for this un-
measured view is 0.5 × u(n). Most likely 0.5 × u(n) is not
an integer. Linear interpolation is required to form the
estimated sinogram p(n + 0.5u(n), m). Finally, the image
is reconstructed by the FBP algorithm, in which the k-
space re-gridding is not required.
One advantage of the proposed method is that the re-

sultant FBP reconstruction using the estimated sinogram
does not have the rotation artifacts. Our estimated sino-
gram is more accurate than the sinogram estimated by
linear-convolution-based methods. This point is demon-
strated by the absolute errors as shown in Table 1.
Thanks to the FBP algorithm, the proposed method does
not suffer from the k-space re-gridding errors.
In our patient study, there are 24 views over 180°. This

number of views is extremely small, much smaller than
the recommended view numbers in clinical applications.
The most significant feature of our algorithm is that no
prior information is ever assumed in the proposed
method. Our proposed algorithm is compared against
the state-of-the-art iterative TV algorithm using the pa-
tient dynamic MRI data set. The iterative TV algorithm
provides less-noisy images. However, the proposed non-
iterative algorithm produces the images that have less
RMSE errors when compared with the 72-view gold
standard images. The unique characteristic of the pro-
posed algorithm is its non-iterative nature and efficient
computation.
The main motivation for us to use the displacement

function method is that the displacement function
method is nonlinear, because we observe that linear
methods cause rotational artifacts in the image. Other
nonlinear methods may also work to estimate the miss-
ing data.

Abbreviations
1D: One dimensional; FBP: Filtered backprojection; MRI: Magnetic resonance
imaging; RMSE: Root mean square error; TV: Total variation
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