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Abstract

A micro-electromechanical system (MEMS) scanning mirror accelerates the raster scanning of optical-resolution
photoacoustic microscopy (OR-PAM). However, the nonlinear tilt angular-voltage characteristic of a MEMS mirror introduces
distortion into the maximum back-projection image. Moreover, the size of the airy disk, ultrasonic sensor properties, and
thermal effects decrease the resolution. Thus, in this study, we proposed a spatial weight matrix (SWM) with a
dimensionality reduction for image reconstruction. The three-layer SWM contains the invariable information of the system,
which includes a spatial dependent distortion correction and 3D deconvolution. We employed an ordinal-valued Markov
random field and the Harris Stephen algorithm, as well as a modified delay-and-sum method during a time reversal. The
results from the experiments and a quantitative analysis demonstrate that images can be effectively reconstructed using an
SWM; this is also true for severely distorted images. The index of the mutual information between the reference images
and registered images was 70.33 times higher than the initial index, on average. Moreover, the peak signal-to-noise ratio
was increased by 17.08% after 3D deconvolution. This accomplishment offers a practical approach to image reconstruction
and a promising method to achieve a real-time distortion correction for MEMS-based OR-PAM.
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Introduction
Photoacoustic microscopy (PAM) is a hybrid imaging
technique, which benefits from the effect of laser-induced
ultrasound in the designed optical absorbers [1–3]. How-
ever, most of the signals acquired in OR-PAM interfere
with the superposition of the surrounding signals. Thus,
the system has a high entropy, and thoroughly decoding
the detected signal is a challenge [4, 5]. One of the
methods to address this challenge is to simplify the acqui-
sition system and construct a straightforward linear back-
projection algorithm. Another effective approach is to

improve the processing algorithm to decode a larger
amount of information [6, 7].
When simplifying the acquisition system, micro-

electromechanical system (MEMS)-based optical-resolution
photoacoustic microscopy (MOR-PAM) provides a quasi-
pointwise detection with straightforward structures. A MEMS
mirror has the advantages of high-speed scanning, minimum
power consumption, a comparatively small size, and light
weight. Thus, it is suitable for a variety of OR-PAM instru-
ments in rapid microscopic imaging [8], including a high-
speed dual-view photoacoustic imaging pen [9], a MEMS
scanning mirror enhanced photoacoustic laparoscope with an
adaptive resampling method [10], and a combination of a
MEMS scanning mirror and multimode fibers [11]. A MEMS
mirror is selected for OR-PAM based on its intended applica-
tion. An electrothermal MEMS has a relatively high driving
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force and a large field of view (FOV) than other types of
MEMS. By contrast, an electrostatic MEMS has an accessible
linearized-scanning mode [12]. The inevitable nonlinear re-
sponse of a MEMS under the tilt angular-voltage curve, par-
ticularly at the end of each B-scan, leads to a distortion in the
maximum amplitude projection (MAP) images. This distor-
tion is particularly observed when imaging using a thermo-
electric MEMS [13, 14], and the MEMS mirror is suitably
calibrated before use for microscopy. The step size for a spot
controlled using a MEMS mirror is smaller than the spot size,
and the receiving area of the ultrasonic sensor leads to an
interaction between the signal and ultrasonic sensor, which
lasts for a certain period of time. Thus, a deconvolution is re-
quired for depth-coded microscopy with a small detection
area.
One approach to improving the processing algorithm

to decode a larger amount of information is to trade-off
between the accuracy and time consumption during the
engineering phase. Based on this idea, many studies on
OR-PAM have been widely conducted in recent years to
combine algorithms with different systems. In Hamid
Moradi’s work, a deconvolution-based inversion with a
sparsity regularization is proposed to improve the photo-
acoustic resolution [15], and the work of Heinz Roitner,
a deconvolution was applied to provide a partial ampli-
tude compensation such that PA images of a finite-size
detector were deblurred [16]. In addition, deep learning
was introduced into the OR-PAM by Davoudi; a U-net
was utilized so that the OR-PAM could eliminate arti-
facts and improve the signal-to-noise ratio [17].

However, these methods require significant amount of
data for training. Moreover, in some cases, the training
set must be significantly large to deal with the high
dimensionality.
In this study, the MEMS-based acquisition system was

combined with the machine learning method. Further-
more, a simplified model, denominated using a spatial
weight matrix (SWM), was constructed for the image re-
construction of MOR-PAM. An SWM has a hierarchical
structure that contains a denoise layer, a registration
layer, and a deconvolution layer. In addition, the algo-
rithm was modularized to enable the reuse of functional
modules. The performance of the SWM was evaluated
quantitatively based on mutual information (MI) and the
peak signal-to-noise-ratio (PSNR).

Methods
MEMS-based OR-PAM
The imaging system used in this study was the same as
that used in previous studies, as shown in Figs. 1a and b
[10]. The figure shows a system with the optical compo-
nents annotated along the light path. The laser (532 nm,
DTL-314QT, Russia) is utilized as the source for obtain-
ing high-absorption-contrast signals, and the path is
designed with a symmetric light path structure. The
scanning velocity and FOV are controlled using a two-
axis thermoelectric MEMS; four anchor poles of the
MEMS are adjusted using a voltage array in a field-
programmable gate array [18, 19]. Figure 1c shows the
B-scan images of the MOR-PAM, which show significant

Fig. 1 An overview of MEMS-based photoacoustic microscopy system. a: Schematic of the MOR-PAM; b: Zoomed-in views of the ultrasonic sensor; c: B-Scan
images associated with the acquired PA matrix, the PA signals in the red dashed line, and PA signals in the purple dashed line are utilized for reconstruction; d:
Projection of the laser spot in MAP image. FPGA: Field programmable gate array; DAQ: Data acquisition unit; MEMS: Micro-electromechanical systems; PD:
Photodiode; ECU: Electronic control unit; G: Glass; RP: Reflection prism; s: Scoustic path; PAS: Photoacoustic source; CA: The estimated convolution area; PA A.:
Photoacoustic amplitude.
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differences in the baseline offset. In addition, it is advan-
tageous to utilize multiple detected PA signals for an
image reconstruction when the estimated noise is stable.
The resolution of the MEMS-based PAM corresponds

to the step size of the MEMS mirror, which is set to
4 μm on the fast axis (x⃗) and 6 μm on the slow axis (y⃗).
However, the 12.5 μm airy disk was larger than the step
size; thus, the resolution was lower than expected. More-
over, the thermal effects of a repeated pulse lead to
changes in the temperature-dependent Grüneisen par-
ameter, which affects the point spread function (PSF) of
the system [20]. The projection of the laser spot onto
the pixel plane is shown in Fig. 1d, where a pixel is ap-
proximated as a square with a 1:1 aspect ratio. The en-
tire signal acquisition process was reviewed, and the
imaging model was divided into three layers for
simplification:

I
0 ¼ I þ N1ð Þ � Klaserð ÞMmap

� �þ N2
� �

� Kelectric ð1Þ

where I′ is the detected 3D data matrix; I is a 3D image
matrix; ⊗ is a convolution operator; Mmap refers to the
location mapping matrix, which is equal to the velocity
integration of the MEMS mirror and is reversible in this
case. In addition, Klaser refers to the laser-induced
spatially dependent convolution kernel corresponding to
the spot size, signal reception time, and thermal effects.
Moreover, Kelectric is the convolution kernel correspond-
ing to an ultrasonic sensor that is spatially dependent
[21, 22]. N1 is the noise produced by the interaction be-
tween laser and matter, and N2 is the noise caused by
ultrasonic sensors. The inversion of the above equation
is as follows:

Î ¼ I
0 þ N

� �
� Kdenoise

� �
M − 1

map

� �
⊘Klaser ð2Þ

where ⊘ is a 3D deconvolution operator. In addition, N
is the sum of the noise in this system. Because the elec-
tric impulse and frequency response are not considered
in this study, ⊘Kelectric is replaced by ⊗Kdenoise for fea-
ture extraction. Thus, the process inversion is performed
in the order of a suitable performance filtering, registra-
tion mapping, and laser-generated 3D deconvolution
operation.

Feature points extraction
The nonlinear response of the MEMS mirror introduces
a pairwise deviation between a pixel grid and spot loca-
tion grid if they are placed in the same coordinate frame.
The corner points on the grid resolution chart are con-
sidered feature points. Our first attempt was to directly
extract the feature points using adaptive non-maximal
suppression and the Harris Stephen algorithm (H&SA).

However, the results lag the expected outcome [23].
Thus, a pre-processing is necessary for labeling the re-
gion of interest (ROI) with ‘1’ and the other regions with
‘0’, and the ROI from the input images can be distin-
guished. Hence, the image cannot be segmented using a
one-step method, and the objective function based on
the ordinal-valued Markov random field (OV-MRF) is
utilized to label the ROI through multiple iterations for
a feature extraction. Here, OV-MRF is selected to per-
form the multi-threshold segmentation, which is suitable
for the segmentation of complex references. First, the
signal baseline offset of each A-line is corrected, and the
baseline offset estimation in this program is presented as
follows:

f̂ Ahð Þ ¼ 1
nnd − nstð Þ

X

h¼nst

nnd

Ah − 0; ð3Þ

where f̂ ðAhÞ is the estimation of the baseline offset in-
cluded in the offset matrix; Ah is the amplitude along
the A-line with index h; nnd and nst are the endpoint
and starting point indexes for a baseline offset estima-
tion in a specified A-line. The offset matrix is utilized to
pull the baseline back to zero.
Through repeated sampling, the 3 × 3 window was

used for a local PSNR estimation. Thus, the adaptive
Wiener filter with the same size was constructed by
adjusting the weights using this estimated PSNR.
After the baseline offset correction and denoising, the

bi-Gaussian probability distribution with a mean value
pair (μ1, μ2), which is a type of universal approximator, is
chosen as the prior probability distribution to iteratively
divide the threshold. Note that a pre-division is recom-
mended prior to the iteration. The objective equation
for point P with coordinates (m, n) is as follows:

E Im;n
� � ¼ argmin

Im;n;w
w j Im;n − I

0
m;n

j þ
X

Δm¼ − 1

1 X

Δn¼ − 1

1 1 − w
8

� �

j Im;n − I
0
mþΔm;nþΔn j ð4Þ

Δm, Δn ≠ 0; Δm, Δn ∈ Z∗. Here, I
0
m;n refers to the pixel

value at (m, n), Im, n refers to the pixel value at (m, n) in
a binary image, and w is the switch function (w = 0, 1).
Thus, the intensity of pixel P(m, n) is determined by the
tradeoff between adjacent pixels and itself. In addition,
the termination condition is set to break the loop if the
condition is satisfied while the maximum iteration num-
ber is set, and a simulated annealing based on a stochas-
tic gradient descent is proposed to improve the
performance. After being labeled using the OV-MRF,
the feature points are identified through the H&SA, and
the adjacent corners are suppressed. In addition, the

Ma et al. Visual Computing for Industry, Biomedicine, and Art            (2020) 3:22 Page 3 of 10



intersection of the filtering results of the Sobel edge de-
tection with a fast and slow axis is computed to verify
the results from the H&SA.

Strategy for 3D deconvolution
The difference between a photoacoustic wave and an
ultrasound wave is based on whether the emitting is ac-
tive or passive. Therefore, it is easier for ultrasound
waves than for an omnidirectional PA wave to focus
within a smaller angle range [24]. According to the sin-
gle PA source excitation formula:

p0 r
⃗

� �
¼ C θ;ϕð Þ � ∂p dPOð Þ

∂dPO
� cosθ
dPO

ð5Þ

where dPO ¼j r⃗ − r
⃗
0 j is the distance between the source

and sensor, C(θ, ϕ) refers to a coefficient that varies with
θ and ϕ, p0 refers to the initial pressure of the source
(t = 0), and pdPO is the measured data, where point P is
the moving point in the ROI and point O is the fixed

point for the position of the sensor. Here, θ ¼< x⃗; k⃗ >,
θ refers to the angle between the wave vector and fast

axis, and ϕ ¼< y⃗; k⃗ > , ϕ refers to the angle between
the wave vector and slow axis. In this code, dPO is re-
fined by a linear interpolation in the initial grid.
The surface area of the unfocused ultrasonic sensor is

measured at π·3.502 mm, as shown in Fig. 1b, and the
distance between the sensor and object is within the
interval 8.80 mm. Therefore, a large error is caused if the
sensor area is considered as a point on the wavefront. In
this case, an acoustic source described as a voxel that
has been detected over a period of time leads to an over-
lap on the A-lines, and the earlier detected voxel affects
the intensity of the voxel detected after it. A modified
delay-and-sum method (DAS) is employed to alleviate
the interference in 3D microscopy [25–27]. The acoustic
waves are considered as non-coherent. Owing to the
superposition principle, the reconstructing formula is
improved as follows:

p0 r
⃗

� �
¼

X

m∈Φ

M

Wm θ;ϕð Þ � ∂p dPmOð Þ
∂dPmO

� cosθm
dPmO

ð6Þ

Here, Φ refers to the wavefront, the center of which is
located on the A-line, and the points on the wavefront
Φ reach this center at the same time; in addition, Wm(θ,
ϕ) refers to the weight of the correlated pixel in the local
subset.
The detection area is 1.20 mm × 0.80 mm; therefore,

the first detected voxel will influence the voxel micros-
copy until the end of this process. The distances of the
PA sources (Fig. 1d) are too close to be distinguished in
the lateral direction by the sensor. The deconvolution is
estimated by attaching the additional weight matrix,

which is determined by calculating the average value of
the photoacoustic signal in this area during the time re-
versal process. Thus, the method of local weighting is
helpful in reducing the symmetric artifacts and the
generalization errors in this complex task [28, 29]. In
this case, it will enhance an already strong source and
weaken a weak source in the fixed deconvolution
area; in addition, the edges of the ROI are enlarged.
To balance this enhancement and restore the edges,
the filtering process is guided by the image before de-
convolution [30].
Thus, a whole image with a high SNR is obtained. In-

stead of confronting the special deconvolution problem
for every pixel in this image, a shared decoding method
with a specified scope is employed for each subset,
which is based on the systematic features. To reduce
time complexity, the iteration operation is replaced by a
matrix multiplication during the programming.

SWM
Although the lateral resolution of the MOR-PAM bene-
fits from a tightly focused optical beam and high-
performance ultrasonic sensor, this is difficult to realize
through engineering [31, 32]. An SWM is proposed to
correct the distortion and perform a deconvolution. A
flowchart of constructing the SWM is shown in Fig. 2a,
and the processing flow with the SWM is shown in Fig.
2b. The image of each layer has a size of 200 × 200, and
the time-of-flight represents the time when the image is
detected. The noise reduction, registration of 2D images,
and 3D deconvolution were employed to reduce the sig-
nal superposition. In addition, the 3D image is obtained
through an interpolation. The construction of the SWM
corresponds to a reversal of the wave propagation, as in-
dicated in Eq. 2.
The mapping relationship between the input and output

is stored in the SWM, which has a hierarchical structure
with three layers. The first layer corresponds to the
denoising filter, which is used to reduce the system noise
N. The adaptive Wiener filter based on the statistics of the
A-line energy is utilized. In this study, the filter size is 3 ×
3. The second layer is the registration matrix, which refers
to the location mapping between distorted images and ref-
erence images. As described in subsection Feature points
extraction, by extracting the feature points from the refer-
ence image and the distorted image, the feature point
pairs are grouped into a sparse set. Figure 3a shows the
process of extracting the feature points using OV-MRF
and H&SA. The feature points are labeled with a green ‘+’
in the last image of the sequence. Thus, the geometric
transformation is inferred from this sparse correspond-
ence. In this study, the MATLAB method fitgeotrans is
used to estimate a geometric transformation. As shown in
Fig. 3b, the relationship between feature points in the
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input image and feature points in the reference image is
plotted with purple lines. Figure 3c shows the process of
an auto registration and a registration with enlarged fea-
ture points. Moreover, the deconvolution and image-
guided results are displayed at the end of the image array.

The last layer is the 3D deconvolution layer obtained by
employing a modified DAS in the deconvolution area, as
described in subsection Strategy for a 3D deconvolution.
A mapping relationship corresponding to different

spot sizes, ultrasonic sensors, and the scanning speed of

Fig. 2 Overall design of SWM. a: Flowchart of constructing SWM; b: Image processing flow through an SWM hierarchical structure. AWF: Adaptive
Wiener filtering; NMI: Normalized mutual information; PSNR: Peak signal-noise-ratio; Wi, j: The element in an adaptive Wiener filter; Ri, j: The element in a

registration matrix; W
0
i; j : The element in a deconvolution kernel

Fig. 3 Stage results of SWM construction with a resolution chart. a: The process of extracting feature points by utilizing OV-MRF and H&SA; b: The
mapping relationship between the feature points-1 (the feature points in the input image) and the feature points-2 (the feature points in reference
image); c: The process of image registration based on the feature point pairs; stage results after the first red dashed line are obtained by adding
manually selected feature points for registration, and stage results after the second red dashed line are 3D deconvolution results. Norm.: Normalized;
PA A.: Photoacoustic amplitude
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the MEMS mirror is constructed in advance. Conse-
quently, the image reconstruction of MOR-PAM is con-
sidered as a knowledge-based geometric transformation
[33]. The 3D image is reconstructed using the specified
SWM along the wavefront propagation direction.

Evaluation metrics
Normalized mutual information (NMI) is a method used
to measure the correlation between two sample sets
based on the joint entropy, namely, the transmission of
information is acquired from an observation of sample
A to the knowledge of sample B [34, 35]. The principle
of MI is outlined as follows:

I A;Bð Þ ¼ H Að Þ þ H Bð Þ −H A;Bð Þ ð7Þ

Here, H(A) and H(B) are the entropy of images A and
B, respectively, and H(A; B) refers to the joint entropy of
A and B. NMI is acquired by normalizing the calculated
MI I(A, B). To calculate the MI in a computer, images A
and B are converted into a grayscale image with speci-
fied levels. Subsequently, considering image A as the col-
umn and image B as the row, the joint histogram is
substituted into the entropy calculation formula to ob-
tain H(A; B). The equation for computing entropy is
given as follows:

INMI Að Þ ¼ − 1
C

X

m¼1

M X

n¼1

N

P A m; nð Þð Þ
� log2 P A m; nð Þð Þð Þ ð8Þ

Here, C refers to the normalization parameter. In
addition, the PSNR, as a full reference image quality
evaluation index, is introduced to evaluate the 3D
deconvolution.

Results
Considering that the COVID-19 pandemic is still a glo-
bal problem, the experimental data for validation of this
SWM are transplanted from our database, which in-
cludes the data from the PAL equipped with electrother-
mal MEMS [10] and the data from a photoacoustic pen
equipped with electrostatic MEMS [9].

Environment and kits
The program was operated on a MacBook with 8 GB
RAM and 1.53 GB VRAM, using a CPU with a process-
ing speed of 2.90 GHz, which can satisfy the require-
ments of non-parallel computation. In addition, all
images were processed on MATLAB R2020a for aca-
demic use with some convenient kits downloaded from
GitHub. The algorithm design was accelerated using the
unified modeling language (UML), and simulations were
carried out on MATLAB.

Experiments on test images
The test images for the SWM validation include an
image of the resolution chart with a ring texture and im-
ages of vessels in a rat abdomen. The complete process
is divided into the following stages:
The first stage was the construction of the SWM. Con-

sidering the thermal effects, an enlarged airy disk was
considered as the top area of the 3D deconvolution area,
and the height of the deconvolution area was estimated
as 1.05 mm. The feature points of the resolution chart
were extracted for estimating the registration mapping.
The number of point-pairs for an electrothermal MEMS
registration was 783, which included some manually
added points; in addition, the number of point-pairs for
registering the electrostatic MEMS was 78. After regis-
tration, the modified DAS was employed for a deconvo-
lution, and the result of 3D deconvolution was
considered as the guided filter, which is filtered by the
result of registration. In this experiment, the neighbor-
hood size of the guide filter was 3 × 3.
An electrothermal MEMS was then employed in the

raster scanning. A continuous Dirac comb controlled
the angular speed of the micro-scanner with a frequency
of 10 kHz, based on which the time interval of two adja-
cent points was estimated at approximately 125 μm. The
scanning area was set to 1.20 mm × 0.80 mm. In
addition, the warm-up time required was considered for
ensuring the stable performance of the electrothermal
MEMS.
The last stage was an image reconstruction using the

SWM to correct the distortion and improve the SNR of
the images.
The obtained B-scan images are stacked, and 200 slice

images from 691 to 890 were extracted as a ROI. The in-
put 3D image is shown in Fig. 4a. The 3D image (Fig.
4b) was generated after registration, as shown in Fig. 4a.
Using Fig. 4b as the input image, the 3D image (Fig. 4c)
was generated after a 3D deconvolution. Both images are
displayed in sequence for comparison. Some differences
between Fig. 4a and b can clearly be seen; in addition,
the signal value is increased after a 3D deconvolution, as
shown in Fig. 4c. The images in Figs. 4d-f correspond to
the slices marked with the white dashed line in Figs. 4a-
c, respectively. The image in Fig. 4e is more orderly than
that in Fig. 4d; meanwhile, Fig. 4f shows an improved
SNR compared with Fig. 4e. The profiles of line 93 in
the MAP images of Figs. 4a-c are then obtained and dis-
played in Figs. 4g-i, respectively. The value at point A’
related to the noise is smaller than that of point A;
moreover, point B, which is the local maximum value, is
further increased to point B′.
MOR-PAM images of a resolution chart with a ring

texture and rat vessels were reconstructed to verify the
effectiveness of the SWM (Fig. 5). A MAP image of the
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resolution chart with a ring texture is shown in Fig. 5a,
and a processed image of the resolution chart is dis-
played in Fig. 5b. The profiles of the red- and blue-
dashed lines in Figs. 5a and b are plotted in Figs. 5c and d.
In this experiment, black cardboard was used as the
scattered sample to measure this difference for compen-
sation. In addition, the MOR-PAM images are displayed
in Fig. 5g-i, and the image of the vessels in the rat abdo-
men is shown as a reference (Fig. 5e).
By employing MI, the effectiveness of the SWM was

quantitatively measured. Meanwhile, it was utilized as an
evaluation metric during an iterative registration. The ε
in the flowchart (Fig. 2a) was selected to be 0.48. The
magnitude of ε is reasonable for judging the effectiveness
of the correction because the mean value of the PA im-
ages is lower than that of the images in visible light. The
joint histogram was drawn in MATLAB for comparison,
as shown in Fig. 5f. The self-joint histogram of the image
of the resolution chart is a bi-Gaussian profile along the
diagonal, whereas the raised points on the joint histo-
gram between the distorted image and the chart image
is unevenly distributed on the left half-plane. After pro-
cessing with the SWM, the distribution is pulled back
diagonally and distributed in the lower triangle because
the intensity of the PA is lower than that of its image.
The calculation results of the NMI are as follows: the
joint entropy H (Iout, Iref) was 13.35 in the 256-bin-sized
histogram when the entropy H (Iin) was equal to 6.99. In

addition, the NMI INMI (Iout, Iref) was 70.33-times larger
than INMI (Iin, Iref) in a binary histogram.

Experiments on depth-coded images
MOR-PAM was utilized to detect the images in the deep
layers, which could not be observed directly. The data
from the photoacoustic pen equipped with electrostatic
MEMS in our database were chosen to verify the per-
formance of the SWM in 3D images. As shown in sup-
plementary, the oral blood vessels of humans were
rendered in color along the axis direction with the color-
map jet in MATLAB. Three slices with equal spacing
along the axis direction were selected as the MAP plane
for comparison.

Discussion
In this study, the image processing of MOR-PAM was
divided into three stages corresponding to three layers.
First, a hierarchical processing was used to simplify the
physical model such that it can be easily coded and ex-
tended in the future. In addition, the SWM was con-
structed using a modified DAS in the 3D deconvolution
area instead of a 2D deconvolution, which is reasonable
for MOR-PAM. Moreover, the grid resolution chart,
which turns a nonlinear distortion correction into a
knowledge-based registration, was verified experimen-
tally to facilitate distortion correction. In the application
of a convolutional neural network, the SWM can also

Fig. 4 Analysis of using SWM to process a resolution chart. a: Original 3D image; b: The result of denoising and registration of Fig. a; c: 3D deconvolution result
of Fig. b; d-f: A-lines stack of white dashed line in Figs. a-c, respectively; g-i: The profiles of MAP images of Figs. a-cmarked with the white dashed line. Norm.:
Normalized; A., Amplitude; I.: Intensity
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find its own position. For example, a requirement of
fully connected layers is a consistent input image size
generated through the SWM; in addition, high-quality
images (reference images) can be estimated with the
help of the SWM for supervised training.
The SWM can be used for MOR-PAM reconstruction,

although some imperfections still exist. For example, the
distortion of the electrothermal MEMS is highly suscep-
tible to the temperature; thus, the temperature of the en-
vironment and the untimely heat dissipation effect on
the scanning speed as a thermal drift. Therefore, when
using an electrothermal MEMS for detection, the

thermal drift may produce additional distortion that is
difficult to estimate in advance. This limitation can be
addressed by constructing an adaptive SWM, which can
identify and correct the distortion during sampling. As
another approach, we can construct sufficient number of
SWMs prior to sampling, and the most suitable SWM
will reconstruct the distorted image.
In addition, we did not consider the PSF associated

with the ultrasonic sensor, and the area of 3D deconvo-
lution was based on an empirical assumption. A suitable
method is to use a generative adversarial network to es-
timate the size of the convolution kernel.

Fig. 5 Experimental results of image reconstruction with SWM. a: Original MAP image of a ring texture resolution chart; b: The processed MAP image
of Fig. a; c: Horizontal profile along colored dashed-lines in a and b rendered with different colors; d: Vertical profile along colored dashed-lines in
Figs. a and b; e: Image of vessels in the abdomen of a laboratory rat; f: Joint histogram comparison of different images; g-i: The above images of g-i
are distorted images; the middle images are the corrected depth-coded images (processed images); the lower images of g-i are superimposed images
between the original images and the processed images; white-arrows and rulers are utilized to mark obvious correction. Norm.: Normalized; ToF: Time
of flight; Pro.: Processed; Ref.: Reference; Reg.: Registered; units: μm
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Our next study will include an image reconstruction
using a combination of a preset SWM and dynamically
adjusted weights, as well as a real-time correction system,
to compensate for the unstable velocity of the MEMS.

Conclusions
An SWM, which is a practical tool used to estimate the
invariable information of a system, is a predetermined
matrix that allows a specified system to reconstruct im-
ages. Similar to other traditional machine learning
methods, an SWM uses a hierarchical structure to sim-
plify the complex physical process.
First, the adaptive Wiener filter with a size of 3 × 3 is

constructed for image denoising. For the process of regis-
tration, a grid resolution chart is employed to estimate this
deviation for correcting the nonlinear distortion. During
this process, an OV-MRF is used to label the ROI to help
the H&SA in the corner point extraction. In addition, the
intersection of the filtering results of the Sobel edge detec-
tion along the fast and slow axes is computed to verify the
results from the H&SA. Here, it is necessary to select
some feature points manually to guarantee a high-
performance registration. Therefore, the extracted feature
points are employed to estimate the geometric transform-
ation from a distorted image to a ground-true image.
In addition, a 3D deconvolution is applied to deal with

overlapped signals, which leads to an edge degradation.
To balance this effect of the deconvolution, we use a
guided filter to restore the boundary while retaining the
deconvolution results.
This distortion is caused by the system characteristics.

Therefore, we can construct a different SWM according
to different conditions (such as different MEMS mirror,
scanning velocity, spot size, and ambient temperature)
and apply this mapping relationship to reconstruct the
images detected under the same condition. The contri-
butions of this work include the following:
A processed SWM is constructed in advance for the

reconstruction of MOR-PAM images. In the image pro-
cessing using an SWM, some details of the image pro-
cessing modules, such as a 3D deconvolution and
baseline offset correction, are coded for the reconstruc-
tion; these modules are useful in other types of image re-
construction. In addition, an SWM is expected to be
used for a real-time distortion correction by monitoring
the offset dynamically.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s42492-020-00058-6.

Additional file 1. The comparison of human oral microvascular images
processed by SWM with minimum filter.
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