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In recent years, simultaneous localization and mapping in dynamic environments (dynamic SLAM) has attracted
significant attention from both academia and industry. Some pioneering work on this technique has expanded the
potential of robotic applications. Compared to standard SLAM under the static world assumption, dynamic SLAM
divides features into static and dynamic categories and leverages each type of feature properly. Therefore, dynamic
SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments.
Additionally, to meet the demands of some high-level tasks, dynamic SLAM can be integrated with multiple object
tracking. This article presents a survey on dynamic SLAM from the perspective of feature choices. A discussion of
the advantages and disadvantages of different visual features is provided in this article.
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Introduction

For intelligent robots to work with humans, robots must
be able to determine their own locations. Simultaneous
localization and mapping (SLAM) is a common method
for addressing this problem. SLAM is considered as an
important technique for intelligent robot self-
localization, particularly in areas lacking global position
information, such as tunnels and indoor scenes. The
main problems associated with vision-based SLAM (V-
SLAM) are the extraction and matching of a series of
visual features from image sequences with temporal rela-
tionships and how to utilize these features to estimate
the camera pose and construct a consistent three-
dimensional (3D) structure of an unknown scene simul-
taneously. To tackle these problems, V-SLAM systems
generally contain a set of common blocks, including fea-
ture tracking, map building, and loop closure detection
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for error drift correction. The implementation details of
these modules vary according to many factors, including
the employed visual sensor types, utilization of features,
and optimization methods.

Many types of cameras are used for V-SLAM, includ-
ing monocular cameras, stereo cameras, RGB-depth
(RGB-D) cameras, and event-based cameras. SLAM
using only a monocular camera cannot estimate global
scale directly and must rely on additional sensors such
as inertial measurement units (IMUs) or additional
priors such as shape priors to overcome scale ambiguity.
However, a monocular camera is the most appropriate
choice for weight-constrained micro-aerial vehicles
based on its light weight, low power requirements, and
attractive price. In comparison, RGB-D SLAM can ob-
tain depth information and estimate global scale directly,
but it is extremely sensitive to light, which limits its ap-
plication in most outdoor scenes. Stereo SLAM can esti-
mate depth and global scale directly based on the length
of the baseline between left and right cameras. The ac-
curacy of depth estimation in stereo camera models
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relies heavily on the length of the baseline, which limits
their application in portable mobile devices. Unlike the
three conventional camera types mentioned above,
event-based cameras are biologically inspired. Events are
time-stamped changes in the brightness of independent
pixels. Event-based cameras can directly capture events
asynchronously, leading to lower latency and a higher
dynamic range than conventional cameras. Therefore,
event-based cameras can be used to tackle difficult tasks
such as rapid and dynamic obstacle avoidance [1].

According to the amount of feature information used
for matching, visual features can be divided into two
levels: low-level features such as pixel patches, points, or
lines, and high-level features such as semantically labeled
objects [2]. Different features describe scenes from dif-
ferent perspectives. Low-level features focus on local de-
tails such as textures or the geometric primitives of
objects and scenes. High-level features integrate details
into semantic labels that more closely match the human
understanding of the world. This article reviews recent
approaches to SLAM in dynamic environments to ex-
plore the advantages and disadvantages of different levels
of features.

From the perspective of optimization, SLAM can be
divided into two classes: filter-based SLAM and frame-
based SLAM. The former marginalizes past poses and
summarizes the information gained over time using a
probability distribution. In contrast, the latter selects
only a small number of past frames and applies bundle
adjustment (BA) to those frames [3]. Although many
frame-based SLAM methods [4—7] have demonstrated
that the BA method is more efficient for V-SLAM, filter-
ing methods are still worth studying for dynamic SLAM
based on their natural advantages in terms of handling
statistical information, which is important for depth esti-
mation [8], sensor fusion [9], dynamic feature determin-
ation [10], and robust map management [11, 12].

The V-SLAM problem can be addressed elegantly
in static or approximately static textured scenes. In
such cases, there are sufficient background features
for ego estimation. However, in more complex real-
world environments such as crowded corridors or
malls, the classical SLAM pipeline yields poor results
because it cannot handle dynamic features properly
[13]. There are two methods for solving this problem.
The first is culling dynamic features/correspondences
as outliers, which is known as the robust SLAM
problem (Robust sections). The second method is in-
tegrating SLAM and multiple object tracking (MOT),
which is known as the SLAMMOT problem (SLAM
MOT sections). Intuitively, leveraging dynamic fea-
tures to estimate the camera pose, rather than simply
culling them, is more robust and meaningful. This is
because the SLAM problem is closely related to
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object detection [14] and MOT [15]. In other words,
these methods can benefit from each other. Object
detection and MOT can be separately adopted for
feature extraction and data association in high-level-
feature SLAM. Conversely, SLAM can promote object
detection and MOT based on camera poses and ob-
ject poses to achieve more accurate detection and
tracking.

In terms of real-world applications, estimating the
states of objects in views is important for robots to make
correct decisions and perform interactions with humans.
For example, knowing the states of pedestrians and
other cars can help driverless cars make more reliable
decisions and prevent traffic accidents. Additionally,
MOT provides mobile phones with the ability to render
moving objects using augmented reality (AR).

This article reviews visual SLAM in dynamic environ-
ments from the perspective of using features. Each level
of feature is discussed and compared thoroughly in
terms of the major components of dynamic SLAM. Add-
itionally, the potential relationships between SLAM and
MOT are analyzed. Furthermore, some key points re-
garding different cameras and optimization methods for
dynamic SLAM will be emphasized. The strengths and
weaknesses of each type of feature in dynamic environ-
ments are also discussed.

Existing surveys on dynamic SLAM or its components
Several recent surveys related to dynamic SLAM were
reviewed, as shown in Table 1. Xia et al. [18] sur-
veyed semantics-based V-SLAM. Chen et al. [19] dis-
cussed the use of deep learning in SLAM. Saputra
et al. [16] identified three main problems associated
with dynamic SLAM and classified dynamic SLAM
into three categories for robust visual SLAM, dynamic
object segmentation and 3D tracking, and joint mo-
tion segmentation and reconstruction. In a recent sur-
vey on feature-based SLAM, Azzam et al [2]
discussed the strengths and weaknesses of various fea-
tures used in SLAM.

Dynamic SLAM based on the outstanding works by
Saputra et al. [16] and Azzam et al. [2] is also discussed
herein. In this paper, features refer to two-dimensional
(2D) features and landmarks refer to reconstructed 3D
features.

Table 1 Recent surveys related to dynamic SLAM

Year Topic References
2018 Dynamic SLAM [16]

2019 Motion segment based on optical flow N7

2020 Semantics-based V-SLAM 18]

2020 Deep learning for SLAM [19]

2020 Feature-based SLAM [2]
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Article organization

The main problem in dynamic SLAM is handling
dynamic data associations. By choosing whether to cull
dynamic correspondences or use them to track objects,
the dynamic SLAM problem can be considered as a ro-
bustness problem or extension of standard SLAM [16].
The remainder of this paper is organized as follows.
Low-level-feature-based dynamic SLAM section dis-
cusses how to leverage low-level features alone in a dy-
namic environment. Using high-level features in
dynamic SLAM section discusses the functions of high-
level features in dynamic SLAM. Finally, the advantages
and disadvantages of different levels of features com-
bined with the difficulties of dynamic SLAM are
discussed.

Table 2 provides a compact overview of recent robust
SLAM systems. There are many difficulties in robust
SLAM, including robustly judging dynamic features,
handling occlusion, maintaining the long-term
consistency of maps, and dealing with few valid point

Table 2 Summary of recent robust SLAM systems
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features when dynamic features are culled. The details
are discussed in Robust SLAM sections. Comparisons of
low-level features and high-level features are provided in
the Discussion portion of Robust SLAM section.

Table 3 provides a compact overview of recent SLAM
MOT systems. The main difficulties discussed in this
article are missing data handling, relative-scale problem
solving for monocular systems, and probabilistic data
associations for noisy measurements. The details are dis-
cussed in SLAMMOT sections. Comparisons of low-
level features and high-level features are provided in the
Discussion portion of SLAMMOT section.

Low-level-feature-based dynamic SLAM

Low-level features mainly include point and line
features. Point features are widely employed in SLAM
systems based on their outstanding performance for tex-
tured scenes. Additionally, classical open-source point-
based SLAM systems [21] provide reliable backbones for
dynamic SLAM research. Compared to point features,

References System properties Implementation details Practical consideration
Backbone cT Env Ms HE P/S BI OH LC HL
Low-level based SLAM (Robust SLAM section)
Point-based or pixel-patch-based SLAM
Yang et al. [20] ORB-SLAM?2 [21] D | RE - - - - - -
Du et al. [22] ORB-SLAM2 D | E+RE - \J - - N -
Zhang et al. [23] - D I OF + DI - \V J - - -
Tan et al. [24] PTAM [6] M I RE - - - V - -
Point-line-based SLAM
Zhang et al. [25] - D [ 3DE - V - - vV vV

Using high-level feature as semantic priors in low-level feature-based SLAM (Using high-level features as semantic priors for low-level-feature-based

SLAM section)
Point-based SLAM

Bescos et al. [26] ORB-SLAM2 M, S, D IO
Yu et al. [28] ORB-SLAM2 D I
Cui and Ma [30] ORB-SLAM2 D |
Han and Xi [31] ORB-SLAM2 D |
Long et al. [33] ORB-SLAM?2 D |, 0
Ai et al. [34] ORB-SLAM2 S, D I, O
Xiao et al. [36] ORB-SLAM2 M IO
Brasch et al. [38] ORB-SLAM [39] M )
Point-line-based SLAM
Zhang et al. [41] - D |

Using high-level features in object SLAM (Using high-level features in object SLAM section)

Yang and Scherer [14] - M |, O

SI+DI S [27] - V N J _
SI+E S 29] - - - - _
SI+E S 129] - - - - _
SI+OF S [32] - - - - _
SI+DlI S[32] - V] - - _
Sl 0 [35] V - - v -
SI+RE 0 [37] V - - V -
SI+T S [40] Y - - V -
SI+DI+E* 0 [42] - - - - V
E 0 [43] - - - - V

System properties: The backbone of the system (Backbone). Camera type (CT): RGB-D (D), monocular (M), stereo (S). Environment (Env): indoor (1), outdoor (O).
Implementation details: Method of motion segmentation (MS): reprojection error (RE), epipolar (E), distance between matched and predicted 3D landmarks (3DE),
semantic information (SI), depth information (DI), optical flow (OF), triangulation (T). High-level feature extractor (HE): semantic segmentation network (S), object
detection network (O). Practical consideration: Use a probabilistic model or dynamic score (wight) to judge dynamic features (P/S). Long-term consistency (LC).
Handle low-texture or less static point-feature man-made scenes (HL). *The epipolar constraint is only used on point features
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References System properties

Implementation details

Practical consideration

cT Env. ON OMT MK MMS  HD HE OM HMD SR NP PD DR
Low-level based SLAM (SLAMMOT section)
Point-based SLAM
Wang et al. [44] S | M R - SSC - - J - I \V - N
Judd et al. [45] S [ M R - MMF - - J - | v - -
Use high-level features in low-level feature-based SLAM (Using high-level features in point-based SLAM section)
Point-based SLAM
Nair et al. [46] M 0 M R o S L S [27] J - v - - -
Huang et al. [47] S LO M R - Sl L 043 S V | v v -
Bescos et al. [48] SD o) M R - Sl L S J N | V - -
Ballester et al. [49] D 0 M R - Sl L S0 ) v | vooo- -
Zhang et al. [51] MSD LO M R - Sl L SR ) v -l vV - -
Using high-level features in object SLAM (Using high-level features in object SLAM section)
Yang and Scherer [14] M |, O M R - S| L O [43] S - - N - -
Qiu et al. [52] M [ s R c S| NN[53]  O[54] S - v oo - -
Strecke et al. [55] D | M R - Sl L S [27] v I N N N

System properties: Camera type (CT): RGB-D (D), monocular (M), stereo (S). Environment (Env): indoor (I), outdoor (O). Object number (ON): single (S), multiple (M).
Object motion type (OMT): rigid (R), non-rigid (NR), motion knowledge (MK): need knowledge about regarding object motion (O), need knowledge regarding
camera motion (C), need no knowledge regarding motion (-). Details: Multi-motion segmentation (MMS): sub-space cluster (SSC), multi-motion fitting (MMF),
semantic information (Sl). High-level data association for object SLAM (HD) low-level-feature-based method (L), neural-network-based method (NN). High-level
feature extractor and for object SLAM (HE): semantic segmentation network (S), object detection network (O). Optimization method (OM): joint optimization (J),
separate optimization (S). Practical Consideration: Handle missing data (e.g., due to occlusion, lost tracks, motion blur) (HMD). Solve the relative-scale problem (SR):
irrelevant for the type of camera (I). No need for shape priors (NP). Probabilistic data association (PD). Dense reconstruction (DR). 1. Cannot solve the relative-scale
problem of monocular cameras; 2. Can implement MOT using multi-region BA; 3. Camera motion information comes from the IMU

line features contain more geometric structures that can
be commonly observed in manmade environments. Al-
though it is feasible to construct a complete SLAM sys-
tem based on line features alone [56], this yields no
significant improvement in performance and often per-
forms worse than point-based SLAM. Recent works
[57-59] have demonstrated that leveraging both point
and line features can lead to a robust SLAM system
based on their complementarity [58]. Therefore, this art-
icle mainly focuses on point-based and point-line-based
SLAM in dynamic environments.

In static environments, typical methods for point fea-
ture matching can be roughly grouped into pixel-based
and descriptor-based methods. Pixel-based methods are
efficient, but sensitive to illumination changes, which
limits their application to long-term data association es-
tablishment. Conversely, descriptor-based methods are
more robust to illumination changes, so they are widely
utilized in the front and back ends of static SLAM sys-
tems. To guarantee matching accuracy, typical
descriptor-based methods typically leverage motion in-
formation and the 3D positions of features to guide
matching [21]. However, for dynamic monocular scenar-
ios without additional sensors, it is difficult to predict
the movement of landmarks accurately. Therefore,

descriptor-based methods cannot establish sufficient dy-
namic data associations for highly dynamic object track-
ing. Most existing systems utilize optical flows to
address this problem [14]. Based on the development of
hardware and deep learning, designing extractors and
feature matching systems using data-driven methods has
attracted significant attention [60, 61]. In contrast to
handcrafted descriptors, learned local descriptors con-
tain more semantic information and perform better on
most datasets. Additionally, data-driven methods provide
an easy way to combine detection and data association,
which frees descriptor-based methods from the burden
of motion estimation.

For line feature matching, the combination of a line
segment detector [62] and line binary descriptor [63]
has been widely applied in many point-line SLAM
systems [59]. Additionally, deep learning is also used
to design new descriptors for line segments [64]. A
higher computational burden is incurred for detecting
and matching line segments compared to points.
Therefore, tracking lines on moving objects using
descriptor-based methods provides low yields. The
implementation details of low-level-feature-based dy-
namic SLAM will be discussed from two perspectives:
culling dynamic features (including point and point-
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line features, Robust SLAM section) or leveraging
them (major focus on point features, SLAM
MOT section).

Robust SLAM

To cull dynamic features properly, robust SLAM must
distinguish between dynamic and static features, which
is known as motion segmentation. This problem can be
solved using various approaches. According to the
information used for low-level-feature-based dynamic
SLAM, existing approaches can be grouped into optical
flow methods, geometric methods, and motion-based
methods.

Optical flow methods: Optical flows depict the kine-
matics of features in a 3D space based on the kinematics
of their projections in a 2D image space.

For point features, an optical flow is defined by the
time derivative of pixel intensity. Such flows are
widely applied to track moving objects when a camera
is stationary or to estimate the camera pose when an
environment is stationary [65]. In a dynamic SLAM
system, the camera and objects in an environment
may be dynamic. An intuitive approach is to estimate
the camera ego motion first and then use the optical
flow between the predicted and measured images to
detect moving objects. However, this is a type of egg-
chicken problem. Zhang et al. [23] proposed a
method to overcome this difficulty by estimating the
camera ego motion using depth and intensity
information in a coarse-to-fine scheme. This motion
was then used to compute the scene flow to detect
dynamic features.
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For line features, Faugeras et al. [66] presented a
complete description of the relationship between the 3D
and 2D motion of lines. In contrast to the optical flows
for point features, straight-line optical flows are repre-
sented by the time derivative of the normal to the plane
defined by the 2D line and optical center of the camera.
This method has been used in multi-motion segmenta-
tion [67] and 3D detection [68]. However, thus far, it has
not been used in dynamic SLAM.

Geometric methods: These methods set a threshold
with geometric constraints for static data associations to
detect dynamic features.

For point features, constraints can be derived from the
equation of epipolar lines [69], back-projected rays (tri-
angulation) [70], camera pose [71] estimation, or re-
projection error [72]. First, all features are assumed to
be static. Under this assumption, epipolar lines, 3D land-
mark positions (least square solution), camera poses, or
projections can be estimated. Then, the errors between
estimates and measurements can be computed and dy-
namic features can be detected according to a preset
threshold. Geometric methods for point features were
thoroughly discussed by Saputra and Trigoni [16]. The
core of this type of method is illustrated in Fig. 1a.

For line features, Zhang et al. [25] detected dynamic
line features using an RGB-D camera. The structures of
3D landmarks corresponding to lines in an image can be
reconstructed in the current frame using the depth in-
formation captured by an RGB-D camera. They used
static point features to obtain the initial camera motion.
The poses of lines in a new frame can then be predicted
using the initial transformation. Finally, they defined the

dynamic object
trajectory

(a)

Fig. 1 (a): The violation of geometric constraints for point features in dynamic environments: (1) the tracked feature lies too far from the epipolar
line, (2) back-projected rays from the tracked features do not meet, (3) faulty fundamental matrix estimation occurs when a dynamic feature is
included in pose estimation, (4) high distance between re-projected features and observed features [16]; (b): The violation of geometric
constraints for line features in a dynamic environment: (1) the matched 3D line (green) lies too far from the predicted 3D line (blue)

52

(b)
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distance between the matched and predicted 3D lines, as
shown in Fig. 1b, and used it to detect dynamic line fea-
tures. For point-based SLAM, the re-projection error of
line features was proposed and has been used for
optimization in many point-line-based SLAM systems
[67, 73]. However, this geometric information has rarely
been used for motion segmentation. To avoid the add-
itional computations introduced into point-based dy-
namic SLAM by dynamic line feature detection, depth
[25] or semantic information [74] is typically used. This
type of information can provide more reliable con-
straints compared to re-projection errors.

Motion-based methods leverage the fact that camera
motion can constrain static features. The ego motion in-
formation provided by an IMU can easily distinguish
static features from dynamic features. This is because
only static features conform with IMU information.
Additionally, this method can be combined with the two
methods discussed above. Kim et al. [75] used an IMU
to compensate for the rotation between consecutive im-
ages and then computed motion vectors. These dynamic
features, which exhibited different tendencies with sen-
sor movement, were filtered according to a threshold.
To the best of our knowledge, there are no point-line-
based dynamic SLAM method utilizing IMU informa-
tion. However, such a system could be established by
slightly modifying a visual-inertial odometry system
based on point and line features [73].

Discussion: Recent systems are listed in Table 2. For
point-based robust SLAM, geometric methods can seg-
ment features without other priors, but using one geo-
metric threshold alone always results in the problem of
motion degeneration. For example, a threshold based on
epipolar lines cannot detect dynamic features moving
along epipolar lines. In contrast, motion-based methods
can easily address motion degeneration. Optical flow
methods can be segmented in 2D spaces without other
priors. However, they are sensitive to lighting conditions.
Therefore, combining two or three of the methods dis-
cussed above is a promising alternative approach. When
static features are detected, a standard SLAM system
(including both direct SLAM [76] and indirect SLAM
[77]) can be used to estimate camera ego motion and re-
construct a map of the surrounding scene.

Although point-line-based SLAM has been proven to
provide accurate and robust results, few studies have fo-
cused on its extension to dynamic environments because
of its high computational burdens with relatively low
performance improvements. However, line features still
have a place in special dynamic environments such as
crowded corridors and stairs. Therefore, exploring a
more efficient method for extracting and matching line
features is important for their application in dynamic
scenes.
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Additionally, it is not robust to detect dynamic com-
ponents only across a small number of consecutive
frames because the methods discussed above cannot dis-
tinguish measurements with noise and slowly moving
features based on short-term observations. Du et al. [22]
tackled this problem by constructing a probabilistic
model and detected dynamic features using conditional
random fields (CRFs) with long-term observations,
which guaranteed the long-term consistency of maps.
Although Zhang et al. [23] used a dynamic score to
tackle noisy observations, their system cannot maintain
long-term consistency because this score is generated
based on one observation with no historical information.

Another problem that must be considered is occlusion.
In static cases, the quality of 3D landmarks is defined by
the number of observations [7, 21]. Landmarks occluded
by a slowly moving object may be culled because of a
lack of observations. Therefore, the estimated camera
position may drift frequently or be lost [24]. A standard
approach to addressing this problem is to detect occlu-
sion. Tan et al. [24] detected occlusion based on the ap-
pearance of features and motion information of a
camera. They saved those rarely observed landmarks to
combat occlusion and improve the robustness of the
system.

However, in highly dynamic scenarios, robust SLAM
faces the problem of lacking data associations after dy-
namic features are culled as outliers. In contrast, the
useful information contained in dynamic features is lev-
eraged in SLAMMOT [45].

SLAMMOT

Low-level-feature-based SLAMMOT has two core mod-
ules: multi-motion segmentation, and 3D object tracking
and reconstruction. The inputs for multi-motion
segmentation can be all correspondences or dynamic
correspondences only. The outputs are clusters of corre-
spondences with motion labels, which serve as the in-
puts for 3D object tracking and reconstruction. The
outputs of the second module are the trajectories of the
camera and dynamic objects, and the structures of the
static environment and dynamic objects. Although
Zhang et al. [67] proposed a method for performing
multi-motion segmentation based on line features, no
dynamic SLAM systems have tracked line features.
Therefore, a point-based method for solving this prob-
lem is discussed.

Multi-motion segmentation

The premise of using dynamic features in SLAM system
is to classify them according to their motion state, which
is known as multi-motion segmentation. The same mo-
tion label is assigned to features that belong to the same
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cluster. This process can be performed using subspace
clustering methods or motion model-fitting methods.

Subspace clustering methods: The trajectories of the
tracking feature points from a single rigid motion will all
lie in a linear subspace with at most four dimensions
when considering the affine camera model. Therefore,
the multi-motion segmentation problem can be consid-
ered as a subspace clustering problem [78]. Assigning
points to proper subspaces and estimating subspace pa-
rameters should be conducted simultaneously. Zhang
et al. [79] proposed a clustering method for a permuta-
tion space. First, initial hypotheses were generated via
random sampling. The permutation preferences of the
points were then extracted and used for linkage cluster-
ing. New hypotheses were generated by randomly sam-
pling each cluster. This sampling and clustering process
was conducted iteratively until convergence was
achieved. Based on this clustering method, Wang et al.
[44] constructed a pipeline for dynamic SLAM that does
not use semantic cues. Additionally, efficient dimension
reduction can improve the performance of subspace
clusters. For example, TMPCA [80] is an efficient data
dimension reduction technique. Because it uses a smaller
number of parameters than neural network (NN)-based
models, it requires relatively few computations, which is
important for ensuring real-time performance.

Motion model fitting methods: To some extent, a
motion model fitting method is a special form of sub-
space clustering method. Unlike subspace clustering
methods, motion model fitting methods directly esti-
mate the motion matrix of feature correspondences.
The types of motion models include the fundamental
matrix, affine fundamental matrix, essential matrix,
homography/projectivity, and affinity. The correspon-
dences that fit the same motion model are grouped

(2021) 4:20

Page 7 of 16

into clusters. Judd et al. [45] proposed a motion
model fitting method for a 3D sensor (stereo camera,
R-GBD camera, or lidar). They performed data associ-
ation first and formed world- and image-space track-
let histories for each feature point. These tracklets
could be segmented based on their observed motions,
which is a multi-labeling problem.

Dynamic feature reconstruction and 3D object tracking

As shown in Fig. 2, the i-th point on a rigid object, de-
noted as OP;, has the same coordinates in the object co-
ordinate system at different timestamps.

o8, = Y15,k = Y73, "ot W

Here, WPf =(X,Y,Z, l)Te/R4 denotes the homoge-
neous coordinate of the i-th (right subscript) 3D point
X7, Z)T on a rigid object, as shown in the world frame
(left superscript) at the k-th (right superscript) time-

t
stamp. The general notation 1}, 70,€SE(3) (T ::[0 ) D

, where Re R**2 denotes a rotation matrix and te R®

denotes a translation vector, rather than ¥ T, €SE(3), is
used to denote the pose of an object with respect to the
world frame at timestamp k in this survey. The former
notation can also represent the motion from the world
frame (left subscript) to the object frame (right sub-
script), as shown in the world frame (left superscript) at
timestamp k, whose inverse is represented by gi TweSE
(3). The left superscript indicates the frame from which
the transformation occurs. Additional information re-
garding this notation is provided in ref. [81]. Let u¥ de-

W T

wiC,,

%

iy

wtc,

Fig. 2 Model for a dynamic camera and dynamic object. The camera observes the same dynamic car at timestamps k — 1 and k. Here, the black
solid curves represent camera (| T.) and object poses ( |}/ To) in the world frame. Red solid lines represent the position and the speed of dynamic
object in the world frame. Blue dashed lines represent 3D points in camera frames or the world frame
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note the features corresponding to " P¥

space, 7 denote the projection model, and 1}, Tc, denote
the camera pose with respect to the world frame. Then,
the re-projection error for the dynamic features of a
rigid object can be obtained using Eq. (2).

in the image

e=u-m (%TE%T@OP,) (2)

This formulation makes it possible to optimize the
poses of the cameras (%Tck) and moving objects (%
To, ) jointly, as well as the positions of their 3D
points [48]. Another relationship that can be derived
from Eq. (1) is

Wpk _ W Wo-1 Wpk-1 _ W W pk-1
Pi = WTOkWTok,1 Pi = ok,lTOk Pi (3)

Here, % To, = W To,yTo, €SE(3) represents the
pose change from k-1 to &, as shown in the world frame
W, which represents the motion of an object with no
consideration for its pose. Therefore, a new re-
projection error can be obtained as follows:

e=uf-n(WTdy To"Pi) @)

Additionally, the speed of a moving object can be rep-
resented as follows:

I‘Zl"k = ( Y- ch*1)1;3

— ( 1‘7)1(:1 Tok WCk_l— WCk_1> 13 (5)
where Y¢; denotes the homogeneous coordinates of the
object center expressed in the world coordinate system
at timestamp k.

For a stereo camera or RGB-D camera, the depths of
dynamic points can be obtained in the current frame.
Therefore, the motion of a rigid object can be estimated
easily. Unlike standard SLAM in a static scene, Bescos
et al. [48] used Eq. (2) to establish a tightly coupled
multi-object tracking and SLAM system. Zhang et al
[51] and Henein et al. [82] introduced the new factor
representation in Eq. (4) into the factor graph of static
SLAM. In this manner, they estimated the motion of a
rigid object without using that object’s pose. Similarly,
Wang et al. [44] took advantage of a stereo camera. Spe-
cifically, they used the coordinates of points expressed in
the camera coordinate system directly, rather than those
expressed in the world coordinate system. They esti-
mated the motion of the camera with respect to static
and moving objects. Then, object motion was obtained
by multiplying the camera motion, inverse of the camera
motion with respect to a moving object, and initial pose
of the object center.
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For a monocular camera, the reconstruction of moving
objects is a nontrivial task. There are two main difficul-
ties in reconstruction and tracking processing. First,
standard triangulation is not suitable for dynamic
features because back-projected rays do not intersect.
Second, the estimated trajectory of a moving object is
ambiguous and recovered as a one-parameter family of
trajectories relative to the trajectory of the camera,
which is known as the problem of relative scale ambi-
guity [83, 84].

The first difficulty can be overcome by incorporating
additional motion constraints. Avidan and Shashua [85]
assumed that point features move along an unknown 3D
line, which is simply the original problem of finding a
unique 3D line that intersects projected rays from ¢
views (t > 5), as shown in Fig. 3a. This method can work
incrementally, but it requires several frames for each it-
eration. Although this method does not require any
priors for camera motion, the specific form of object
motion limits its application in the real world. For ex-
ample, it cannot handle the features of a car winding
along a flat road. Based on the fact that most objects
move on flat planes, some methods [14, 46] reconstruct
features u on the ground based on the current frame
using the ground plane [n, h] (normal and distance in
the camera frame), as shown in Fig. 3b.

B hK 'y
 nTK 1y

(6)

Here, K denotes the camera intrinsic matrix and P de-
notes the 3D points corresponding to p. If the camera is
fixed on a robot moving on the ground, the parameters
of the ground plane can be obtained directly.

To tackle the second problem, Nair et al. [46] lever-
aged multiple sources to obtain localizations of moving
objects and maintained cyclic consistencies in a pose
graph. They first used the 3D coordinates of ground
points obtained by Eq. (6) to estimate the camera ego
motion scale and localizations of moving objects. Next,
shape priors were used as another source of localization
for moving objects. Finally, a pose graph was designed to
maintain cyclic consistencies and solve the problem of
relative scale ambiguity. Another approach to solving
this problem was proposed by Qiu et al. [52] based on
the fact that camera motion and object motion are inde-
pendent. They quantified the correlation between cam-
era motion and object motion, and formulated an
objective function based on the quantification results to
recover the scale factor of each tracking object.

Discussion: There are two main approaches to opti-
mizing the trajectories of cameras and moving objects.
One is called the separate or loosely coupled method,
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(a)

reconstruction using the ground plane

Fig. 3 Approaches to addressing dynamic feature reconstruction for a monocular camera. (a): Trajectory triangulation with a line assumption.
When the number of views t is three, the solution is a ruled surface. Therefore, to obtain a unique result, t must be at least five; (b): lllustration of

()

which optimizes the camera pose first and then opti-
mizes dynamic object poses. The other is the joint or
tightly coupled method, which optimizes the pose of the
camera and dynamic objects simultaneously. Unlike the
separate method, the joint method can maintain the mo-
tion consistency of moving objects and camera in a uni-
fied coordinate system.

Occlusion often occurs in SLAMMOT systems and it
is more difficult to solve this problem compared to ro-
bust SLAM system (Robust SLAM section) because the
estimated trajectories of the camera and moving objects
may both drift or be lost due to occlusion caused by
static objects or other moving objects. Additionally,
when a lost object appears again, a new label is assigned
to it if there is no special handling implemented, leading
to a problem called label inconsistency. A general solu-
tion is to leverage historical information and establish
associations between this information and current obser-
vations. Huang et al. [47] predicted cluster motion based
on historical information during occlusion and associ-
ated it with re-detected observations. They then recov-
ered the motion based on the information before and
after occlusion.

Using high-level features in dynamic SLAM

In contrast to low-level features, each high-level feature
corresponds to a class of 3D objects. Compared to point
features, high-level features are more discriminative and
can handle low-texture scenes more easily [14]. It is
worth noting that high-level features are not only used
in object SLAM (using labeled objects as the elements of

a map), but also in point-based SLAM. Representations
of high-level features in the image space include the 2D
bounding box representation and pixel-wise mask repre-
sentation. The former can be extracted through object
detection. The latter can be extracted using pixel-wise
semantic segmentation. A detector for high-level fea-
tures can be implemented using support vector ma-
chines (SVMs) [86], CRFs [87], and NNs [88]. Although
mainstream detectors in the object detection field have
recently been developed based on NNs, the SVM
method is still worth considering for its lighter computa-
tions, which are important for achieving real-time dy-
namic SLAM performance.

For point-based SLAM, high-level features only serve
as extra priors. Therefore, there is no need to complete
data associations for high-level features. However, for
object SLAM, data associations play an important role in
object pose estimation. The essence of high-level data
association is the MOT problem. Methods for MOT can
be roughly divided into generative and discriminative
methods. The current mainstream strategy is the dis-
criminative method, which is also commonly referred to
as tracking-by-detection or detection-based tracking.
The main pipeline for this technique consists of four
blocks for object detection, appearance modeling,
metric learning, and data association. Regarding ap-
pearance modeling, various features are employed to
describe objects such as features from accelerated seg-
ment testing (point features), optical flows (pixel
patches), color histograms (region features), or
learning-based features. Metric learning is closely
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related to appearance modeling. Its main task is to
map features into new spaces and bring the features
of the same object closer in space. The core of multi-
object association is a maximum a posteriori problem
that can be solved using CRFs, bipartite graph match-
ing, or min-cost max-flow network flows. Addition-
ally, one could predict bounding box positions using
a filter-based method and match the results using the
intersection over union.

Notably, the same low-level features, such as point
features, can be used in both SLAM and MOT. This
means that MOT can be embedded into the standard
SLAM framework. By utilizing features in an appearance
model, one can regroup high-level data associations into
low-level-feature-based methods and learning-based
methods.

Low-level-feature-based association methods: High-
level associations can be established based on low-level
features with the same labels. In terms of bounding box
representations, additional information (such as trajec-
tory and depth) is required to ensure that the correspon-
dences between points and objects are valid because a
bounding box always contains features that lie in the
background and foreground. Yang and Scherer [14] con-
structed an object SLAM system utilizing ORB SLAM2.
For static object features, they first associated point fea-
tures with their corresponding high-level features (point-
object associations). They then matched high-level fea-
tures in different frames if they shared sufficient point
features. Point-object associations should be constructed
when points belong to an object. Therefore, simple
bounding box constraints are inadequate. The authors
added the constraints that points should be observed in
a 2D bounding box for at least two frames and that they
should be sufficiently close to the 3D box center. This
method is different from the MOT pipeline described
above because it leverages the camera pose to guide
high-level associations implicitly. However, ambiguity
exists in bounding box overlap areas. Additionally,
descriptor-based methods perform well when an object
is static or moving slowly, but it is difficult to track land-
marks moving quickly in the image space. Therefore,
Yang and Scherer [14] employed sparse optical flows to
handle dynamic associations without using point posi-
tions. Huang et al. [47] elaborately established a prob-
abilistic model to explore enhanced point-object
associations for fast-moving objects. They proposed a
heterogeneous CRF combining semantic, spatial, and
motion information to associate features with landmarks
and bounding boxes with clusters jointly, and then im-
plemented the Kuhn-Munkres algorithm to match
current clusters with previous clusters. For pixel-wise
segmentation representations, a label must be assigned
to each pixel in the mask. Wang et al. [44] completed
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this process at the superpixel level. Each superpixel is la-
beled with the label of the corresponding point feature.
A K-nearest voting method was used for superpixels
containing no labeled point features.

Learning-based methods: Li et al. [89] proposed a 3D
object detection method for autonomous driving. They
leveraged NNs directly to detect corresponding objects
between pairs of stereo images. The key element of their
method is the assignment of the union of left and right
ground truth (GT) boxes (referred to as union GT
boxes) as the target for object classification. Additionally,
in their subsequent work [90], this concept was applied
to perform data association between adjacent frames.
This method can work well when an object moves
slowly, which guarantees that there is a sufficient union
region between the bounding boxes in adjacent frames.
However, it cannot handle fast moving objects. Add-
itionally, this method cannot handle occlusion well
based on its simple matching procedure. Gordon et al.
[53] designed a network that can handle temporary oc-
clusion better based on the characteristics of long short-
term memory [91].

Robust SLAM
Using high-level features as semantic priors for low-level-
feature-based SLAM
High-level features can guide motion segmentation for
low-level features. Semantics can provide priors for
representing the dynamic probabilities of features. How-
ever, it is ineffective to use semantic labels alone to de-
fine potential dynamic objects. For example, this method
cannot classify books or chairs carried by an individual
correctly because books and chairs are typically static
from the perspective of semantics. Additionally, some
background features may be contained inside bounding
boxes. Therefore, additional information should be used
to check each feature for robust motion segmentation.
For background points in bounding boxes, Ai et al.
[34] utilized semantic information alone, but constructed
a probability model for dynamic features and leveraged
multiple observations to judge whether a feature was dy-
namic. They initialized the dynamic probabilities of ORB
features based on semantic information and added the
dynamic probability of a point if it was within a bound-
ing box in a new observation. However, this method
yields poor performance when dynamic objects move
slowly because ground points may fall within bounding
boxes for a long time. Zhang et al. [41] used a K-means
clustering algorithm that considers depth information to
distinguish foreground and background features in
bounding boxes. Their method can work well under the
assumption that the number of dynamic features in a
box is greater than that outside the box. However, it is
not suitable for complex scenes. Bescos et al. [26] used a
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CNN to perform pixel-wise segmentation on potential
dynamic objects and then used geometric information to
detect any dynamic features that were missed. All fea-
tures labeled as potential dynamic objects were ignored
in the ego motion estimation and map construction pro-
cesses. This strategy can construct a more reliable map
that can be reused in long-term applications. However,
this makes a SLAM system more fragile when static fea-
tures are culled based on semantic information (e.g., fea-
tures on stationary cars). Ballester et al. [49] combined
semantic and geometric information. They used geomet-
ric criteria to classify the potential dynamic objects de-
tected by a CNN and applied static objects to ego
motion and structure estimation. Compared to ref. [26],
this method uses more static points to estimate local po-
sitions, but reduces the reliability of the map for long-
term applications.

Discussion: Table 4 presents the performance im-
provements of some systems based on RGB-D cameras
compared to ORB-SLAM2. All of the data in Table 4
were collected from the corresponding references. The
absolute trajectory root-mean-squared error proposed in
ref. [92] was used as a performance metric for compari-
son. These systems were tested on two types of se-
quences from the TUM RGB-D indoor dataset [92]. One
type is a low-dynamic sequence called sitting (s), which
contains only two sitting people. The other is a highly
dynamic sequence called walking (w), which contains
several walking people.

The results demonstrate that using high-level features
in point-based SLAM can improve the accuracy of esti-
mated trajectories. However, the improvement is not sig-
nificant compared to some well-designed point-based
SLAM methods [20]. Additionally, high-level feature ex-
tractors are time consuming and GPU dependent, which
limits their application in computationally constrained
cases. However, high-level features provide rich priors
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for systems that can be used to realize various important
functions (e.g., background inpainting [26, 33], which is
useful for AR applications, and maintaining long-term
consistency without a probabilistic model [26]) in a rela-
tively easy manner. Additionally, for low-level robust
SLAM, historical observations must be utilized to main-
tain long-term consistency [22]. However, for SLAM sys-
tems using high-level features, long-term consistency
can be guaranteed easily by culling all features that be-
long to some special semantics (e.g., pedestrians, cars,
and riders) [26].

Using high-level features in object SLAM

For object SLAM, motion segmentation of high-level
features can be completed using low-level features. An
intuitive method is to determine the states of high-level
features according to the number of static point features
corresponding to them [14]. Additionally, optical flows
can also be used to detect dynamic high-level features,
whose processing is the same as that for low-level fea-
tures. In contrast to low-level features, high-level fea-
tures contain semantic information that can be used for
motion segmentation.

After recognizing stationary high-level features in the
image space, their corresponding 3D objects can be re-
constructed and used to estimate camera ego motion.
Existing 3D representations of objects in SLAM are
grouped into parametric and nonparametric approaches.
Parametric approaches represent an object using a regu-
lar 3D form such as cuboid [14] or dual quadric [93],
whose parameters are tightly constrained by the 2D
bounding box corresponding to the object. In contrast,
nonparametric approaches reconstruct objects and rep-
resent them using a collection of small geometric struc-
tures such as surfels [55, 94, 95] or voluments [96].
Regarding limitations, parametric approaches ignore the
details of objects, but incur lower computational costs.

Table 4 Root-mean-squared error of ATE improvement for robust SLAM compared to ORB-SLAM2 on TUM datasets

Low-level SLAM

Use high-level in point-based SLAM

Point-based Point-based Point-line-based
Year 2020 2020 2018 2018 2019 2019
References Yang et al. [20] Du et al. [22] Besco et al. [26] Yu et al. [28] Cui and Ma [30] Zhang et al. [41]
s_static 23.2% - - 259% 13.0% 24.1%
S_Xyz - 18.2% —66.7% - - 3.1%
S_rpy - - - - - —15.8%
s_halfsphere - - 15.0% - - 58.6%
w_static 98.2% 94.9% 93.3% 97.9% 98.5% 98.3%
W_XyzZ 97.5% 95.6% 96.9% 96.7% 97.5% 97.7%
w_rpy 95.8% 93.8% 94.7% 48.7% 97.2% 76.4%
w_halfsphere 95.4% 92.7% 92.9% 93.76% 95.0% 96.7%
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Nonparametric approaches describe objects in more de-
tail, but require more memory and computations. Add-
itionally, surfel representations are difficult to use
directly for robotic tasks [96]. Cuboid representation is
concretely discussed next.

A 3D box landmark can be represented by nine de-
grees of freedom (DoF) parameters (three DoF positions,
three DoF rotations, and three DoF dimensions) and
a semantic label. For a camera that can capture depth
information in the current frame, the position and di-
mensions of a 3D box can be obtained from point
cloud information. Gomez et al. [97] first calculated
the maximum, minimum, and mean depth of objects.
The depth of a vertex can be obtained from max-
imum and minimum values and the depth of a cen-
troid can be obtained from mean values. However,
this method cannot handle the case where the point
that has the maximum depth is unobservable in the
current frame. Wang et al. [44] leveraged the point
clouds from many frames to recover the surface of an
object first, and then estimated the position of its
centroid. In terms of box orientation, it can be initial-
ized to be vertical relative to the camera and tracked
over time. For a monocular camera, Yang and Scherer
[14] used vanishing points to sample many cuboid
candidates. The best cuboid was then scored and se-
lected based on image edges. Additionally, deep learn-
ing has been used to solve this problem. There are
two main approaches to deep learning solutions.

First, one can generate a 3D point cloud and then de-
tect objects based on this cloud [98]. Second, one can
detect objects in the image space and then recover the
3D structures of those objects [89]. The former ap-
proach always requires two or more subnetworks and
the latter approach relies heavily on 2D detection, which
cannot make full use of 3D geometric information. Re-
cently, Chen et al. [99] established an end-to-end
method to estimate depth and detect 3D objects jointly.
They encoded 3D geometry and semantic information
by transforming a plane-sweep volume into a 3D geo-
metric volume that bridges the gap between 2D images
and 3D space.

Discussion: Unlike low-level features, high-level fea-
tures can guide motion segmentation with priors. Add-
itionally, using objects as elements in a map can provide
long-range geometric and scale constraints for camera
pose estimation [14]. Furthermore, a manageable and ex-
pressive map can be constructed using objects as ele-
ments. Using 3D boxes around objects as elements
significantly reduces the number of parameters saved in
a map, which is essential for large-scale applications.
Gomez et al. [97] proposed a pose graph based on ob-
jects to update and manage a map for low-dynamic envi-
ronments. An object landmark was parameterized as a
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nine-DoF 3D box with a semantic label and a probability
that represents the object’s movability. When multiple
mapping sessions are completed, the resulting maps are
merged to form a new robust map. Unlike the map con-
structed by Bescos et al. [26] in Using high-level features
as semantic priors for low-level-feature-based SLAM sec-
tion, this map can be reused in long-term applications
without losing any useful information.

SLAMMOT

Using high-level features in point-based SLAM

In contrast to applying clustering algorithms to low-
level features, high-level features facilitate the cluster-
ing of map points belonging to independent objects
with different dynamics, as well as the potential for
detecting dynamic objects in one shot [100]. For rigid
objects, features with the same semantic label always
have the same motion label. As mentioned previously,
semantic labels can be assigned to 2D bounding
boxes or pixel-wise masks. A bounding box contains
both object and background features. Additionally,
there is ambiguity when features fall inside the union
of two bounding boxes, as shown in Fig. 4a. There-
fore, it is necessary to use geometric information
(e.g., trajectory or depth information) to identify the
features that actually lie on objects [47]. In contrast,
methods based on semantic masks are easier to use
because any feature that lies within a semantic mask
belongs to the corresponding object. However, points
falling on boundaries (Fig. 4b) may introduce errors
in the trajectory and structure estimation process.
Therefore, these features must be examined further or
culled.

Discussion: Compared with the method using low-
level features discussed in Multi-motion segmenta-
tion section, semantics-based methods are easier to im-
plement and can be used in some high-level
applications. However, they are not sufficiently robust
for most practical environments because many objects
have no labels in the real world [44]. Additionally, it is
difficult to handle non-rigid objects when an object has
more than one motion label. In contrast, subspace clus-
tering methods and model fitting methods can cluster
features without relying on semantic cues. Furthermore,
they can handle non-rigid objects.

Using high-level features in object SLAM

For rigid objects, SLAMMOT based on high-level
features does not need to perform multi-motion seg-
mentation iteratively because each high-level feature cor-
responds to an object in the 3D world. Therefore, the
core problem is how to establish high-level data associa-
tions and estimate the trajectories of objects in 3D
space.
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Fig. 4 Two ways to perform multi-motion segmentation using semantic information: (@) Assigning semantic labels with bounding boxes and (b)

.'\

Feature on boundary
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Yang and Scherer [14] leveraged vanishing points and
ground planes to recover 3D boxes on the ground using
a monocular camera. High-level data associations were
established using a low-level-feature-based method.
However, to avoid the relative scale problem, they only
focused on estimating the relative poses of 3D land-
marks in every frame, rather than estimating the trajec-
tories of objects with respect to the world frame.
Therefore, they could not use trajectory information to
predict the poses of moving objects, which limited their
ability to handle occlusion.

Qiu et al. [52] leveraged a NN to detect [54] and asso-
ciate [53] high-level features. Next, 3D object motion
was recovered from 2D object regions using region-
based BA, which represents the relative motion between
two dynamic frames (object frame and camera frame), as
discussed in Dynamic feature reconstruction and 3D ob-
ject tracking section. Finally, they solved the relative
scale problem using independence analysis.

Existing data association and pose estimation ap-
proaches focusing on objects [14, 55, 101] are not
sufficiently accurate or robust to handle complex envi-
ronments containing multiple moving object instances.
The combination of object SLAM and MOT is a novel
and challenging research direction that requires further
attention.

Conclusions

For robust SLAM, high-level features (semantically la-
beled bounding boxes or pixel-wise masks) can provide
low-level-feature-based SLAM with semantic priors to
facilitate motion segmentation. Conversely, static high-
level features can be matched and detected using low-
level features. In terms of reconstruction and mapping, a
parametric high-level landmark representation reduces
the storage demands for maps. Additionally, semantic
information makes a map more understandable. Regard-
ing the accuracy of reconstruction and camera ego

motion, SLAM based on high-level features alone is not
as powerful as that based on low-level features in a static
environment [93]. However, using these two levels of
features together can result in better performance [47].

For SLAMMOT, dynamic data association is a very
important task. However, standard descriptor-based
methods cannot handle this task well because the guide
matching technique (leveraging the poses of cameras
and positions of 3D points to guide data association)
[21] is invalid when dynamic objects move quickly. Most
existing approaches leverage optical flows to address this
problem. However, such flows are sensitive to illumin-
ation changes, which limit their application in real-world
scenarios. Therefore, utilizing learning-based methods to
extract more robust features and complete data associa-
tions is a promising alternative approach. Additionally,
the proper probabilistic treatment of data associations is
a valid method for robust tracking and mapping in dy-
namic scenes [47, 55]. Low-level-feature-based methods
must perform a step of multi-motion segmentation to
register features into clusters, which typically incurs a
high computational cost. In contrast, object SLAM can
skip this step by leveraging semantic information. The
core of dynamic 3D object tracking is trajectory estima-
tion. For 3D sensors, the poses and scales of objects or
clusters can be easily obtained because depth features
are available for each frame. However, for monocular
cameras, additional work must be performed to over-
come the problem of relative scale ambiguity.

Although SLAM based on high-level features and
landmarks is more similar to human cognition, low-level
features play an important role in accurate pose estima-
tion. Therefore, for robot applications, using both types
of features may be the best method.
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