Garcia et al. Visual Computing for Industry, Biomedicine, and Art
https://doi.org/10.1186/s42492-021-00090-0

(2021) 4:24

Visual Computing for Industry,
Biomedicine, and Art

ORIGINAL ARTICLE Open Access

Visual analytics tool for the interpretation
of hidden states in recurrent neural

networks

Rafael Garcia, Tanja Munz and Daniel Weiskopf

Check for
updates

Abstract

widely used natural language processing datasets.

In this paper, we introduce a visual analytics approach aimed at helping machine learning experts analyze the
hidden states of layers in recurrent neural networks. Our technique allows the user to interactively inspect how
hidden states store and process information throughout the feeding of an input sequence into the network. The
technique can help answer questions, such as which parts of the input data have a higher impact on the
prediction and how the model correlates each hidden state configuration with a certain output. Our visual analytics
approach comprises several components: First, our input visualization shows the input sequence and how it relates
to the output (using color coding). In addition, hidden states are visualized through a nonlinear projection into a
2-D visualization space using t-distributed stochastic neighbor embedding to understand the shape of the space of
the hidden states. Trajectories are also employed to show the details of the evolution of the hidden state
configurations. Finally, a time-multi-class heatmap matrix visualizes the evolution of the expected predictions for
multi-class classifiers, and a histogram indicates the distances between the hidden states within the original space.
The different visualizations are shown simultaneously in multiple views and support brushing-and-linking to
facilitate the analysis of the classifications and debugging for misclassified input sequences. To demonstrate the
capability of our approach, we discuss two typical use cases for long short-term memory models applied to two
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Introduction

Interpretability is a major issue faced by modern
machine learning (ML). Although some ML techniques,
such as decision trees or logistic regression, tend to be
easy to interpret, they often do not handle complex
prediction problems well. Others, such as neural net-
works, can address much more difficult problems but
usually fail to deliver an easily interpretable solution.

In particular, interpretability is a major issue in deep
neural networks (DNNs) [1]. These models often have
up to millions of learnable parameters, which make it
difficult for humans to interpret the calculations. The
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black-box behavior has halted the use of deep learning
in applications such as medicine, robotics, and finance.
Overcoming this problem has become a major goal in
ML research during the past few years [2].

A popular approach to achieving interpretability is
visualization [2, 3] because it allows users to make sense
of large, high-dimensional, and temporal data from ML.
In particular, visual analytics [4] is useful for inter-
actively exploring data in multiple coordinated views
and providing important insight. Some of the challenges
that visualization can address include explaining which
input features the model has learned to recognize [5-7]
and how the activation vectors produced by hidden
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layers transform the input data into a more abstract rep-
resentation, making predictions easier [8—10].

However, few techniques tackle the interpretability of
hidden states in recurrent neural networks (RNNs) [11,
12]. These models are designed to address ML problems
with temporal input data, such as financial data or text-
based datasets. They do so by employing recurrent
layers. These layers maintain an internal vector, ie., a
hidden state, whose values are updated every time a new
data element is fed into the network, working as a mem-
ory that keeps information from previous time steps to
build the final activation vector once the entire sequence
has been processed. Recurrent layers introduce multiple
interpretability problems that are absent in other types
of layers, such as convolutional or fully connected layers.

In this paper, we discuss these challenges and why
existing techniques do not address them entirely. We
also introduce a visual analytics system to improve the
interpretability of RNNs, uncovering insight into how
the hidden states encode information and how these
values evolve throughout the input process. In particular,
we focus on natural language processing (NLP) tasks,
one of the main applications of an RNN. As an example,
we apply our tool to long short-term memory (LSTM)
models. Our visual analytics system for the binary
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classification of input sequences is shown in Figs. 1 and
2. We also discuss some use cases of how visual analytics
can better explain the decision process of the model and
thus answer a number of interpretability questions.

This paper is an extension of our previous work [14].
We extended our approach by implementing an inter-
active visual analytics system that facilitates the explor-
ation of the classification process through brushing-and-
linking [15] in multiple coordinated views [16]. The sys-
tem supports the detection of correctly or incorrectly
classified sequences and the process of debugging mis-
classified sequences to identify why an incorrect predic-
tion was performed and which words contributed to
such a prediction. We provide additional information
about the Euclidean distances between the hidden states
and the words that trigger larger changes. Further, we
added visualizations that provide general information
about the classification results of the underlying model
to provide an initial quality assessment of the classifica-
tion of all input sequences.

In addition, a supplemental video demonstrates how
to use our visual analytics tool. In this video, we show
how our tool can answer interpretability questions on
models trained for sequence classification. We also pro-
vide the source code for our system [17, 18].
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Fig. 1 The main view of our visual analytics approach applied to a model trained on the IMDB dataset. Some general information about the
dataset is shown on the panels (A) to (E). (A): The number of input sequences, the classes, and how well the sequences were classified; (B):
Visualizations of the different classes to compare the number of input sequences that were correctly classified; (C): This information is also visible
in the form of a confusion matrix; (D): At the center, the projection of all hidden states produced by the network for all input sequences is visible;
(E): On the right side, a list of all sequences allows the selection of a sequence for further exploration. Underlying data source: IMDB as available
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Fig. 2 Detailed view for one selected sequence from the IMDB dataset. Different information and interactive visualizations are shown on panels
(A) to (D). (A): The sequence ID and information about the classification; (B): The input sequence with each word colored according to its
expected prediction (EP), i.e,, what output the model would produce if that word was the last in the sequence; (O): A heatmap matrix displaying
how the model’s prediction evolves during the sequence processing for each class (top) and overall (bottom); (D): A histogram of the Euclidean
distances between the hidden states of the input sequence; (E): The center highlights in the projection the hidden states produced by the
sequence, giving insight into how the hidden state evolves over the sequence processing. It is possible to define a threshold for distances to
show words in the projection resulting from a larger change in the hidden state; this threshold is also visible as a horizontal line in the histogram;
(F): On the right side, the currently selected sequence is highlighted in a list. In the example used for these visualizations, we note how the
model first believed the sequence to be classified as positive during the first few time steps of the input sequence. However, as it obtained more
information about the input, it changed its output to a negative value. Underlying data source: IMDB as available in Keras [13]

Related work

Visualization and visual analytics provide interpretability
to DNNss at several levels [2]. For instance, some tech-
niques have been specifically designed for an analysis of
classification models. For example, ClaVis [19] is a visual
analytics system used to compare multiple classifiers.
Other approaches can be used to explain which input
features were taken into account by the model to formu-
late a prediction [5, 20] and how the decision process of
the model transforms the input data into a more ab-
stract representation that facilitates the prediction [2, 3].
In particular, to highlight the differences between the ac-
tivations produced by elements of different classes, acti-
vation vectors of the models can be visualized, as an
example, by employing dimensionality reduction [8] and
heatmap matrices [9].

Although these methods manage to explain which in-
put features impact the classification, they offer little
insight into how the model uses the input features to
build predictions. To address this problem, more recent
techniques have focused on an analysis of the internal
activation vectors produced by the hidden layers of the

network [2, 3]. Neural networks process inputs by se-
quentially applying the operation defined by each layer
on the input data, generating an activation vector that
serves as the input for the next layer. Activation vectors
can be seen as a more abstract representation of the in-
put data. They iteratively transform the input data in a
way that makes it easier to conduct the classification.
For a deep model to perform well, its hidden layers
should produce data representations whose classes are
more distinguishable. Ideally, elements from the same
class should generate closely related activation vectors in
the final layers, whereas elements from different classes
should generate different activations. When this is not
the case, it is an indication that the model is underper-
forming and may not be suitable for that application.
Multiple studies have used visualization techniques to
analyze activation vectors [8, 9]. They employ techniques
such as dimensionality reduction [8] and heatmap matri-
ces [9] to highlight the differences between the activa-
tion vectors produced by elements of different classes.
By doing so on multiple layers, they can show the deci-
sion process of the model and how the input
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representation evolves layer-by-layer. It also allows the
user to identify classes that may be harder for the model
to distinguish.

An activation vector analysis is as important for an
RNN as it is for other architectures, and the techniques
above can also improve the interpretability of these
models. However, RNNs have extra complexity owing to
the presence of hidden states, i.e., internal memories that
store information from previous time steps in the input
sequence. When a recurrent model reads an input se-
quence, its internal hidden states are updated at each
time step, generating an activation vector after the entire
sequence is processed. Such an analysis is even more
challenging when working with models trained for NLP
tasks [21]. In a text classification task, some of the input
words may have a much larger impact on the hidden
states and the final prediction than other words. In
addition, some words may produce information that
must be stored in the hidden states for a longer period
of time than other words. The natures of RNNs and
NLP provide new challenges that are not addressed
through techniques developed only with an activation
vector analysis in mind.

Some techniques have previously focused on improv-
ing the interpretability of RNNs trained for NLP tasks.
For instance, LSTMVis [22] allows the user to identify
patterns in the hidden states when processing a se-
quence, such as multiple-input words that produce a
similar hidden state. Likewise, RNNVis [23] employs a
hidden state cluster visualization to correlate groups of
similar input words with hidden state configurations.

Although these tools can display patterns in the hid-
den state and relate them to particular inputs, they do
not address open interpretability issues. In particular, to
the best of our knowledge, there are no techniques that
have addressed the problem of visualizing how hidden
state configurations are distributed in a high-
dimensional space and how different regions of this
space correlate to different prediction values. In
addition, they did not evaluate the impact of each input
step in the hidden state configuration or consequently in
the final prediction. In this paper, we aim to discuss
these challenges and introduce a set of techniques that
can resolve them.

RNN interpretability challenges

The temporal nature of an RNN introduces new inter-
pretability challenges when compared to other DNNG.
Below, we list three interpretability challenges that, ac-
cording to our research, must be addressed to achieve
better interpretability with an RNN. This is not meant to
be exhaustive. Recurrent networks share several charac-
teristics with other architectures, which mean that there
is a strong intersection between the interpretability
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issues present in RNNs and those in other models.
Herein, we focus on issues specific to RNNs.

Input-to-hidden-state correlation: When an RNN pro-
cesses a sequence, it has an initial hidden state vector in
each recurrent layer. When the layer receives the next
element from the input sequence, this vector is updated
according to the information extracted from that piece
of information. This behavior allows the model to com-
bine information from previous and future time steps to
build a final activation vector that, ideally, should con-
tain the features needed for the prediction task. Hence,
the same input step (e.g., the same word in an NLP
model) can generate a vastly different hidden state de-
pending on the words that came before it. In addition,
the impact of such an input on the hidden state may dif-
fer, since the initial time steps usually have a higher im-
pact owing to the lack of information of the model at
this point. The analysis of the correlation between the
input values and their impact on the hidden state is a
key element in improving the interpretability.

Hidden state space analysis: Hidden states are an ab-
stract, high-dimensional representation of the input se-
quence. However, unlike activations, they are built
iteratively during the processing of the input. The layer
updates its hidden state at every time step. We can inter-
pret the space of all possible hidden state configurations
as a high-dimensional space within which the subse-
quent layers apply a classification. Analyzing this space
and understanding how different configurations are
spread over this space are important for increasing the
interpretability of the RNNs and answering questions
such as whether there is strong class confusion in the
configurations and how they evolve during the sequence
processing.

Hidden-state-to-output correlation: A model with a
good performance should produce hidden states that are
easily distinguishable from the hidden states of the oppos-
ing classes, particularly in deeper layers. Because the initial
time steps may not hold sufficient information to distin-
guish between classes, this separability must be built
through the input processing. An important interpretabil-
ity challenge of an RNN is to identify how intermediate
hidden states, created during sequence processing, correl-
ate to the prediction, and how this prediction changes
when the RNN receives new time steps.

Methods

Our visual analytics technique addresses the three chal-
lenges discussed in the previous section . Our interactive
approach consists of multiple views [16], allows brushing-
and-linking [14], and uses a visual analytics approach [4].
We show different visualizations for different aspects of
the classification, where users can interact with the data
provided for analysis. Our system consists of an overview
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of all classification data (Fig. 1) and a more detailed pres-
entation of individual sequences (Fig. 2).

The overview provides (1) some general information
regarding the dataset and its classification results
[Fig. 1(A-C)], (2) the projection of the hidden states pro-
duced for different time steps and input sequences for
the entire dataset [Fig. 1(D)], and (3) a table with the
properties of all sequences, allowing the user to select
one sequence for further analysis [Fig. 1(E)].

Sequence-based visualizations are composed of multiple
coordinated views, i.e., (1) some general information about
the classification of the current sequence [Fig. 2(A)], (2) a
visualization of a user-specified input sequence colored by
the expected output for every partial sequence [Fig. 2(B)],
(3) highlighting of the trajectory followed by the hidden
states produced through the selected input [Fig. 2(E)], (4)
a heatmap matrix displaying how the expected output
evolves through the processing of the input sequence se-
lected by the user [Fig. 2(C)], (5) a histogram showing the
Euclidean distances between the hidden states of the input
sequence [Fig. 2(D)], and (6) a table where the current se-
quence is highlighted [Fig. 2(F)].

To build these visualizations, we first trained the model
(next section) and extracted the hidden states produced
in each time step for all test data. Thus, we are left with a
dataset of H = T x N hidden states, where T is the num-
ber of time steps and N is the number of test sequences.
Each hidden state /#; € H is a vector. For each of these
configurations /;, we calculated the EP p;. An EP is the
output produced by the model if the hidden state /; were
the last time step of the sequence fed into the model. The
EP tells us how the model classifies the input until that
moment, and consequently how later time steps modify
the model decision. We describe our visualization tech-
nique in more detail below.

Classification overview: When loading a new dataset, an
overview of the classification quality of the available se-
quences is presented [Fig. 1(A-C)]. Herein, we used two
different visualization approaches to show the effective-
ness of the classification for different classes. (1) A stacked
bar chart shows the number of sequences for each class in
the dataset and their classification results. Each class has a
unique color. The lengths of the bars indicate the number
of sequences. On the top, the color of the actual class is
visible, and at the bottom, a stacked bar shows the classifi-
cation of the sequences. (2) A confusion matrix quantita-
tively reports the classification results. Both visualizations
show the same information in different ways. We decided
to include both of them because the confusion matrix rep-
resents the data in a conventional manner, and the
stacked bar chart provides a quick overview of the classifi-
cation results and links to the other views by using the
same color encoding.
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Hidden state projection: By projecting the entire col-
lection of hidden states H into a 2-D space using t-
distributed stochastic neighbor embedding (t-SNE) [24]
(or another projection method), we can analyze how the
space of hidden state configurations is shaped (second
challenge from the previous section). Herein, we have a
set of hidden states /; € H that consist of the hidden
states of each sequence for each time step, where each
h; is represented as a vector. We then use dimensionality
reduction on all hidden states 4; to project them into 2-
D for visualization. The dimensionality of each hidden
state depends on the number of hidden units that can be
individually defined for LSTMs. In our experiments, we
used t-SNE; however, other projection techniques can
also be applied. A discussion on which projection tech-
nique or parameter configuration leads to the best
visualization for a particular model is beyond the scope
of our paper. To ensure the reproducibility, we made
our code publicly available [17]. By coloring the data
points according to their corresponding EP, we can
analyze how different regions in the hidden state space
correlate to the level of confidence that the model has
with a given prediction. Figure 1(D) shows an example
of this visualization for a binary classification. Because
the network has a single softmax output, our color en-
coding comprises a range from zero to 1. For a binary
classification, a prediction of zero (a completely negative
review) is denoted by pink, and an output of 1 (a com-
pletely positive review) is denoted by blue. A linear color
gradient is used from the first to the second color over
gray (where the prediction is uncertain).

Although the data points are colored according to the
EP by default, it is optionally possible to differentiate be-
tween correctly and incorrectly classified sequences
using transparency. In addition, all data points belonging
to a sequence can be instead colored by the actual class
of a sequence (Fig. 3). This helps identify regions of hid-
den states in which the classification is rather certain or
may have difficulties.

Input visualization: We visualize each time step of the
input sequence, with each word colored according to the
EP produced by the model after reading that word
[Fig. 2(B)]. Hence, the user obtains insight into which
time steps are more important for classification and on
how the EP evolves over the processing of the sequence,
addressing the first challenge from the previous section.

Visualizing the expected evolution of the prediction:
The EP of multi-class classification models is multidi-
mensional, and thus cannot be encoded by a single
color. A usual option is to color the data points accord-
ing to the label with the highest confidence; however,
doing so implies that we will lose valuable information
about the strength of such confidence. To avoid this
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Fig. 3 Projection for the Reuters dataset. The data points of the
sequences are colored according to their actual class instead of the
classification result. In addition, points that belong to correctly
classified sequences are more transparent. This visualization helps
identify areas where hidden states generate possibly incorrect
model outputs. At the top, most sequences were classified as
money-fx (blue) instead of crude-oil (green) or grain (red). Underlying
data source: Reuters [25]

problem, we add a supportive heatmap matrix
visualization [Fig. 2(C)], which displays the evolution of
the EP vector over the sequence processing (the first
challenge from the previous section). Each row displays
one possible class, and each column denotes a single
time step within the sequence. The color of each square
represents the EP of the model for that class at that time
step. With our tool, opaque colors translate into a strong
belief that the sample belongs to that class, and more
transparent colors indicate that such belief is smaller.
With this matrix, the user can identify whether the
model is confident toward the chosen class and at which
point in the sequence process it achieves this confidence.
It also allows the user to identify possible confusion
among the labels in the dataset. Below the heatmap, we
also summarize the class predictions to show the classes
with the highest EP at a specific time step.

Visualizing the hidden state trajectory: The projection
of the hidden states [Fig. 2(E)] also allows the user to in-
spect the evolution of an individual configuration, facili-
tating the analysis of how each time step impacts the
hidden state and the EP. It also provides insight into
when the model becomes sufficiently confident of its de-
cision. Our tool adopts the concept of time series projec-
tions [26-29], which connects low-dimensional
projections of points from a high-dimensional trajectory.
Some of these approaches were designed to yield rather
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smooth curves [28, 29], for example, by including piece-
wise Bézier curves. However, our variant of the time
series projections is purposely non-smooth (similar to
the approach by Molchanov and Linsen [26] and van
den Elzen et al. [27]) because we give the user a choice
to specify an input and to visualize the specific points
reached by the hidden state sequence produced by the
input. We color code the trajectory according to the EP
of the starting point of each line segment. Because the
projection uses the same colors, it may sometimes be
difficult to discern the trajectory. Hence, we provide the
possibility of using gray levels instead to represent a
temporal development. When showing a trajectory for a
sequence, the transparency of all data points that do not
belong to this sequence is increased. This technique ad-
dresses both the first and third challenges described in
the previous section. This visualization and all other
sequence-based views are linked to explore the relation-
ship in different views when hovering over visual ele-
ments. Moreover, a tooltip for each element shows
additional quantitative and text-based information about
the classification up to the current word or the transi-
tion between two words.

Visualizing the distances between hidden states: In a
bar chart, the Euclidean distances between hidden states
are shown for the input sequences [Fig. 2(D)]. In par-
ticular, larger distances (which we also refer to as jumps)
often push a classification further toward higher confi-
dence in one specific class. They are usually associated
with words that are common to the corresponding class.
We provide a threshold such that each word associated
with a jump is shown along the hidden state trajectory.

Visualizing words in the hidden state projection: It is
optionally possible to show words that produce jumps be-
tween hidden states as an overlay on the hidden state pro-
jection. The corresponding words often correlate with
words that are specific to one class. Similarly, the explor-
ation of larger changes in time steps in the EP for specific
classes might have a similar impact. Such changes are also
visible in the input and heatmap visualization when the
transparency of the color or the color itself changes. Using
a threshold, words for these changes can also be shown on
top of the projection. In addition, words for changes be-
tween classes (e.g, from positive to negative) can be
added. Corresponding words may also be specific to a cer-
tain class because they change the expected classification
up to this word. Often, the words may fall into multiple
categories because they all express a change or make a
large contribution to the prediction result. Showing these
words for all sequences simultaneously for one of the cat-
egories also revealed some clusters. For example, words
triggering larger changes for hidden states may have hid-
den states similar to other words, creating a similarly lar-
ger change.
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Our visualization is sufficiently generic, it can be used
in the analysis of different types of recurrent architec-
tures, such as GRU [30] and LSTM [12].

Implementation: Data preparation and training were
conducted using Python and TensorFlow [31]. Projec-
tions for t-SNE were generated using Scikit-learn [32].
Although all images in this paper were created using t-
SNE, it would also be possible to use other projection
methods instead. For our interactive visualization sys-
tem, we generated a web interface implemented with
JavaScript and Python; the visualizations were generated
using D3.js [33]. The source code of our system is pub-
licly available through DaRUS [17] and GitHub [18].

Results and Discussion

To validate our visual analytics approach, we demon-
strate some examples of how it can retrieve insight from
models trained with two text classification datasets de-
veloped for sentiment analysis tasks, the IMDB dataset
[34], and the Reuters dataset [25]. The IMDB dataset
[34] comes with a binary classification problem in which
every input is a text sequence containing a movie review
that is either positive or negative. For this study, we used
the IMDB dataset version available in Keras [13]. We
trained a model containing a single LSTM layer [7] with
100 units and an output layer with a single sigmoid acti-
vation unit, achieving an accuracy of 85 %. We opted for
a simple model because our goal is to visualize the im-
pact of the recurrent layer in the model classification,
and adding further layers would require including them
in the analysis.

By contrast, the Reuters dataset [25] comprises thou-
sands of articles on economics that can belong to one of
more than 40 classes. For simplicity and easy
visualization of the results, we trained our model using
only the five most frequent classes (grain, crude-oil,
money-fx, acquisition, and earns). For this task, we
trained the model in a similar fashion as the previous
model, using a single LSTM layer and an output layer
containing five softmax output neurons, one for each
class. After training, our model achieved a test-set accur-
acy of 93%.

Below, we demonstrate how our method can be used
to conduct analytical tests in the aforementioned
models. For the IMDB dataset, we used the first 100 se-
quences as input for our visualizations, and for the Reu-
ters dataset, the first 500 sequences.

Binary classification
Using our approach, we can explore the classification of
binary data. In the following, we provide some insights
into the IMDB dataset.

Classification overview: The overview visualization
shows the relationship between the number of positive
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and negative reviews in the input data and how well they
were classified [Fig. 1(B, C)].

Hidden state space: The 2-D hidden state projection
allows users to analyze how the RNN models the high-
dimensional hidden state space. In Fig. 1(D), we note
that the model creates what seems to be a low-
dimensional manifold embedded in the high-
dimensional space, which continuously moves from
completely negative reviews (pink) to completely positive
reviews (blue).

Correct classification: Our tool facilitates an analysis of
how the EP evolves through the sequence processing by
displaying the trajectory of the configuration within the
hidden state space and by displaying, with color encod-
ing, the changes in the EP values. Figures 2 and 4 show
the examples of correctly classified reviews. This in-
cludes typical reviews that were predicted as positive or
negative with high certainty, reviews that jump between
the two classes, and reviews in which it is not entirely
certain throughout the prediction whether the classifica-
tion should be entirely positive or negative.

Typical positive and negative classification results are
shown in Fig. 4 for the images on the left. The trajector-
ies in the hidden state projection start in a neutral re-
gion and then almost immediately jump toward the very
positive or negative regions. This behavior is also visible
in the heatmap visualizations.

Figure 4(c) shows an interesting insight uncovered by
the tool for another sequence. Although the review is
positive, it is written with several negative words appear-
ing in most of the sequence, which makes the model al-
ternate its hidden state between a positive and negative
EP. Only by the end of the sequence does the model be-
come certain that the review is indeed positive, and the
hidden state converges to a region of a highly positive
prediction.

Figure 4(d) shows an example of a review that is not
very positive or negative. In between, although there are
some rather positive or negative words, the review stays
rather neutral overall, and the model struggles to classify
toward a single direction. Because reviews can be also
neutral with only a slight tendency toward positive or
negative, such sequences may also be problematic for
humans to clearly classify toward one direction.

By correlating the time steps with the hidden states
created by them, our technique can identify undesired
biases in the model. Biases occur when the decision
process considers non-representative features that an ex-
pert does not consider if manually conducting the task.
For instance, in Fig. 2(E), the EP of the model jumps to
a highly positive value when the model reads the name
of an actress, i.e., Kristy Swanson. This is not the desired
behavior because there is nothing in that sentence up to
that point that indicates a positive review, and ideally



Garcia et al. Visual Computing for Industry, Biomedicine, and Art (2021) 4:24 Page 8 of 13

Projecton of Hidden States of LSTM Layer Projection of Hidd

fn States of LSTM Layer Projection of Hidden Sates of LSTM Layer Projecton of Hidden

u - | ; = ¥
IIEEEENTEE W O .

(a) (b) (©) (d)
Fig. 4 Different examples of correctly classified sequences from the IMDB dataset. From left to right: (@): Typical example of a positively classified
movie (blue). The first word that clearly classifies the sequence as positive is ‘powerful’. Afterward, no word suggests that the movie might have
been negatively rated. The words ‘wonderfully’, ‘strong’, and ‘fascinating’ result in particularly larger jumps in the hidden state space; (b): Typical
example of a negatively classified sequence (pink). Right from the beginning, this review was classified negatively; (c): The input starts with
several negative words (pink), making the model alternate between hidden states with high and low EPs. Toward the end of the review, the
intent of the writer becomes clear and the model settles for a positive output (blue); (d): A positively classified movie with uncertainties. At the
beginning and end, there are more indications of a positive rating (blue). However, most vocabulary feels more neutral than highly positive. In

the middle, there is also a negative statement (pink). Underlying data source: IMDB as available in Keras [13]

the model should only consider the sentiment of the re-
view, and not whether a particular actor participated in
the movie.

In all of these examples, some words are shown along
the trajectories. These words are the result of the larger
distances of hidden states when processing a sequence.
Such distances for a whole sequence, for example, are
visible in Fig. 2(D). A threshold (shown by the horizontal
line) is used to show only words that result from a larger
change. This visualization helps explore the strength of
the change along the sequence. It also shows that the
lengths of the lines in the projection do not always cor-
relate with the distance in the original space owing to
the nonlinear projection method applied. For example,
this is visible when comparing the long blue line on the
top in Fig. 2(E) to the pink line on the left. Although the
pink line suggests a large jump, the histogram shows
that the distance between the corresponding hidden
states of the blue line is larger.

Incorrect classification: An example of an incorrect classifi-
cation is shown in Fig. 5. Although this review was negative,
it was misclassified as positive. An analysis of the visualiza-
tions showed that, at the beginning, the confidence toward a
negative classification was higher. However, in the second
half, the classification switches to a positive classification.
This occurs because the name of an actor appears, and the
last part refers to a different movie that was described with
more positive words than the actual movie the review refers

to. After the last words (academy award winner), the model
has no chance to change the final prediction.

Multi-class classification

In addition to a binary classification, our approach sup-
ports a multi-class classification. It can be applied simi-
larly with some adaptation regarding the use of colors.
Next, we report some insight for the Reuters dataset
[25].

Classification overview: The classification overview
(Fig. 6) shows the different classes with their corre-
sponding color encoding, the number of test sequences
available for each class, and how well the sequences were
classified. It is clear that the frequencies for the classes
vary substantially: earns and acquisition are frequently
included, whereas grain, crude-oil, and money-fx are not.
In addition, the correct classification achieved much bet-
ter results for earns, acquisition, and money-fx than the
others, which were mostly classified as money-fx. This
provides some initial insight into the types of sequences
that should be further analyzed.

Hidden state space and heatmap visualization: The
hidden state projection visualization has certain limita-
tions when handling multi-class classification models. In
particular, it cannot properly display how each data
point relates to each class. Here, the output of the model
is a multidimensional vector in which each dimension
represents the likelihood of the input being from a
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Fig. 5 Example of a wrongly classified sequence from the IMDB dataset. For the first part of the sequence, the classification is rather negative
(pink). Only in the second half of the sequence does the classification become positive (blue). The last words in particular contribute to the
incorrect classification, where the name of an actor appears, and afterward, the words refer to another film that was rated better compared to

certain class. To mitigate this problem, we developed a
supportive visualization in which data points are colored
according to the more likely class generated by that hid-
den state. Hence, the color encoding in the projection
simply represents the predicted class, without referring

to the strength of the confidence in the prediction. Only
the color encoding in the heatmap matrix shows the
confidence in each individual class, using a color gradi-
ent ranging from white (low confidence) to the respect-
ive color (high confidence). In the projection
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Fig. 6 Classification result in the form of stacked bar charts (left) and a confusion matrix (right). The visualizations show that there are many more
sequences available for the classes earns and acquisition compared to the others. In addition, it is clear that sequences of the classes earns,
acquisition, and money-fx were well classified, whereas the model had problems with grain and crude-oil. Underlying data source: Reuters [25]

visualization, it can be seen that the classes earns, acqui-
sition, and money-fx dominate and build different re-
gions (Fig. 7). To allow the user to visualize how the EP
of a hidden state differs among the possible classes, the
heatmap matrix visualization displays the evolution of

Correct classification: Fig. 7 shows multiple examples
of correctly classified sequences from a model trained
with the Reuters dataset. In Fig. 7 (left), we notice in the
projection visualization that the hidden state sequence
starts in a central location where classes are not clearly

the EP over the processing of an input sequence. distinguishable. However, as the sequence processing

Projection of Hidden States of LSTM Layer
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Fig. 7 Examples of correctly classified sequences in a model trained for multi-class classification. The projection provides insight into the class
distribution within the hidden state space. The heatmap matrix supports the analysis by displaying the evolution of the EP over sequence
processing. Hence, the user can better identify at which time steps the model was able to distinguish between classes. In the visualizations on
the left, the model is certain for the classification of earns (yellow). In the visualizations in the middle, the model is uncertain between earns
(yellow) and acquisition (violet), and both classes have a similar EP while processing the sequence. In the visualizations on the right, the model is
uncertain among all five classes and the EP for money-fx (blue) is only slightly larger compared to the other classes. Similar cases are likely to be
misclassified. Underlying data source: Reuters [25]
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progresses, the hidden state moves to a region with
more certainty toward one of the classes [in this case,
earns (yellow)]. This conclusion was supported by the
heatmap matrix visualization. It should be noted that the
model does not distinguish any class until time step 15.
At this point, the model begins to converge toward the
correct class. After the 20th time step, the model does
not significantly change its EP until the end of the se-
quence, which leads us to believe that this sub-sequence
contains sufficient information for the model to make a
decision toward that class. Figure 7 (middle) shows an
example in which the model is uncertain whether the se-
quence should be classified as earns (yellow) or acquisi-
tion (violet). This is visible in all views: The trajectory in
the hidden state visualization moves along the border
between the two corresponding areas of the different

(2021) 4:24
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classes, the colors in the sequence switch between yellow
and violet, and the heatmap visualization shows that
both yellow and violet have higher confidence values
compared to the other classes. Finally, Fig. 7 (right)
shows an example in which the confidence for each class
remains similar while processing the sequence. The cor-
rect class has only a slightly larger confidence value than
the other classes. However, the trajectory clearly shows
that all corresponding hidden states are located near
other hidden states of the same classification.

Incorrect classification: Fig. 8 shows some examples of
misclassifications. In Fig. 8 (left), an example similar to
the previous one is visible, where the confidence for each
class is similar. The heatmap matrix shows that the
model never distinguishes the earns class (the correct
one) from the others, and eventually chooses an

Projection of Hidden States of LSTM Layer
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Fig. 8 Examples of incorrectly classified sequences in a model trained for multi-class classification. The heatmap matrix supports the identification
of the classes for which the model becomes confused and how the EP evolves throughout the training process, delivering an inaccurate result. In
the left visualizations, the prediction is quite uncertain between all five classes. This is visible because the class contributions are similarly
transparent for all classes. In the right visualizations, the model is rather certain in the classification of acquisition (violet), despite the correct class
being earns (yellow). Underlying data source: Reuters [25]
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incorrect class at the end of the sequence processing.
This indicates that these classes are more difficult to
identify using the model. In the projection, we can see
that the trajectory is mostly located in the blue region
(money-fx class). However, in Fig. 6, we can also see that
there are many sequences incorrectly classified as
money-fx (blue). This means that many samples in this
region belong to a different class. This is also visible in
Fig. 3, where we changed the colors in the projection to
the actual classes of sequences instead of the classifica-
tion results. At the top, where sequences were classified
as money-fx (blue), the classes should actually be crude-
oil (green) or grain (red) in many cases.

Figure 8 (right) shows an example in which the
model is more certain toward a specific class [acquisi-
tion (violet)]. However, the correct class is earns (yel-
low), which has a higher confidence only at the
beginning of the sequence. When manually comparing
different input sequences, it is sometimes also ex-
tremely difficult for humans to differentiate classes
and correctly classify them. Multiple classes are also
occasionally appropriate. The fact that earns more
often contains digits compared to acquisition that
more often contains continuous text, might be one
possible explanation for the improper classification of
this example.

Conclusions

In this paper, we introduced a visual analytics approach
to address three interpretability challenges in the ana-
lysis of RNNs trained for NLP applications. We demon-
strated through use cases some practical insights that
one can achieve from using our techniques and that can
be instrumental in improving the interpretability of these
models.

As a topic that has attracted strong interest in both
the ML and visualization research fields, there are cer-
tainly more findings to come in the future. Notably, it
would be interesting to see more research on interpret-
ability issues from models addressing particular types of
input data, such as videos [35], financial data [36], and
eye tracking [37]. Interpretability is the main bottleneck
faced by deep learning models, and more innovation in
this topic will undoubtedly bring more improvements
across many different applications.
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