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Abstract

Light fields are vector functions that map the geometry of light rays to the corresponding plenoptic attributes.
They describe the holographic information of scenes by representing the amount of light flowing in every direction
through every point in space. The physical concept of light fields was first proposed in 1936, and light fields are
becoming increasingly important in the field of computer graphics, especially with the fast growth of computing
capacity as well as network bandwidth. In this article, light field imaging is reviewed from the following aspects
with an emphasis on the achievements of the past five years: (1) depth estimation, (2) content editing, (3) image
quality, (4) scene reconstruction and view synthesis, and (5) industrial products because the technologies of lights
fields also intersect with industrial applications. State-of-the-art research has focused on light field acquisition,
manipulation, and display. In addition, the research has extended from the laboratory to industry. According to
these achievements and challenges, in the near future, the applications of light fields could offer more portability,
accessibility, compatibility, and ability to visualize the world.
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Introduction
A light field is the totality of light rays or radiance in
three-dimensional (3D) space through any position and
in any direction, as defined by Gershun [1] in 1936.
Formally,

L : g→c

where a light field L is defined by mapping the geometry
of a light ray g to the attributes of the corresponding
light c. Here, c is a vector that describes the intensity of
every component of the light such as red, green, and
blue (RGB). Geometrically, g has various definitions in
different light field models. A plenoptic function de-
scribes all visual information [2]. Gershun [1] defined a
five-dimensional (5D) plenoptic function L(x, y, z, θ, φ) ∈
R5 for the light field because each ray can be parameter-
ized by three coordinates (x, y, z) and two angles (θ, φ).
Compared with the previous 5D representation, Levoy
and Hanrahan [3] assumed in their four-dimensional
(4D) representation L(u, v, s, t) ∈ R4 that the light field is

composed of oriented lines in free space, successfully re-
ducing the redundancy of the total dataset and simplify-
ing the reconstruction of the plenoptic function. L(u, v,
s, t) parameterizes lines by their intersections with two
planes in an arbitrary position, where (u, v) represents
the first plane and (s, t) represents the second plane (see
Fig. 1 for the 5D and 4D light field representations and
Fig. 2 for two different visualizations of the light field).
Meanwhile, Levoy and Hanrahan introduced light fields
to the computer graphics field. In addition, if one de-
scribes a light field captured by a camera moving on a
sphere centered on the target object, then geometry g
can be defined as (θ, φ, s, t) ∈ R4, where (θ, φ) ∈ R2 is a
spherical surface and (s, t) ∈ R2 is a plane surface with
light projecting to it. “Ray space” is a synonym of “light
field” [4, 5] to describe rays in a 3D space. The light field
is the same as the orthogonal ray space. In the field of
free-viewpoint televisions [6, 7], the term “ray space” is
often used to describe ray-based 3D information display
systems.
In 2005, the light field made the transition from

mainly pure research to large-scale industrial applica-
tions. For example, Ng et al. [8] developed the first
handheld plenoptic camera. It was not until 2010 that

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: yongjh@tsinghua.edu.cn
3School of Software, BNRist, Tsinghua University, Beijing, China
Full list of author information is available at the end of the article

Visual Computing for Industry,
Biomedicine, and Art

Zhou et al. Visual Computing for Industry, Biomedicine, and Art            (2021) 4:29 
https://doi.org/10.1186/s42492-021-00096-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-021-00096-8&domain=pdf
http://orcid.org/0000-0002-4326-4167
http://creativecommons.org/licenses/by/4.0/
mailto:yongjh@tsinghua.edu.cn


light field technology was commercialized to capture a
light field. With the development of commercial light
field cameras [9], plenoptic cameras that make it pos-
sible to refocus provide many benefits, and they have
been widely used in light field applications. Subse-
quently, the commercial potential of the light field has
been greatly illustrated in image editing, holographically
perceived light fields, augmented reality, and physical
entities such as plenoptic cameras. The number of

publications has increased geometrically as light fields
have gained increasing attention from researchers (see
Fig. 3 for the timeline of light field imaging).
Light field acquisition is the preliminary light field im-

aging process. Wu et al. [10] comprehensively
highlighted methods and devices for light field acquisi-
tion in their survey, including (1) multisensor capture
(using multiple cameras to capture a light field at one
time, with most of them being camera arrays [11–17]),

Fig. 1 5D and 4D light field representations. a L(x, y, z, θ, φ) ∈ R5, where (x, y, z) represents the coordinates, and (θ, φ) represents the angles
between the light ray and the planes; b L(u, v, s, t) ∈ R4, where (u, v) represents the first plane and (s, t) the second plane

Fig. 2 Two visualizations of a light field. a Each image represents all the light rays leaving the st plane that can pass the same point on the uv
plane; b Each image represents the light rays leaving from the same point on the st plane to different points on the uv plane
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(2) time-sequential capture (using one camera to capture a
light field with multiple exposures, which is time consum-
ing [18–23]), and (3) multiplexed imaging [encoding high-
dimensional data into a simpler two-dimensional (2D)
image, which is the most popular method [8, 24–37].
Herein, this paper aims to review light field imaging,

revealing the current deficiencies and exploring the fu-
ture possibilities (see Fig. 4 for an overview). Five aspects
have been reviewed: current depth estimation methods
(Depth estimation Section), light field editing techniques
(Editing Section), light field enhancements with an em-
phasis on increasing the quality of images (Enhance-
ment Section), 3D reconstruction and view synthesis
(Reconstruction and view synthesis Section), and the
light field industry, which is categorized into light field
acquisition and light field displays (Section 6).

Depth estimation
Depth estimation involves inferring 3D information from
2D images, which is a foundation for light field editing
and rendering. Light field data record the spatio-angular
information of light rays; thus, a light field image contains
many depth cues to make depth estimation possible. Con-
ventionally, depth cues include, but are not limited to, cor-
respondence cues, defocus cues, binocular disparity, aerial
perspective, and motion parallax. Occlusion often occurs
when two or more objects come too close and, therefore,
hide some information from each other. Specifically, when
people want to see an occluded object, they usually move
slightly to avoid the occluder. This commonsensical solu-
tion explains why light fields have special benefits in solv-
ing the depth map with occlusion. Therefore, researchers
have mainly focused on traditional approaches and convo-
lutional neural network (CNN) approaches for depth

estimation with examinations of occlusion handling: (1)
constraint-based estimation, (2) epipolar plane image
(EPI)-based estimation, and (3) CNN-based estimation.
Constraint-based estimation utilizes different con-

straints of the light field structure to estimate the depth.
Bishop and Favaro [38] estimated the depth from mul-
tiple aliased views and demonstrated that this could be
done at each pixel of a single light field image. Williem
and Lee [39] utilized the correspondence cue and de-
focus cue, which were robust against both occlusion and
noise, and they introduced two data costs: the con-
strained angular entropy cost and constrained adaptive
defocus cost. Zhu et al. [40] addressed a multioccluder
occlusion by regularizing the depth map with an antioc-
clusion energy function. Some researchers have consid-
ered the relationship between occluders and natural
light reflections. For example, Baradad et al. [41] esti-
mated the 4D light field of a hidden scene from 2D
shadows cast by a known occluder on a diffuse wall by
determining how light, which naturally reflected off sur-
faces in the hidden scene, interacted with the occluder.
Chen et al. [42] detected partially occluded boundary re-
gions (POBRs) by using superpixel-based regularization.
After a series of shrinkage and reinforcement operations
on the labeled confidence map and edge strength
weights over the POBR, they produced a depth estimate
with a low average disparity error rate and high occlu-
sion boundary precision-recall rate. To proceed with oc-
clusion handling from image to video, Lueangwattana
et al. [43] examined the structure from motion to im-
prove light field rendering and, hence, addressed fence
occlusion in videos while preserving background details.
However, the EPI, proposed by Bolles et al. [44] in

1987, simplifies depth measurement by restricting

Fig. 3 Light field imaging timeline: numbers of publications whose titles contain keywords “light field” or “light fields” or “light-field” or “ray
space” from 1996 to 2020 (the dotted line is the geometric approximation)
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motion to straight lines and working with a series of
closely spaced images, thereby reducing the 3D problem
into a set of 2D problems. Some studies on EPI repre-
sentations are highlighted here. Matoušek et al. [45] sug-
gested a dynamic-programming-based algorithm find
correspondences in EPIs by extracting lines with similar
intensities in an EPI separately for each row. In other re-
search, Criminisi et al. [46] worked with EPI volume, a
dense horizontally rectified spatio-temporal volume that
results from a linearly translating camera, for automated

layer extraction. They relied on an EPI tube, which is a
collection of EPI lines of the same depth.
Unlike the above works that refine EPI representa-

tions, the following works established how to apply EPIs
in depth estimation. Wanner and Goldluecke [47] used
the dominant directions of EPIs from the structure ten-
sor method to estimate depth. However, this method is
sensitive to noise and occlusion. In addition, estimation
based on a 2D EPI is vulnerable to noise and sometimes
fails because of very dark and bright image features.

Fig. 4 Overview of light field algorithms and applications: the organization graph shows acquisition methods (Introduction Section), current depth
estimation methods (Depth estimation Section), light field editing techniques (Editing Section), light field enhancements with an emphasis on
increasing the quality of images (Enhancement Section), 3D reconstruction and view synthesis (Reconstruction and view synthesis Section), light field
industry, which is categorized into light field acquisition and light field display (Industrial applications Section), and past surveys on light fields
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Multiorientation EPIs are epipolar plane images in all
available directions and provide rich light field angular
information. To achieve a better depth map from light
field images, Tao et al. [48] computed dense depth esti-
mation by combining defocus and correspondence depth
cues based on full 4D EPI. Moreover, defocus cues per-
form better in repeating textures and noise, and corres-
pondence cues are robust in terms of bright points and
features. Tao et al. [49] obtained defocus cues by com-
puting the spatial variance after angular integration and
correspondence depth cues by computing the angular
variance. Furthermore, they performed depth estimation
on glossy objects with both diffuse and specular reflec-
tions and one or more light sources by exploiting the full
EPIs. Similarly, Zhang et al. [50] proposed a spinning
parallelogram operator (SPO) to locate lines and calcu-
late their orientations in an EPI for local depth estima-
tion, which further handled occlusions and was more
robust to noise. In addition, Sheng et al. [51] combined
a multiorientation SPO with edge orientation to improve
depth estimation around occlusion boundaries. They
proved that the direction of the optimal EPI was parallel
to the boundary of the occlusion. In contrast to the work
of Sheng et al. [51], Schilling et al. [52] incorporated
both depth and occlusion using an inline occlusion-
handling scheme, OBER-cross+ANP, to improve object
boundaries and smooth surface reconstruction.
Deep CNNs have been extensively applied to depth es-

timation because they have a better balance between ac-
curacy and computational cost. In 2017, Heber et al.
[53] extended the previous work [54] in which the net-
work operated on EPIs, and they replaced all 2D opera-
tors with 3D counterparts. Then, they used a CNN that
predicted disparity based on RGB EPI volumes, and the
proposed network learned to recover depth information
for shape estimation. For supervised training, researchers
require large labeled datasets. Shin et al. [55] solved the
data insufficiency problem by incorporating a multi-
stream network, which encoded each EPI separately for
depth estimation, into their CNN model EPINET. Tsai
et al. [56] proposed an attention-based view selection
network that exploited the priorities of light field images
and the correlations between them to reduce redun-
dancy and computation time. In 2021, Chen et al. [57]
applied an attention-based multilevel fusion network.
They grouped four directions (0°, 45°, 90°, and 135°)
of light fields into four branches. Then, they com-
bined the branches with two feature fusion methods
to generate depth maps: intrabranch feature fusion
based on channel attention and interbranch feature
fusion based on branch attention. Researchers usually
employ deep CNNs for accurate depth estimation,
combining them with traditional approaches to pro-
duce better results.

Depth estimation has been a focus of much research.
Researchers have worked on constraint-based methods
and have explored different depth cues and their combi-
nations. They also simplified the estimation by using
EPIs and applying learning-based methods. There have
been other studies that evaluate depth estimation
methods. The work of Johannsen et al. [58] covers more
depth estimation algorithms before and including 2017.
The key to enhancing other light field-related applica-
tions, such as refocusing or rendering, is to develop
more-precise and more robust depth estimation
methods.

Editing
Because most light field datasets contain redundancy, re-
searchers are interested in fully using redundancy and
manipulating the light field images. Editing light fields is
challenging [59] because (1) the light fields are 4D,
whereas most tools on the market are for 2D, (2) local
edits need to preserve the redundancy of the 4D light
field, and (3) the depth information of the 4D light field
is implicit. Light field image editing can be divided into
(1) refocusing, (2) removing the occlusion, (3) segment-
ing the light fields to make the editing experience as
smooth as editing a 2D image (e.g., removing the scene
objects or changing their color), and (4) improving the
user interface of the light field editing.
Because light field images contain not only textural in-

formation but also geometrical information, researchers
can explore refocusing after capturing that cannot be ac-
complished with 2D images. In 2015, Dansereau et al.
[60] demonstrated that a hyperfan-shaped passband can
achieve refocusing over a wide range of depths, which
they called “volumetric refocusing.” However, the ap-
proach only worked for a single volumetric region. To
overcome this, Jayaweera et al. [61] proposed a simultan-
eous refocusing approach for multiple volumetric re-
gions in light fields. They employed a 4D sparse finite-
extent impulse response filter, which is a series of two
2D filters composed of multiple hyperfan-shaped pass-
bands. Noncrucial parts of images produced by digital
single-lens camera arrays often experience blurs (bokeh).
Wang et al. [62] proposed a light field refocusing
method to improve bokeh rendering and image quality.
They first estimated the disparity map and rendered the
bokeh on the center-view sub-image. The rendered
bokeh image was then used as a regularization term to
generate refocused images. Moreover, Yang et al. [63]
proposed a refocusing framework that produced coordi-
nates for interpolation, and they aligned the images onto
the focal plane.
Occlusion removal is another typical task in light field

editing. The nature of light field sub-aperture images
(SAIs) provides complementary information so that
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hidden scenes can be seen from other views. Yang et al.
[64] partitioned an image into multiple visibility layers
and propagated the visibility information through layers.
The visibility layer is defined as all the occlusion-free
rays in any camera, computed by energy minimization.
For CNN methods, Wang et al. [65] suggested a deep
encoder-decoder network for automatically extracting
foreground occlusions by analyzing scene structures.
The SAIs were first encoded with spatial and angular in-
formation and then decoded for center-view reconstruc-
tion. However, they only considered the one-
dimensional (1D) connections among the SAIs. To im-
prove this, Li et al. [66] proposed another CNN-based
encoder–decoder method (Mask4D) to learn the occlu-
sion mask with center-view reconstruction. They applied
a 5D tensor to explore spatial connections among SAIs.
Occlusion removal is also useful for reconstruction.
Segmentation is a specific research focus in light field

editing. Berent and Dragotti [67] proposed an algorithm
to extract coherent regions based on a level set method
[68]. Wanner et al. [69] carried out globally consistent
multilabel assignment for light field segmentation. It
used appearance and disparity cues, similar to the
multiple-view object segmentation method developed by
Batra et al. [70], a method that could automatically seg-
ment calibrated images from multiple viewpoints with
an energy minimization framework that combined stereo
and appearance cues. Xu et al. [71] proposed an ap-
proach for localizing transparent objects in a light field
image. They used light field linearity, the linearity of the
light field distortion feature, which modeled refraction in
objects between views captured by a light field camera,
to separate Lambertian objects (good light field linearity)
and transparent objects (poor light field linearity), and
they found the occlusion area by using the occlusion de-
tector, which detected occlusion points by checking the
consistency of the forward and backward matches be-
tween a pair of viewpoints. As a result, the method could
finish the transparent object segmentation automatically
without any human interaction.
Superpixel algorithms [72] group pixels into percep-

tually meaningful atomic regions, which can be used to
replace the rigid structure of the pixel grid. Previous
methods of segmenting 2D images, such as the simple
linear iterative clustering superpixels [73], adopted k-
means for superpixel generation. As mentioned in the
first paragraph of this section, there are three difficulties
with light field editing. In 2017, Zhu et al. [74] defined a
light field superpixel as a light ray set that contains all
rays emitted from a proximate, similar, and continuous
surface in the 3D space, and they essentially eliminated
the defocus and occlusion ambiguities in traditional 2D
superpixels. Unlike in previous works, they focused on a
smaller unit — the superpixel — illustrating that

superpixel segmentation on a 4D light field performed
better in representing the proximity regions.
For existing user interfaces, users can employ tools to

edit the light field, even though the depth map is imper-
fect. Horn and Chen [75] designed LightShop to ma-
nipulate light fields by operating on view rays. Image
warping is a process of distorting an image [76]. When a
user defines how the view rays warp, the LightShop ren-
derer composites and renders multiple light fields by
executing the user-defined ray-shading program. How-
ever, the system has limitations when compositing dif-
ferent light fields because of the fixed illumination of a
light field. In 2014, Jarabo et al. [77] provided an over-
view of different light field editing interfaces, tools, and
workflows from a user perspective. Some products, such
as the single-lens 3D-camera with extended depth of
field presented by Perwaß and Wietzke [78], can refocus
or apply predefined filters to light field images. Building
on previous work [75], Mihara et al. [59] were the first
to use a graph-cut approach for 4D light field segmenta-
tion based on a learning-based multilabel segmentation
scheme. The user needs to specify a target region so that
the algorithm can identify the appropriate regions and
evaluate whether each ray is included in the selected re-
gion. Moreover, they defined appropriate neighboring
relationships to preserve redundancies.
Overall, light field editing methods remain largely un-

explored compared with 2D image editing. Researchers
have experimented further on light field images, such as
adding mosaic or special effects or filters, editing body
features, combining several images into a short movie,
and changing background, which are promising.

Enhancement
Light field enhancement optimizes the quality of light
field images. Modern light field research mainly focuses
on deblurring and super-resolution (SR).
Motion deblurring has two approaches: blind motion

deblurring and nonblind deblurring. Blind motion de-
blurring has been extensively studied using 2D images.
In 2014, Chandramouli et al. [79] first investigated mo-
tion deblurring for light field images and assumed con-
stant depth and uniform motion for the simplicity of the
model. Jin et al. [80] explored bilayer blind deconvolu-
tion that removed the motion blur in each layer to re-
cover 2D textures from a motion-blurred light field
image. Moreover, Srinivasan et al. [81] introduced a light
field deburring algorithm by analyzing the motion-
blurred light field in the primal and Fourier domains.
Unlike in previous studies, they recovered a full 4D light
field image. Lee et al. [82] addressed six-degree-of-free-
dom (6-DOF) blind deblurring by considering the 3D
orientation change of the camera. Lumentut et al. [83]
proposed a deblurring deep neural network with 16,000
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times faster speed than in prior work [81] and deblurred
a full-resolution light field in less than 2 s. Dansereau
et al. [84], unlike in the above approaches, adopted a
nonblind algorithm for 6-DOF motion blur, assuming
that the ground truth camera motion was known.
Levin et al. [85] illustrated that there is a trade-off be-

tween spatial and angular resolutions. Therefore, many
researchers have endeavored to improve the spatial reso-
lution of the captured light field using an SR algorithm
by exploiting additional information from the available
data. For instance, in 2009, Bishop et al. [86] studied SR
algorithms using a depth map. They characterized the
point-spread function of a plenoptic camera under
Gaussian optics assumptions for a depth-varying scene
and formulated the reconstruction of the light field in a
Bayesian framework. Therefore, they restored the images
at a resolution higher than the number of microlenses.
Zhou et al. [87] applied the ray-tracing method to
analyze the subpixel shifts between the angular images
extracted from the defocused light field data and the
blur in the angular images, and they obtained an SR re-
sult with a magnification ratio of 8. In contrast to restor-
ing high-resolution images from low-resolution images,
Lumsdaine and Georgiev et al. [88] rendered high-
resolution images by adopting positional and angular in-
formation in captured radiance data. They rendered im-
ages from a 542-megapixel light field to produce a 106-
megapixel final image. Zheng et al. [89] presented a con-
volutional deep neural network using cross-scale warp-
ing to the reference-based SR, which involves applying
an extra high-resolution image as a reference to help
super-resolve a low-resolution image that shares a simi-
lar viewpoint. In 2019, Cheng et al. [90] categorized the
existing SR methods into projection-based [91–94],
optimization-based [95–101], and learning-based [102–
107]. Moreover, Farrugia and Guillemot [108] reduced
the light field angular dimension using low-rank ap-
proximation and then applied CNNs to achieve peak
signal-to-noise ratio (PSNR) gains of 0.23 dB over the
second-best-performing method. Zhang et al. [109] pro-
posed a residual convolutional network for higher spatial
resolution. They first improved the spatial resolution of
the central view image because it contained more sub-
pixel information. Then, they trained the network to im-
prove the spatial resolution of the entire light field
image. Wang et al. [110] suggested a spatial-angular
interactive network. They began by extracting the spatial
and angular features independently from the input light
field images, and then the information was processed by
many interaction groups to achieve spatial-angular inter-
action features. Finally, the interacted features were
fused to achieve high-resolution SAIs. Similar to previ-
ous researchers [110], who used feature collection and
distribution, Wang et al. [111] proposed a deformable

convolution network where all side-view features were
aligned with the center-view feature and then aligned
with the original features. Consequently, angular infor-
mation is encoded into views for SR performance. Ivan
and Williem [112] investigated an end-to-end encoder-
decoder style for a joint spatial and angular light field SR
model from only a single image without relying on
physical-based rendering or secondary networks so that
end users can experience the advantages of light field
imaging. Jin et al. [113] proposed another learning-based
light field spatial SR framework that uses deep combina-
torial geometry embedding and structural consistency
regularization. Their method improved the average
PSNR by more than 1.0 dB and preserved more-accurate
parallax details at a lower computational cost.
Researchers have devoted great effort to light field

image deblurring and resolution trade-offs. For individ-
ual users, the capturing process involves more random-
ness, which requires stabilization, and they expect to
achieve a high-resolution display similar to what they
can obtain from a normal camera.

Reconstruction and view synthesis
Geometric reconstruction involves reconstructing an ob-
ject from its geometric information. Sparsity in the Fou-
rier domain is an important property that makes 4D
light field reconstruction possible from a small set of
samples. Shi et al. [114] proposed a method for recover-
ing non-Lambertian light fields from a small number of
1D viewpoint trajectories optimized for sparsity in the
continuous Fourier domain. In general, 3D reconstruc-
tion includes shape estimation, and some research has
extended the results to holography. In addition, view
synthesis creates new views from a given set of views.
For shape estimation, Lanman et al. [115] proposed

surround structured lighting to achieve full 360° recon-
structions using a single camera position, but it could
only scan relatively small volumes. Subsequently, multi-
view reconstruction methods have become increasingly
popular. Heber et al. [116] proposed a variational multi-
view stereo method, in which they used a circular sam-
pling scheme inspired by a technique called “active
wavefront sampling” (AWS) [117], where the AWS mod-
ule is an off-axis aperture that moves along a circular
path around the optical axis. In 2016, Heber and Pock
[54] trained a CNN to predict 3D scene points from the
corresponding 2D hyperplane orientation in the light
field domain by using horizontal and vertical EPIs and
dividing each EPI into patches. Similarly, Feng et al.
[118] focused on 3D face reconstruction from 4D light
field images using a CNN. They constructed 3D facial
curves, rather than a complete face, to make up a 3D
face at once by combining all the horizontal and vertical
curves of a face to form horizontal and vertical depth
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maps separately. However, unlike Heber and Pock [54],
they exploited a complete EPI for depth prediction.
Zhang et al. [119] applied a light field camera as a virtual
3D scanner to scan and reconstruct 3D objects, which
enabled dense surfaces to be reconstructed in real time.
They illustrated that, with five light fields, the recon-
structed 3D models were satisfactory.
Another application of light field 3D reconstruction is

the holographically perceived light field because the light
field can provide continuous focus cues. Overbeck et al.
[120] developed “welcome to light fields” to enhance the
virtual reality experience by setting up a 16-GoPro rotat-
ing rig, processing multiview depth maps, adopting disk-
based light field rendering to make seamless connections
among pictures, and varying compression levels with the
movement of the eyeballs. Many studies have demon-
strated high-quality scene rendering [121–123]. In 2017,
Shi et al. [124] introduced near-eye light field computer-
generated rendering with spherical waves for wide-field-
of-view interactive 3D computer graphics. Nonetheless,
Mildenhall et al. [125] proposed a deep-learning method
for view synthesis from an irregular grid of sampled
views that first expands each sampled view into a local
light field by means of a multiplane image scene repre-
sentation and then blends adjacent local light fields.
They used up to 4000 times fewer views and presented a
plenoptic sampling framework by clearly specifying how
users should sample input images for view synthesis with
portable devices.
Recent view synthesis methods have approached new

view generation from only a few input images. The
neural radiance field (NeRF) [126] is a nonconvolutional
deep network representation that characterizes the vol-
ume space with a multilayer perceptron. It takes a con-
tinuous function (x, y, z, θ, φ) ∈ R5 as input, and it
outputs the volume density and view-dependent RGB
color. Overall, it reconstructs the surface geometry and
appearance from a small set of images. Subsequent stud-
ies have extended the NeRF in a variety of ways. Park
et al. [127] modeled shape deformations by augmenting
the NeRF. They can reconstruct free-viewpoint selfies
from photographs. Nonetheless, the NeRF in the wild
[128] considers the photometric and environmental vari-
ations between images to reconstruct real-world scenes.
Compared with NeRF, Mip-NeRF [129] takes in a 3D
Gaussian that represents the region over which the radi-
ance field should be integrated. As a result, it can show
the same scene at multiple levels of sharp detail. For
video synthesis, Pumarola et al. [130] and Li et al. [131]
extended the NeRF to dynamic objects with an add-
itional parameter, time t.
The reconstruction and view synthesis processes in-

volve constructing, rendering, and displaying. Obtaining
3D reconstruction through light fields provides

researchers with a bright outlook for real-time aug-
mented reality and virtual reality. In addition, light
fields provide insights into various view synthesis
methods.

Industrial applications
As mentioned earlier, Lytro and Raytrix have industrial-
ized light field acquisition devices. Other companies,
such as FoVi3D [132] and Japan Display [133], have also
produced light field projection solutions. Unlike for the
Lytro camera, in which a microlens array is placed in
front of an image sensor, Wooptix [134] reduced the
resolution trade-off by using a liquid lens [135] of the
optical chain in front of the sensor to make it possible to
change the focal planes quickly, providing full resolution
of the sensor in real time. Furthermore, Google pub-
lished many patents related to light field capturing
[136–138]. It also published “Capturing Light Field Im-
ages with Uneven and/or Incomplete Angular Sampling”
[139] in 2018. It designed a camera to capture light field
images with uneven and incomplete angular sampling.
The results showed an improvement in not only the
spatial resolution but also the quality of the depth data.
For light field display, Avegant [140], Leia [141], Light

Field Lab [142], Dimenco [143], and Creal [144] facili-
tated realistic digital photographs with display screens.
Likewise, Looking Glass Factory [145] created a light
field image display providing 45 different viewpoints as
long as the viewer is within a 58° viewing cone, and it is
far less expensive than previous products and, therefore,
more attainable. In 2020, Sony published two light field-
related technologies: 3D Spatial Reality Display Technol-
ogy [146] and Atom View [147]. The former tracks the
position of the eyes of the user, enabling the user to see
real-world images or creations in 3D. In addition, it
achieves a relatively high resolution and glasses-free 3D
using real-time light field rendering technology. Atom
View is an application in volumetric virtual production
through point-cloud rendering, editing, and coloring. It
can digitize space instead of a physical set and, therefore,
can reproduce locations and sets. These light field dis-
play solutions are physical products, and light fields can
also be applied in immersive online experiences. For in-
stance, OppenFuture [148] provides Hololux Light Field
Solution, which focuses on 3D reconstruction. It can re-
construct complex materials at full angle, and it is
closely working with e-commerce companies to enhance
the shopping experience. Furthermore, Google has pro-
duced its glasses-free light field display technology, Pro-
ject Starline [149], which is used for real-time
communication. People can communicate with each
other as if they are sitting across from each other. How-
ever, Project Starline relies on custom-built hardware
and highly specialized equipment.
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The above products solve problems in two important
parts of the light field imaging pipeline: acquisition and
display. In the near future, one can expect more-
portable devices for capturing light fields to emerge. In
addition, the use of light field displays may extend from
fixed screens to display extremely small or extremely
large pictures and can further benefit medical micros-
copy or cinematic displays. Finally, the light field can
contribute to closer-to-truth communication, which
should make the “smart life” more attainable.

Conclusions
Depth estimation, which is essential for light field appli-
cations, was introduced. Then, the trend of light field
applications was evaluated in terms of editing, enhance-
ment, reconstruction, and current industrial products.
The light field has been a research focus in computer
graphics since 1996 and has progressed into the com-
mercial market since 2010. Starting in 2010, the number
of publications has increased rapidly, showing that many
researchers are exploring the potential applications of
light fields. These studies emphasize the critical role of
the light field in enhancing visual experience. However,
they require considerable expertise in utilizing light field
technology. Therefore, there are still many human-light
field interaction challenges to address not only in holog-
raphy and augmented reality, but also in free image edit-
ing and interactive 3D reconstruction. Overall, light field
imaging is commercially practical for businesses and in-
dividual users.
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