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Abstract: Lymph node involvement increases the risk of breast cancer recurrence. An accurate non-invasive
assessment of nodal involvement is valuable in cancer staging, surgical risk, and cost savings. Radiomics has been
proposed to pre-operatively predict sentinel lymph node (SLN) status; however, radiomic models are known to be
sensitive to acquisition parameters. The purpose of this study was to develop a prediction model for preoperative
prediction of SLN metastasis using deep learning-based (DLB) features and compare its predictive performance to
state-of-the-art radiomics. Specifically, this study aimed to compare the generalizability of radiomics vs DLB features
in an independent test set with dissimilar resolution. Dynamic contrast-enhancement images from 198 patients (67
positive SLNs) were used in this study. Of these subjects, 163 had an in-plane resolution of 0.7 × 0.7 mm2, which
were randomly divided into a training set (approximately 67%) and a validation set (approximately 33%). The
remaining 35 subjects with a different in-plane resolution (0.78 × 0.78 mm2) were treated as independent testing set
for generalizability. Two methods were employed: (1) conventional radiomics (CR), and (2) DLB features which
replaced hand-curated features with pre-trained VGG-16 features. The threshold determined using the training set
was applied to the independent validation and testing dataset. Same feature reduction, feature selection, model
creation procedures were used for both approaches. In the validation set (same resolution as training), the DLB
model outperformed the CR model (accuracy 83% vs 80%). Furthermore, in the independent testing set of the
dissimilar resolution, the DLB model performed markedly better than the CR model (accuracy 77% vs 71%). The
predictive performance of the DLB model outperformed the CR model for this task. More interestingly, these
improvements were seen particularly in the independent testing set of dissimilar resolution. This could indicate that
DLB features can ultimately result in a more generalizable model.
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Introduction
Breast cancer increases in stage and severity as it
metastasizes to axillary lymph nodes [1]. Lymph node
involvement increases the risk of recurrence and acts as a
prognostic indicator, with the survival rate of node-positive
patients being up to 40% lower than node-negative patients

[2–6]. As a result, lymph node status is critical for diagno-
sis, prognosis, and monitoring of treatments [7].
Although lymph node management has become less

invasive with the use of sentinel lymph node (SLN) bi-
opsy as opposed to full axillary lymph node dissection,
significant side effects including shoulder dysfunction,
lymphedema, and nerve damage were still observed in as
much as one-fourth of patients [8, 9]. Moreover, studies
have reported > 70% of biopsied SLNs are negative [8],
indicating that such procedure is unbeneficial and
potentially harmful to a significant amount of breast
cancer patients. Accurate non-invasive assessment of
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nodal involvement therefore is valuable in cancer
staging, surgical risk, and financial cost reduction.
Breast cancer is an area of peaked interest for the

combination of radiomics and artificial intelligence, with
clinical impact possible as both a diagnostic and prog-
nostic tool [10]. One such task is the development of a
predictive model for non-invasive staging of the axillary
lymph nodes as an alternative to SLN biopsy. Nomo-
grams and radiomic pipelines have been used to predict
SLN status with promising results [9, 11–19]. However,
conventional radiomics (CR) has several disadvantages.
For instance, the robustness of the conventional hand-
crafted radiomic features is variable based on changing
parameters, including pixel size, region-of-interest (ROI)
delineation, and signal-to-noise ratio [20]. Deep learning
has the potential to serve as a more powerful tool to over-
come these issues as shown in several studies [21–26].
Moreover, deep learning is capable of learning high-level
and task-adaptive image features [27]. It enables direct fea-
ture extraction from multiple levels without explicit defin-
ition and can provide a higher level of feature abstraction
[28]. However, deep learning requires a large training data
size to obtain a generalizable and functional classification
model. Fortunately, studies have demonstrated that initial
features extracted by deep learning network are largely
similar to CR, since they both detect edges, ripples, and
various other textures prior to observing more complex
features [29–31]. Thus, it is possible to use features identi-
fied by a pre-trained deep learning network as an alterna-
tive to hand-crafted features used in CR.
The purpose of this study was to develop a DLB

feature prediction model for preoperative prediction of

SLN metastasis and compare its predictive performance
to state-of-the-art CR. Specifically, this study aimed to
compare the generalizability of CR vs DLB features in an
independent testing set of dissimilar resolution.

Methods
Figure 1 shows the general pipeline used in this work.

Study population
The dataset used in this study is an expansion of that
described in previous publication [13]. Briefly, data for this
institutional review board-approved retrospective study
collected images from June 2013 to June 2017. Inclusion
criteria were patients that had (1) preoperative dynamic
contrast enhanced (DCE)-magnetic resonance imaging
(MRI), (2) diagnosis of invasive breast cancer by histopath-
ology, (3) SLN biopsy result, and (4) no neoadjuvant
chemotherapy. Exclusion criteria were patients that had
(1) no SLN biopsy result, (2) very small tumor ROI (less
than 64 voxels), or (3) MRI after neoadjuvant chemother-
apy. After inclusion/exclusion criteria, a sample of 198 pa-
tients (67 positive SLNs and 131 negative SLNs) was used
in this study. Of those 198 subjects, 163 had an in-plane
resolution of 0.7 × 0.7mm2; that 163 subject cohort was
randomly divided into two independent subsets: a training
set (approximately 67%, 109 patients with 37 positive
SLNs) and a validation set (approximately 33%, 54 patients
with 18 positive SLNs).
The remaining 35 subjects (35 patients with 12 posi-

tive SLNs) with a different in-plane resolution (0.78 ×
0.78 mm2) were treated as an independent testing set
with dissimilar resolution to test the generalizability of

Fig. 1 Schematic representation of pipeline for feature extraction, reduction, and model creation. The CR pipeline and the pipeline using deep
learning-based (DLB) features are only different in their feature extraction step. All other steps remain identical. LASSO: Least absolute shrinkage
selection operator; ROC: Receiver operating characteristic
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the predictive models for imaging data acquired with
slightly different resolution. Given that radiomics has
been shown to have limited generalizability, an inde-
pendent testing set of dissimilar resolution will more
rigorously assess this potential of the predictive model.
Clinical data collected for this study included whether

the tumor was confined to the upper inner quadrant,
multifocality, age, pathological type, tumor grade, mo-
lecular subtype, and lymphovascular invasion.

MRI examination
The MRI examinations were all performed using a
dedicated 8-channel breast coil on 1.5 T GE Signa
(GE Healthcare, Wauwatosa). The sequence of inter-
est in this study was the DCE series; sagittal VI-
BRANT multiphase sequence was acquired with the
following parameters: repetition time (TR) = 4.46–7.80
ms; echo time (TE) = 1.54–4.20 ms; flip angle = 10°;
matrix = 256 × 256; slice thickness = 2 mm. I.V.
contrast agent was Magnevist (Schering, Berlin),
injected at a dose of 0.2 mL/kg at a rate of 2 mL/s,
followed by 20 mL saline flush. Five phases were ac-
quired: one pre-contrast and four post-contrast im-
ages. Patients with pixel sizes of 0.7 × 0.7 mm2 were
split into training and validation cohorts. Patients
with pixel sizes of 0.78 × 0.78 mm2 were separately an-
alyzed in an independent testing set. This analysis al-
lows for the clinically practical reality that it is
knowingly difficult to standardize pixel size, which

may need to be adjusted based patient specific vari-
able (e.g., size of the patient).

Map calculation
Reducing the effect of varying TR and TE, three ratio
maps were used: wash-in maps ((S1-S0)/S0) × 100%,
wash-out maps ((S1-S4)/S1)) × 100%, and signal en-
hancement ratio (SER) maps ((S1-S0)/(S4-S0)) × 100%,
where S0, S1, and S4 are the pre-contrast, first post-
contrast, and fourth (the last) post-contrast images,
respectively. These maps are independent of the ori-
ginal MR signal intensity and capture the behavior of
contrast enhancement in the tissue. Representative
image and calculated kinetic maps are shown in
Fig. 2.

Segmentation
ROIs of the tumor were manually drawn on the first
post-contrast image by a radiologist with 11 years of ex-
perience. We noted that although manually drawn ROIs
can be subjective, an automated convolutional neural
network (CNN)-based segmentation was shown to be
comparable in radiomics task-based assessment within
this cohort [32]. The original ROI was dilated by 4 mm
using Matlab v2017b (MathWorks, Natick). This re-
sulted in two regions of interest: one intratumoral ROI
and one peritumoral region (0–4 mm). These regions are
shown in Fig. 3.

Fig. 2 Representative image of pre- and post-contrast images of an in-breast tumor and the calculated Wash-In, Wash-Out, and SER maps.
Equations for map calculation: Wash-in map ((S1-S0)/S0) × 100%, Wash-out map ((S1-S4)/S1)) × 100%, SER map ((S1-S0)/(S4-S0)) × 100%, where S0, S1,
and S4 are the pre-contrast, first postcontrast, and fourth (the last) post-contrast images, respectively
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Feature extraction
CR features
Shape features, first order (histogram) features and sec-
ond order texture features [grey-level co-occurrence
matrix (GLCM), neighborhood grey-level different
matrix (NGLDM), grey-level run-length matrix (GLRL
M), grey-level zone-length matrix (GLZLM)] were ex-
tracted following the image biomarker standardization
initiative standard [33] using LifeX 3.42 [34]. Laws fea-
tures [35] were extracted using in-house software writ-
ten in Matlab v2017b (MathWorks, Natick). Image was
quantized to 128 grey levels, and absolute resampling
was performed (for intratumoral ROIs, wash-in map: 0 ∼
640%; wash-out map: − 156 ∼ 100%; SER map: − 1280 ∼
1280%; for peritumoral ROIs, wash-in map: 0 ∼ 640%,
wash-out map: − 540 ∼ 100%, SER map: − 1280 ∼ 1280%).
A total of 105 features were extracted. Summary of fea-
tures is included in Supplemental Table 1. Shape fea-
tures were only calculated for intratumoral ROI; the
remainder of the features were calculated for both intra-
tumoral and peritumoral ROI.

DLB features
VGG-16 [36], a pre-trained CNN architecture that is 16
layers deep, was utilized for DLB feature extraction. A sche-
matic representation of the network is shown in Fig. 4.
The image was multiplied by the binary mask of either

the intratumoral ROI or peritumoral ROI such that the
regions outside of the RIOs were set to zero. Absolute

resampling, similar to above, was performed (for intratu-
moral ROIs, wash-in map: 0 ∼ 640%; wash-out map: −
156 ∼ 100%; SER map: − 1280 ∼ 1280%; for peritumoral
ROIs, wash-in map: 0 ∼ 640%, wash-out map: − 540 ∼
100%, SER map: − 1280 ∼ 1280%). Data were then nor-
malized on a scale from 0 to 1, with 0 being the lowest
value and 1 being the highest value referenced above.
Then, the resultant image was multiplied by 255 to
match the 0–255 range expected by VGG-16.
VGG-16 has a predefined input structure of 224 ×

224 × 3. Each 2D slice of our dataset was cropped to
224 × 224. A 3D volume comprised of the Wash-In,
Wash-Out, and SER maps for each slice was inputted.
Matlab was used to import VGG-16. The model was

not retrained; instead, all layers remained frozen
(weights remained the same), and only activations from
the last fully connected layer (fc8) were extracted. These
were exported as rows, in which each 2D slice had a sin-
gle row of 1000 features. Given that each ROI has mul-
tiple slices, the value in each column was averaged
across all slices for that subject.

Feature reduction
From this point forward, the pipelines for the CR and
DLB features are separate and identical.
Standard z-score normalization was used on the train-

ing set; z-score is value minus training set mean divided
by training set standard deviation. The validation and
testing sets were also normalized using the training set

Fig. 3 Representative image of intratumoral ROI and peritumoral ROI. Intratumoral ROI was drawn by a radiologist on the first post-contrast
image. The peritumoral ROI was generated by dilating the intratumoral ROI by 4 mm
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mean and standard deviation. Training set was reba-
lanced using an adaptive synthetic sampling approach;
this improves class balance by the creation of new sam-
ples from the minority group [37].
Given the high dimensionality of all the extracted

features, several steps were performed to remove re-
dundant or non-informative features. Firstly, Mann-
Whitney U-test was used to find significantly different
features between SLN positive and SLN negative
groups; a range of p-value thresholds were tested
(0.001, 0.005, 0.01, 0.05). Secondly, groups of highly
correlated radiomic features were identified (Spear-
man ρ) and only one representative feature was se-
lected from each correlated group; similarly, several
ρ-value thresholds were tested (0.75, 0.80, 0.85, 0.90,
0.95). Finally, an optional step of principal component
analysis (PCA) was performed to further reduce the
feature space; several number of PCA components
were tested (20, 40, 60, 80, 100). The optimal thresh-
olds for feature reduction were chosen as those that
resulted in the highest validation accuracy of the
average of 100 random seeds.

Feature selection and model creation
The remaining features from the reduction process
combined with the clinical features were the input
for feature selection process. A logistic regression
model was used for the prediction task. The

selection of important predictors was performed in
the training set using the Least Absolute Shrinkage
Selection Operator Regression (LASSO) [38] with 3-
fold cross-validation. The selected model was that of
minimum cross-validation error plus one standard
deviation. To avoid overfitting, the maximum num-
ber of the selected features was restricted to 10.
These features were then used to establish logistic
regression models to predict SLN metastasis. The
optimal threshold of the receiver operating charac-
teristic analysis was determined by maximizing the
Youden index (YI) in the training set, where the YI
is defined as sensitivity + specificity - 1. This thresh-
old was applied to the independent validation and
testing datasets. Predictive performance measures
tabulated included area under the curve (AUC), sen-
sitivity, specificity, negative predictive value (NPV),
positive predictive value (PPV), and accuracy. To
avoid the model optimization becoming stuck in a
local minimum, the LASSO procedure was repeated
100 times with different seeds. The cross-validation
results across all folds were averaged; the model that
achieved the highest accuracy in the training set was
selected as the prediction model. Additionally, the
training set was shuffled each iteration to randomize
the cross-validation within the training set, while the
independent validation and testing set remained the
same.

Fig. 4 Schematic representation of adapted VGG-16 network for DLB feature extraction. Each layer is defined by corresponding color legend at
the bottom of the figure. Input was a 3D volume for a single slice of the three kinetic maps. Features were extracted from the last fully
connected layer (yellow), resulting in a feature vector of 1000 features for each 2D slice. Conv: Convolutional layer; ReLu: Rectified linear unit
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Results
Model incorporating peritumoral region
The primary analysis for this study was the model incorp-
orating intratumoral plus peritumoral (4mm) features,
given that it has been shown to outperform intratumoral
features alone in a previous publication [13].
For CR model, a total of 157 features (146 radiomic

and 11 clinical) were included in the 3-fold cross-
validation LASSO feature selection process. The optimal
feature reduction parameters were a ρ-value threshold of
0.95, a p-value threshold of 0.05, and no PCA. We noted
that PCA was also performed for the CR feature reduc-
tion pipeline but did not improve the predictive per-
formance of the model. Eight features, including 1
clinical, 2 shape, and 5 texture features, were optimized
for this model (Table 1).
For DLB model, the optimal feature reduction parame-

ters were a ρ-value threshold of 0.85, a p-value threshold
of 0.001, and a PCA value of 80. After feature reduction,
there were 91 features (80 DLB and 11 clinical) inputted
into the feature selection process. For this model, 5 fea-
tures were finally selected, including 2 clinical (tumor
grade and lymphovascular invasion) and 3 DLB features.
Predictive performance metrics are shown in Table 2

and Fig. 5 for the CR and DLB pipelines. In the valid-
ation set (i.e., the group with the same resolution as the
training set), the DLB model outperformed the CR
model [accuracy (CR: 80%, DLB: 83%), YI (CR: 0.56,
DLB: 0.67), NPV (CR: 86%, DLB: 91%)]. Furthermore, in
the independent testing set of dissimilar resolution
meant to evaluate the generalizability of the model to
dissimilar condition, the DLB model outperformed the
CR model in all metrics [accuracy (CR: 71%, DLB: 77%),
YI (CR: 0.37, DLB: 0.45), NPV (CR: 78%, DLB: 80%)]. It
is noted that we included the performance of the train-
ing set for the completeness of the paper; however, it
should not be used for comparison due to overfitting
concerns.

Model excluding peritumoral region
As a secondary analysis, models created utilizing clinical
features and intratumoral features alone were analyzed.
For CR model, a total of 104 features (93 radiomic and

11 clinical) were fed into the 3-fold cross-validation
LASSO feature selection process. The optimal feature
reduction parameters were a ρ-value threshold of 0.95, a
p-value threshold of 0.05, and no PCA. In logistic model
creation, a maximum of 10 features were included. As
discussed in Methods, the random seed with the highest
training set accuracy was reported. Finally, there were 10
features chosen, including 2 clinical features, 2 shape
features, and 6 texture features (Table 3).
For DLB model, the optimal feature reduction parame-

ters were a ρ-value threshold of 0.75, a p-value threshold
of 0.005, and no PCA. After feature reduction, there
were 48 features (37 DLB features, 11 clinical) inputted
into the 3-fold cross-validation LASSO feature selection
process. For this model, 9 features, including 2 clinical
features (Tumor grade and Lymphovascular Invasion)
and 7 DLB features, were selected.
Predictive performance metrics are shown in Table 4

and Fig. 6 for the CR and DLB models. In the validation
set, the DLB pipeline performed similarly compared to
the CR pipeline [accuracy (CR: 80%, DLB: 81%), YI (CR:
0.56, DLB: 0.58), NPV (CR: 86%, DLB: 86%)]. Further-
more, in the testing set of dissimilar resolution, a similar
trend is seen compared, where DLB features outper-
formed CR features in some metrics [accuracy (CR: 71%,
DLB: 74%), YI (CR: 0.25, DLB: 0.53), NPV (CR: 72%,
DLB: 89%)]. Similar to above, the performance of the
training set should not be used for comparison due to
overfitting concerns.

Discussion and conclusions
The results of our study showed that the predictive per-
formance of the DLB model outperformed the CR model
in several metrics. More interestingly, these improve-
ments were seen particularly in the independent testing
set with dissimilar resolution. This could indicate that
DLB features are less sensitive to varying conditions
(e.g., pixel size changes) and ultimately result in a more
generalizable model.
SLN status prediction has been explored using nomo-

grams; examples include those developed by Memorial
Sloan Kettering Cancer Center and MD Anderson,
which include age, tumor characteristics (size, grade,
type, focality, location), lymphovascular invasion and
hormone receptors to predict the likelihood of a dis-
eased, positive SLN. These nomograms have been shown
to have a moderate predictive performance [11, 12]. Im-
aging studies have investigated the use of non-invasive
quantitative imaging radiomic biomarkers along with
clinical data for prediction of SLN status, with promising

Table 1 Features chosen by CR pipeline. Features from
intratumoral region are denoted by (I) and features from 4mm
peritumoral region are denoted by (P). There was only one
clinical feature selected, and the remainder were radiomic
features (5 from intratumoral region, 2 from peritumoral region)

Category Features

Clinical (n = 1) Lymphovascular invasion

Shape (n = 2) Compacity (I), Extent (I)

GLCM (n = 1) Wash Out: Entropy (log2) (I)

NGLDM (n = 2) Wash Out: Contrast (I)
SER: Coarseness (P)

Laws (n = 2) SER: Energy_8 (I)
Skewness_9 (P)

GLCM grey-level co-occurrence matrix, NGLDM neighborhood grey-level
different matrix
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results (AUC > 0.8) [9, 13–19]. Specifically, our previously
published work has validated a radiomic pipeline of peri-
tumoral region in combination with intratumoral region
for the prediction of SLN metastasis [13]. The peritu-
moral region is of interest because tissue surrounding
the tumor may contain valuable information such as
angiogenic-lymphangiogenic factors and tumor infiltrat-
ing lymphocytes, which have been shown to be related
to treatment response [39].
Predictive models based on CR features can be disad-

vantageous because radiomic features have been shown
to be sensitive to changing parameters, such as pixel size
alteration [20]. Numerous studies have shown DLB

models to outperform CR pipelines. Using MRI, CNN
performance has been compared and shown to outper-
form radiomics for the purposes of breast lesion classifica-
tion [23] and gene mutations in low grade gliomas [24].
Additionally, the combination of the CR and DLB features
was superior in the survival and classification prediction
of high-grade gliomas [25, 26]. Our study took one step
further, creating an independent testing set of dissimilar
resolution, in attempt to identify a particular condition in
which DLB features may outperform CR features. Note
that the goal of this work is to compare DLB and CR fea-
tures. Also, given that the radiomic model has shown to
outperform the model using clinical characteristics alone

Table 2 Predictive performance results for intratumoral plus 4 mm peritumoral region for CR and DLB models. Values shown are
from the random seed with highest training set accuracy. The DLB pipeline slightly outperformed CR in the validation set of the
same resolution as the training set. A larger improvement is seen in the testing set of dissimilar resolution. This indicates the DLB
pipeline might be more generalizable and less sensitive to pixel size differences

Training (n = 109, 37 positive SLNs)

AUC Sensitivity Specificity PPV NPV Accuracy YI

CR 0.91 0.89 0.82 0.82 0.89 0.85 0.71

DLB 0.93 0.89 0.86 0.86 0.89 0.88 0.75

Validation (n = 54, 18 positive SLNs)

AUC Sensitivity Specificity PPV NPV Accuracy YI

CR 0.87 0.72 0.83 0.68 0.86 0.80 0.56

DLB 0.89 0.83 0.83 0.71 0.91 0.83 0.67

Testing (n = 35, 12 positive SLNs)

AUC Sensitivity Specificity PPV NPV Accuracy YI

CR 0.77 0.58 0.78 0.58 0.78 0.71 0.37

DLB 0.83 0.58 0.87 0.70 0.80 0.77 0.45

Fig. 5 Predictive performance of feature models including intratumoral and 4 mm peritumoral region with CR and DLB pipeline. The DLB
pipeline slightly outperformed CR in the validation set. A larger improvement is seen in the testing set of dissimilar resolution. This indicates the
DLB pipeline might be more generalizable and insensitive to pixel size differences. Note that the performance of the training set is not used for
comparison due to overfitting concerns. AUC: area under the curve; Sens: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative
predictive value; Acc: accuracy; YI: Youden index
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in previous study [13], the models presented here are not
compared with the clinical only model.
Deep learning can utilize CNNs to extract features by

applying convolution layers composed of small-sized
fields or kernels, followed by pooling layers to reduce
the size of the resultant feature space. Optimizing the
kernel to be applied to the image to extract meaningful
features is the purpose of training the network. Conse-
quently, the performance of a CNN is dependent on the
amount of data it has available to train on. This results
in the CNN being more ‘data hungry’ and typically need-
ing a very large sample size, on the order of millions of
images, to have optimal performance [40]. Even if col-
laborating with multiple institutions, acquiring millions
of medical images is frequently not feasible, especially in
the instances of rare diseases. One way to address this

limitation is the utilization of transfer learning. Transfer
learning involves the implementation of a pre-trained
network that is further fine-tuned with samples specific
to a desired task. Transfer learning has been explored
for prediction of lymph node metastasis in patients with
cervical cancer using MRI (AUC: 0.9) and breast cancer
using CT (AUC: 0.8) with promising results [41, 42]. In
this work, we used a pretrained VGG model that was
originally optimized to classify 1000 types of objects.
Thus, the features extracted from the VGG model are
expected to be robust as the features were used to differ-
entiate similar shaped objects such as tow trucks and
cars, and animals such as ladybugs and crabs. Transfer
learning models that further train VGG with new med-
ical imaging data can further manipulate the way fea-
tures are extracted; whereas our proposed method
doesn’t rely on refining the original VGG network and
directly utilizes the robust features that have been
trained in its original task. Our proposed model uses the
last fully connected layer in VGG prior to classification,
allowing our DCE images to fully propagate throughout
the network for feature extraction. This approach is
more readily available compared to transferred learning
approach and can be directly incorporated into more
traditional radiomics pipeline. Particularly that for stud-
ies with relatively small sample size, it is expected to be
less prone to overfitting.
Future directions of this study include fine-tuning of

the network directly for classification instead of feature
extraction [40]. Additionally, incorporation of additional
features such as CoLlAGe and wavelet features could be
performed for the radiomics pipeline; specifically, it has
been shown that these directional-based features have
correlated with tumor microenvironment as seen on

Table 3 Features chosen by CR model for intratumoral features
only. This model included 2 clinical features and 8 radiomic
features

Category Features

Clinical (n = 2) Tumor grade
Lymphovascular invasion

Shape (n = 2) Compacity, Extent

GLCM (n = 1) Wash Out: Entropy (log2)

GLZLM (n = 1) Wash Out: Long Zone Low Grey Level Emphasis

Laws (n = 4) WashIn: Skewness_5

WashOut: Skewness_7

SER: Energy_4

Energy_8

Table 4 Predictive performance results for intratumoral region for CR and DLB models. Values shown are from the random seed
with highest training set accuracy. The DLB model performed similarly to CR in the validation set. In the testing set, DLB model
outperformed CR model in numerous metrics, including NPV, accuracy, and YI. This indicates the DLB model might be more
generalizable and less sensitive to pixel size differences

Training (n = 109, 37 positive SLNs)

AUC Sensitivity Specificity PPV NPV Accuracy YI

CR 0.95 0.86 0.93 0.93 0.86 0.89 0.79

DLB 0.88 0.77 0.92 0.89 0.81 0.85 0.69

Validation (n = 54, 18 positive SLNs)

AUC Sensitivity Specificity PPV NPV Accuracy YI

CR 0.81 0.72 0.83 0.68 0.86 0.80 0.56

DLB 0.85 0.72 0.86 0.72 0.86 0.81 0.58

Testing (n = 35, 12 positive SLNs)

AUC Sensitivity Specificity PPV NPV Accuracy YI

CR 0.74 0.33 0.91 0.67 0.72 0.71 0.25

DLB 0.85 0.83 0.70 0.59 0.89 0.74 0.53
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pathology, such as orientation and densely packed tumor
infiltrating lymphocytes [39, 43]. Moreover, other evalu-
ations using different parameters other than in-plane
resolution could be performed to further evaluate the
generalizability. In general, there also exists the possibil-
ity to look specifically at the lymph nodes. This study
analyzed the in-breast tumor to predict metastasis to the
lymph node. To date, efforts to analyze axillary lymph
nodes on MRI has been limited by small axillary lymph
node sizes, breast coil sensitivity in regions in the axilla,
and exclusion of a majority of the axilla from field of
view. Although nodal morphological features on MRI
are predictive of malignancy [2, 44], predictive value of
contrast enhancement and morphological criteria, such
as size and shape of lymph nodes, was found to be
controversial [45, 46]. Furthermore, application of this
model to more advanced stage breast cancer (e.g.,
patients undergoing neoadjuvant chemotherapy) or
other cancer types (e.g., head and neck cancer) is
another potential avenue of study.
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