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DCAU‑Net: dense convolutional attention 
U‑Net for segmentation of intracranial 
aneurysm images
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Abstract 

Segmentation of intracranial aneurysm images acquired using magnetic resonance angiography (MRA) is essential for 
medical auxiliary treatments, which can effectively prevent subarachnoid hemorrhages. This paper proposes an image 
segmentation model based on a dense convolutional attention U-Net, which fuses deep and rich semantic informa-
tion with shallow-detail information for adaptive and accurate segmentation of MRA-acquired aneurysm images 
with large size differences. The U-Net model serves as a backbone, combining dense block and convolution block 
attention module (CBAM). The dense block is composed of a batch normalization layer, an randomly rectified linear 
unit activation function, and a convolutional layer, for mitigation of vanishing gradients, for multiplexing of aneurysm 
features, and for improving the network training efficiency. The CBAM is composed of a channel attention module 
and a spatial attention module, improving the segmentation performance of feature discrimination and enhanc-
ing the acquisition of key feature information. Owing to the large variation of aneurysm sizes, multi-scale fusion is 
performed during up-sampling, for adaptive segmentation of MRA-acquired aneurysm images. The model was tested 
on the MICCAI 2020 ADAM dataset, and its generalizability was validated on the clinical aneurysm dataset (aneurysm 
sizes: < 3 mm, 3–7 mm, and > 7 mm) supplied by the Affiliated Hospital of Qingdao University. A good clinical applica-
tion segmentation performance was demonstrated.
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Introduction
Intracranial aneurysms are prevalent at 3% in the adult 
population [1]. Aneurysmal protrusions are formed 
owing to abnormal enlargements of cerebral arterial ves-
sels. A ruptured aneurysm can cause a subarachnoid 
hemorrhage (SAH), with a potentially lethal outcome. 
SAH survivors often suffer from long-term cognitive 
impairments. Therefore, early detection and evaluation of 
intracranial aneurysms are important for timely clinical 

examination that enables early detection of aneurysms, 
in turn enabling appropriate rupture-prevention strate-
gies. Magnetic resonance angiography (MRA), which 
enables assess to very small (2–3  mm) lesion areas for 
clearer visualization of aneurysms, is important for aneu-
rysm screening [2]. MRA is not associated with radiation 
exposure, is highly sensitive, and emphasizes vasculature. 
Therefore, it is the preferred technique for screening 
intracranial abnormalities in asymptomatic patients, and 
was used in the present study. Specifically, the intracra-
nial aneurysm images in this study were obtained using 
three-dimensional (3D) time of flight (TOF) MRA.

With the increasing use of deep learning in medi-
cal applications, convolutional neural networks 
(CNNs) have been repeatedly shown to perform well 
on segmentation of medical images, and have become 
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gradually accepted as a solution for improving diagnos-
tic accuracy and clinical decision making [3–5]. With 
respect to the cerebral artery images, extraction and 
segmentation of the regions of interest is key for diag-
nosis of intracranial aneurysms. Accurate segmentation 
facilitates geometric quantification and evaluation of 
the rupture risk of intracranial aneurysms. Therefore, 
deep learning-based methods can be used for build-
ing appropriate CNNs for automatic segmentation of 
aneurysm-containing regions, enabling more accurate 
approaches to treating aneurysms. This study makes 
the following contributions to the aneurysm segmenta-
tion problem:

(1)	3D aneurysm-containing MRA-acquired images have 
richer contextual information; thus, a 3D network is 
designed and trained for adaptive segmentation of 
aneurysm-containing regions.

(2)	The multi-scale feature fusion block fuses the feature 
information of different layers, merging the semantic 
information of higher layers with the edge informa-
tion of lower layers, which improves the method’s 
segmentation performance on aneurysms.

(3)	The designed DCAU-Net was validated on the clini-
cal data provided by the Affiliated Hospital of Qing-
dao University, and good segmentation results were 
achieved.

Machine learning‑based methods
Many methods have been proposed for medical image 
segmentation. Examples include the watershed algo-
rithm [6], the lattice Boltzmann method [7], genetic 
algorithms [8], and the 3D Otsu threshold segmenta-
tion algorithm [9]. Machine learning-based aneurysm 
segmentation methods focus on segmenting the cer-
ebrovascular structure images and then applying this 
information to the segmentation of intracranial aneu-
rysm images. For example, segmentation of intracra-
nial aneurysm images acquired using 3D Rotational 
Angiography and computed tomography angiography 
(CTA) based on a geometric deformation model [10], 
a geodesic active contour (GAC) combined with Eul-
er’s elastic model for segmenting CTA-acquired large 
aneurysm images (size, > 25  mm) [11], and automatic 
segmentation of aneurysm images using the improved 
threshold-based level set method [12] have been 
proposed.

Deep learning‑based methods
Recently, CNN-based methods [13] have been shown as 
very effective for feature extraction. The network struc-
ture is constantly being revised and improved, and has 
evolved from the original LeNet [14], to VGGNet [15], 
to GoogleNet [16], to ResNet [17], and to DenseNet [18]. 
The fully convolutional network (FCN) [19] is a pioneer-
ing structure in the field of image segmentation; the FCN 
amounts to the first proposed end-to-end pixel-to-pixel 
network for semantic segmentation. The FCN does not 
limit the size of the input image and combines local fea-
ture information with semantic features using a jump 
structure. The segmentation performance of this network 
is significantly better than that of other networks; how-
ever, the network is not sensitive to the image details. The 
U-Net [20] architecture draws on the FCN. The U-Net is 
an end-to-end symmetric network that includes a con-
traction path (for feature acquisition) and an expansion 
path (for precise positioning). It can freely deepen the 
network structure according to its own dataset and is 
widely used in the field of medical segmentation; its seg-
mentation performance is very good [21–23].

The main existing methods are based on the maximal 
intensity projection (MIP) algorithm [24], which projects 
3D images onto two-dimensional (2D) images in differ-
ent directions according to the voxel intensity, following 
which a 2D CNN is constructed for feature detection [25, 
26]. Jin et al. [27] introduced a bidirectional convolutional 
long short-term memory module based on the U-Net 
architecture, for learning the spatial and temporal infor-
mation of aneurysms in different 2D digital subtraction 
angiography (DSA) sequences for end-to-end training. 
The system has some limitations, and it remains difficult 
to detect and segment small aneurysms. Compared with 
2D CNNs, a 3D CNN [28] emphasizes the spatial struc-
ture information of images and performs better. Park 
et  al. [29] developed the HeadXNet model as a neural 
network segmentation model, for accurately predicting 
intracranial aneurysms from head CTA images; although 
the method’s prediction performance on aneurysms is 
very good, it has some limitations – the primary one is 
that the method is not generalizable to different scan-
ners and imaging protocols. Recently, Shi et al. [30] pro-
posed DAResUNet, which combines residual blocks and 
dual attention blocks [31] for analysis of CTA-acquired 
aneurysm images. The model was trained and validated 
on a large volume of clinical data. Of the predicted nega-
tive cases, 99% were highly trusted and could be used for 
reducing the clinicians’ workload. The research focused 
only on CTA-acquired aneurysm images. Shahzad et  al. 
[32] proposed a double-path CNN architecture for cap-
turing contextual information at different resolutions, 
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achieving a sensitivity close to 100% for aneurysms larger 
than 100  mm, on the atherosclerosis cohort. However, 
deep learning-based models (DLMs) can only evaluate 
images scanned on iCT machines; the segmentation per-
formance on CTA images acquired using different scan-
ners is unknown and requires further validation. In ref. 
[33], a deep learning-based method, GLIA-Net, was pro-
posed without redundant preprocessing and was applied 
directly to CTA-acquired images. The model consisted 
of a global position network and a local segmentation 
network, avoiding the loss of global information owing 
to cropped image blocks. The entire 3D CTA image, 
that is, the global map, was used as input to the image-
processing network, for capturing the global position 
information of the current block; the slices in the global 
image were used as local images, for correctly capturing 
small target regions. Yet, the model was not validated on 
other types of images. In ref. [34], Ma and Nie used the 
3D nn-UNet model [35] for training and evaluating the 
performance on the MICCAI 2020 CADA dataset, and 
achieved good segmentation results. It is worth men-
tioning that this method required significant amount of 
hardware and was time-consuming. In ref. [36], “weak 
labels” were proposed instead of manual voxel labeling, 
to reduce the labeling time, following which a custom-
ized U-Net network was trained for segmentation of the 
different parts of TOF MRA-acquired intracranial aneu-
rysm images. This method did not use a novel model 
method and focused on pre-image processing. Çiçek 
et  al. [37] proposed a 3D U-Net for three-dimensional 
biological images.

The above methods focus on the segmentation of 
CTA-acquired aneurysm images; at the same time, meth-
ods for segmenting MRA-acquired images are lacking. 

Therefore, the purpose of this study was to develop a 
CNN for adaptive segmentation of MRA-acquired intrac-
ranial aneurysm images. The proposed network com-
bines dense blocks and a CBAM [38]. The network is 
taught to recognize target features and apply them to the 
segmentation of intracranial aneurysm images. The mul-
tiscale fusion block (MFB) in the up-sampling part fuses 
contextual information at different scales, which is help-
ful for improving the segmentation accuracy of aneu-
rysm-containing images. In addition, 3D images have 
richer spatial information, yet there are only a few studies 
on the automatic segmentation of intracranial aneurysm 
images from 3D TOF MRA imaging data. Therefore, 
the purpose of this study was to investigate the clinical 
potential of deep learning for automatic segmentation of 
intracranial aneurysm images from 3D TOF MRA imag-
ing data.

Methods
Pre‑processing
In this step, we mainly performed the following opera-
tions: image cropping, z-score standardization, and data 
enhancement. These preprocessing operations extracted 
3D images containing aneurysm regions, making the data 
more conducive to network training.

In the image cropping operation, the pixel ratio of the 
target region was too small, and cropping off the zero-
pixel region still suffered from the foreground–back-
ground imbalance. In addition, the sizes of the original 
aneurysm-containing images were inconsistent, with the 
smallest image of 512 × 512 × 64 and the largest image 
of 1024 × 1024 × 160. With original 3D images as the 
input to the model, large non-target regions would not 
be efficient memory- and computation-wise, which is not 

Fig. 1  The intracranial aneurysm image and its ground truth. a Original 3D TOF MRA image of an intracranial aneurysm in the sagittal view, with the 
red marker indicating the aneurysm-containing region; b Image of the aneurysm after pre-processing
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conducive to the segmentation accuracy of aneurysms. 
Therefore, the aneurysm location was set as the image 
center, and the images were cropped to 64 × 64 × 64 uni-
formly, for reducing the foreground–background ratio, as 
shown in Fig. 1.

Gray normalization is a necessary preprocessing step 
for image segmentation. Gray normalization enables 
efficient feature extraction and speeds up the gradient 
descent for finding the optimal solution. We chose the 
z-score standardization method [39], which normal-
izes features to the same scale, which is convenient for 
comprehensive feature comparison and weighting. The 
z-score standardized image data conformed to the nor-
mal distribution (mean, 0; standard deviation, 1); the 
z-score was obtained from the data and the distribution 
parameters as follows:

where x represents the pixel-level MRA-acquired 
sequence data, μ is the mean value of the pixel-level 
MRA-acquired sequence data, and σ is the standard 
deviation of the pixel-level MRA-acquired sequence 
data. Because the amount of available data is typi-
cally relatively small, data enhancement operations 
are often performed for preventing overfitting during 
model training [40]. We used random flips and ran-
dom strength enhancement for expanding our dataset, 
which improved the model’s generalizability. We added 

(1)z =
x − µ

σ

an offset of 0.1 to each channel of the preprocessed 
intracranial aneurysm images, and applied a random 
mirror flip with a probability of 0.5, to the x, y, and z 
axes data.

Proposed model
Network structure
The study used DCAU-Net, corresponding to an 
improved U-Net. The network consisted of three parts: 
(1) a down-sampling (encoding) path, (2) an up-sam-
pling (decoding) path, and (3) a MFB. The specific 
structures are shown in Fig. 2. The network was an end-
to-end FCN. The input to each layer of DCAU-Net was 
b× c × h× w × d , where b represents the batch size, c 
represents the number of channels, while h, w and d rep-
resent the three dimensions of the input image.

The four convolution blocks contain Layerin1–Lay-
erin3, and Bottom. Layerin1 consisted of a conven-
tional convolution block, a dense convolution block, 
and a transition layer. The conventional convolution 
block consisted of two convolution layers (kernel size, 
3 × 3 × 3; stride size, 1 × 1 × 1), where group normali-
zation (GN) [41] was used instead of batch normaliza-
tion (BN) [42] for reducing the memory demand. The 
remaining blocks contained a two-layer dense convo-
lutional block and a CBAM, followed by a transition 
layer. The CBAM was placed before the pooling layer, to 
suppress unimportant features and further focus on the 
aneurysmal feature regions. The transition layer mainly 

Fig. 2  Schematic of the proposed network (DCAU-Net). The framework is shown in the 2D form, for the sake of convenient viewing
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consisted of a BN layer, a randomly rectified linear unit 
(RReLU) function, a convolution layer with a 1 × 1 × 1 
convolution kernel, and an average pooling layer. 
Among these, the 1 × 1 × 1 convolutional layer was 
used for reducing the number of channels. The average 
pooling layer (convolutional kernel, 2 × 2 × 2; step size, 
2 × 2 × 2) allowed to reduce the number of the network 
parameters, minimize overfitting, and reduce the mod-
el’s complexity. On the other hand, the transition layer 
solved the problem of changing the number of channels 
brought by multiple dense blocks in series, unified the 
size of the feature maps of each layer, and facilitated the 
skip connection during the up-sampling. The transition 
layer reduced the image to a half of the original image 
each time, reducing the dimensions of the feature map 
from 64 × 64 × 64 to 4 × 4 × 4.

In the up-sampling path, a transposed convolutional 
layer with a filter size of 3 × 3 × 3 and stride size of 
2 × 2 × 2 was first applied to each block. The down-sam-
pled feature maps were fused to the up-sampled feature 
maps by the skip connection, to ensure that the sizes of 
the feature map matched during the up- and down-sam-
pling. The image dimensions increased from 4 × 4 × 4 to 
64 × 64 × 64. In this study, the transposed convolution 
and the corresponding down-sampling layer were fused 
to the feature maps (Trans1–Trans3). This alleviated the 
vanishing gradient problem and increased the training 
speed. For the up-sampling path, two conventional con-
volutional blocks were applied at the end of each layer, 
reducing the number of feature maps after the fusion of 
the transposed convolution and down-sampling paths. 
We set padding to 1, for maintaining the output dimen-
sions of all the convolutional layers in the encoding and 
decoding paths.

The MFB fused the context information of different 
scales during the up-sampling. Each layer was size-uni-
fied by the trilinear interpolation of the Upsample func-
tion, following which feature fusion was performed. This 
compensated for the lack of high-level detail information 

and little semantic information at the lower levels during 
the up-sampling of the U-Net network. The introduction 
of the CBAM allowed to further learn the distinguishing 
feature information of aneurysms, from both the chan-
nel and spatial dimensions. The number of channels for 
the foreground and background segmentation was then 
reduced to two, using a convolution layer with a filter of 
3 × 3 × 3 and a step size of 1 × 1 × 1. Finally, we added a 
dropout layer, to prevent overfitting.

Dense block
In this study, a dense connection module in DenseNet 
was used for improving the information transfer 
between different layers. Figure  3 shows the specific 
connection structure of the dense block and the CBAM. 
The dense block used a pre-activation mode, consist-
ing of the BN–RReLu–Conv sequence. Using BN layers 
earlier in pre-activation can improve a model’s regulari-
zation ability. Each densely connected block contained 
two 3 × 3 × 3 convolutional layers and two feature 
fusions. After the feature map of the input densely con-
nected block underwent the convolution operation, 
the generated feature map was fused with the original 
feature map, forming a new feature map. Then, it was 
presented to the channel attention module (CAM), for 
obtaining weighted results, following which it was pre-
sented to the spatial attention module (SAM). Finally, 
the weighted features were presented to the next con-
volution block.

The CBAM
The CBAM combined two attention mechanisms of 
channel and space and multiplied the attention fea-
ture map with the input feature map, allowing the net-
work to learn the most distinguished features in data. 
Section  4 specifically discusses the impact of different 
CBAM module arrangements on the segmentation 
performance.

Fig. 3  Integration of the CBAM with the dense block
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The channel attention sub-module, which utilizes 
the channel relationship between features, is shown in 
Fig. 4(a). The workflow is as follows:

(1) The feature map Fc uses global average pooling 
and global maximum pooling for obtaining two spatial 
context descriptors: Fc

avg and Fc
max . The feature dimen-

sions change from C × D ×H ×W  to C × 1× 1× 1.
(2) Fc

avg and Fc
max are presented to a shared multi-

layer perceptron (MLP), and then the output features 
perform concatenation operations. The spatial feature 
map Mc is obtained through the sigmoid activation. The 
dimensions of the feature map are C × 1× 1× 1 . The 
mathematical expression for Mc is

where σ represents the sigmoid function. Note that 
the MLP weights, W0 and W1 , are shared for both inputs, 
and the rectified linear unit (ReLU) activation function 
is followed by W0.

(3)	 Mc is multiplied by the initial input feature map Fc 
to obtain F ′

c , which is the output of the CAM.

The detailed structure of the spatial relation-
ship between the features of the spatial attention 

(2)

Mc(F)

= σ
(

MLP
(

AvgPool(F)
)

+MLP(MaxPool(F))
)

= σ

(

W1

(

W0

(

Fc
avg

))

+W1

(

W0

(

Fc
max

))

)

submodules is shown in Fig.  4(b), and is explained as 
follows:

(1)	The feature map F ′

c from the output of the CAM 
is used as the input to the SAM; then, global aver-
age pooling and global maximum pooling are per-
formed for generating two maps, Fs

avg and Fs
max . 

The dimensions of the feature map change from 
C × D ×H ×W  to 1× D ×H ×W .

(2)	Fs
avg and Fs

max are concatenated, for obtaining S 
with the dimensions of 2× D ×H ×W  . Then, by 
the 7 × 7 × 7 convolution, the dimensionality is 
reduced to a channel number for obtaining S′ , that 
is, 1× D ×H ×W  . The dimensions of the feature 
map are 1× D ×H ×W .

(3)	S′ uses the sigmoid activation function for obtaining 
Ms . Its dimensions are 1× D ×H ×W  . It is defined 
as

(3)

Ms(F)

= σ
(

f 7×7×7
(

[AvgPool(F);MaxPool(F)]
))

= σ

(

f 7×7×7
([

Fs
avg ; F

s
max

]))

Fig. 4  The complete CBAM module. a Structure diagram of channel attention module; b Structure diagram of spatial attention module
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where f 7×7×7 represents the convolution operation with 
a convolution kernel of 7 × 7 × 7, Fs

avg represents the aver-
age pooling feature through the channel, and Fs

max repre-
sents the maximum pooling characteristic through the 
channel.

Normalization
The normalization process ensures that the data dis-
tributions for each round of training are consist-
ent. Therefore, in the present work normalization 
was performed after each convolutional layer, that is, 
layer-processed data were normalized to the stand-
ard distribution (mean, 0; standard deviation, 1). This 
standardization improved convergence. The proposed 
network used two normalization layers: (1) 3D BN and 
(2) 3D GN.

For the convolutional layer in the dense block, 3D BN 
was used, defined as

where x(k) is a 3D input vector, E
[

x(k)
]

 is the average for 
each neuron in a batch of 3D data, and 

√

Var
[

x(k)
]

 is the 
standard deviation for the k-th neuron. The parameters γ 
and β are learnable parameters, representing the scale 
and deviation, respectively.

The dimensions of the proposed network were 
[B,C ,H ,W ,D] , with each neuron corresponding to a 
channel. We calculated the mean and variance of the 
B×H ×W × D values and then performed a recon-
struction transformation. The BN layer improved and 
stabilized the network’s training process, and alleviated 
the vanishing gradient problem. However, the dataset 
that was used in this study consisted of 3D images, and 
the input feature space was too large; thus, for training 
the network the batch size was set to eight. Note that 
with smaller batches the batch mean and variance cannot 
be estimated correctly.

To stabilize the data mean and variance estimation 
accuracy during the training process, a group convolu-
tion layer in the traditional convolution block was used 
for data normalization. The normalization was per-
formed as follows:

(4)y = γ (k)
×

x(k) − E
[

x(k)
]

√

Var
[

x(k)
]

+ β(k)

(5)y = γ ×
1

σi
(xi − µi)+ β

where i = (batchsize, iN , iC , iD, iH , iW ) indexes a five-
dimensional vector of a 3D image, x is the feature of a 
layer, µ and σ represent the mean and the standard devia-
tion, respectively; ε is a small constant; Si is a set of pixels 
for calculating the mean and the standard deviation, and 
m is the size of the set, which determines the normaliza-
tion method.

Because the number of output channels for each tra-
ditional convolutional layer is 2i , the feature channels C 
through the group convolutional layer were divided into 
four groups. Each group contained 2i/4 feature channels. 
The mean and the variance of (H ,W ,D) were computed 
according to the four groups. This improved the expres-
sive ability of the network and made the network more 
flexible with respect to learning the features of the dis-
tribution between the different groups. To demonstrate 
that the GN layer improves the segmentation accuracy of 
intracranial aneurysms, an ablation experiment was per-
formed using the ADAM dataset.

Activation function
The activation function introduces nonlinearity into 
neural networks, which improves their generalizabil-
ity and enables treating nonlinearly separable problems. 
The ReLU [43] function is among the most widely used 
activation functions, and can improve the network’s con-
vergence. The ReLU function is analytically defined as 
follows:

Note that the ReLU function forces the output of the 
x < 0 region to zero, which masks features in this region. 
This may cause the model to fail to effectively learn 
aneurysm-related features. To overcome this, the RReLU 
function was used for adding a linear term (for treating 
negative inputs). Thus

where a ∼ U(l,u), l < u and l,u ∈ [0, 1) . The value of 
slope a was drawn from a uniform distribution U(l,u) . 
Ablation experimentlists the effectiveness of the RReLU 
activation function with respect to improving the seg-
mentation performance on intracranial aneurysms in 
Section 4.

(6)µi =
1

m

∑

k∈Si

xk , σi =

√

√

√

√

1

m

∑

k∈Si

(xk − µi)
2
+ ε

(7)fRelu = max (0, x)

(8)y =

{

x, x ≥ 0;
ax, x < 0.



Page 8 of 16Yuan et al. Visual Computing for Industry, Biomedicine, and Art             (2022) 5:9 

Loss function
An intracranial aneurysm typically accounts for a small 
proportion of an image that contains it, and improper use 
of the loss function will cause class imbalance problems. 
The cross-entropy loss function was used for testing the 
extent of the similarity between the predicted results and 
those obtained using the manual segmentation mask. It 
is easy to make the loss reach a local minimum, which 
causes the model to focus on the background region dur-
ing training. It is difficult to accurately predict the lesion 
region. The Dice loss function [44] is suitable for solving 
class imbalance problems, and it is defined as follows:

where N  is the number of categories (label classes), 
p(x) is the model predicted value, q(x) is the label value 
from manual segmentation, and e is a small smoothing 
constant, to prevent the denominator from becoming 
zero and the gradient from disappearing.

The convergence speed of the Dice loss function 
becomes lower during the later stages of training. During 
the learning process, instabilities can be easily incurred 
owing to the high data variance, making it difficult to 
improve the segmentation accuracy of the method. 
Therefore, a weighted combination of the Dice and 
entropy loss functions was used in the present study, and 
the corresponding expression was

where α is the fractional weight (on the 0–1 scale) for 
balancing the Dice and cross-entropy loss function con-
tributions. To balance the background and target region 
pixels, we set 1− α and α to 0.3 and 0.7, respectively, dur-
ing our experiments.

Experiment
Dataset
Two different datasets were used for testing the gener-
alizability of the DCAU-Net network with respect to 
the segmentation of intracranial aneurysm-containing 
regions. One dataset was from the competition MIC-
CAI 2020 ADAM (http://​adam.​isi.​uu.​nl/​data). The 
training set is publicly available and includes 113 cases. 
Among these, data for 93 patients presented at least one 
untreated, unruptured intracranial aneurysm. The other 
dataset was provided by the Department of Radiology, 
the Affiliated Hospital of Qingdao University. The data 

(9)Ldice = 1−

2
N
∑

x=1

p(x)q(x)

N
∑

x=1

p(x)+
N
∑

x=1

q(x)+ e

(10)L = (1− α)Ldice + α

(

−

N
∑

x=1

p(x) log (q(x))

)

in this dataset were collected using Philips 1.5 TMR, Sie-
mens 3.0 TMR, GE Signa 3.0 TMR, and GE 1.5 TMR vas-
cular imaging systems. The images were in the DICOM 
format, with the image resolution of 512 × 512 × 140 (the 
z-axis was not uniform). These 3D TOF-MRA image data 
were manually annotated by two experienced radiologists 
and double-checked, with consistent results as the diag-
nostic criteria for aneurysms. This dataset contained 3D 
TOF MRA images of 376 patients, collected from January 
2012 to December 2019. Table 1 lists the detailed infor-
mation about the dataset.

The images were uniformly converted into the NII 
format for preprocessing. For these two datasets, 3D 
TOF MRA images were selected as the input, and the 
ground truth labels were slightly different. The seg-
mentation mark annotation of the MICCAI 2020 
ADAM included three parts: background (labeled 0), 
untreated and unruptured aneurysms (labeled 1), and 
treated aneurysms (labeled 2). The clinical dataset used 
only two labels: background (labeled 0) and untreated, 
unruptured aneurysms (labeled 1). The goal was to 

Table 1  Characteristics of the 376 clinical data samples provided 
by the Department of Radiology, the Affiliated Hospital of 
Qingdao University

Size (mm)  < 3 3–7  > 7

Gender

  Male 49 59 52

  Female 42 151 23

Age (year)

  30–60 28 80 21

   > 60 63 130 54

Number of aneurysms

  1 85 200 67

  2 6 10 7

  3 0 0 1

Table 2  Parameter values of the proposed model

Layer Filter Kernel Stride Input

  Layerin1 16 3 × 3 × 3 2 1 × 64 × 64 × 64

  Layerin2 32 3 × 3 × 3 2 16 × 32 × 32 × 32

  Layerin3 64 3 × 3 × 3 2 32 × 16 × 16 × 16

  Bottom 128 3 × 3 × 3 2 64 × 8 × 8 × 8

  Trans1 64 3 × 3 × 3 2 128 × 4 × 4 × 4

  Trans2 32 3 × 3 × 3 2 64 × 8 × 8 × 8

  Trans3 16 3 × 3 × 3 2 32 × 16 × 16 × 16

  MFB 64 - - 16 × 64 × 64 × 64

  CBAM 64 - - 64 × 64 × 64 × 64

  Output 2 3 × 3 × 3 1 16 × 64 × 64 × 64

http://adam.isi.uu.nl/data


Page 9 of 16Yuan et al. Visual Computing for Industry, Biomedicine, and Art             (2022) 5:9 	

automatically segment the untreated and unruptured 
aneurysms. Therefore, label 2 of the MICCAI 2020 
ADAM dataset was ignored during the evaluation and 
was not considered.

Experimental configuration
Table  2 lists the hyperparameter values of the network. 
These hyperparameters were obtained from the valida-
tion set. The intracranial aneurysm segmentation prob-
lem was treated as a two-class classification problem. 
Only the untreated and unruptured aneurysm areas were 
regarded as positive, and the other parts were regarded 
as negative, allowing to more accurately segment the 
untreated aneurysm parts from the 3D TOF MRA-
acquired aneurysm-containing images.

The ADAM dataset was randomly partitioned into a 
training set (n = 70), a validation set (n = 20), and a test set 
(n = 23). For the clinical dataset of the Affiliated Hospital 
of Qingdao University, the model’s adaptability and gener-
alizability were tested according to three aneurysm sizes.

The analysis code was written in Python, and the net-
work architecture was based off the PyTorch framework. 
The model was trained and tested on GPU GeForce RTX 
2080Ti, using two graphics processing units each time. 
During the model training, the Adam algorithm was used 
for parametric optimization. The initial learning rate was 
0.001, and the ReduceLROnPlateau function was used for 
dynamically adjusting the learning rate. When the evalu-
ation index did not improve for 10 consecutive rounds, 
the learning rate was reduced by 0.1. Overall, 300 rounds 
of training were performed, and the batch size of each 
round was 8.

Filter represents the number of channels in each 
layer, kernel represents the kernel size of the convo-
lutional layer. Stride represents the step size of the 
average pooling layer in down-sampling, and repre-
sents the step size of the transposed convolutional 
layer in up-sampling. The output of the last layer is 
2 × 64 × 64 × 64.

To evaluate the performance of the proposed method, 
four classical segmentation performance indicators were 
used: (1) the Dice metric, (2) sensitivity, (3) specificity, 
and (4) precision. Among these, the Dice metric is used 
for computing the similarity between predicted and 
ground truth values, with the metric value in the [0,1] 
range; the higher the value, the better the segmentation 
quality.

(11)Dice =
2TP

FP + 2TP + FN

In the above, TP, FP, and FN represent the number 
of true positive, false positive, and false negative calls, 
respectively.

Sensitivity is the probability of a condition-positive 
patient to be correctly diagnosed as positive; this metric 
is known as the true positive rate, or the recall rate. The 
higher the sensitivity, the more likely are aneurysm-con-
taining regions to be categorized as such.

Specificity refers to the probability of a negative call for 
a truly condition-negative patient; it is also known as the 
true negative rate.

where TN represents the number of true negative calls. 
The higher the specificity, the more likely are healthy-tis-
sue regions to be correctly categorized as such.

Precision is the fraction of correctly predicted positive 
cases (aneurysm-containing regions) to all positive calls 
(corresponding to the sum of true- and false-positive 
calls).

Results and discussion
Experiments were conducted for validating the effects of 
the above-listed key components. For the MICCAI 2020 
ADAM dataset, ablation experiments were performed 
using the training, validation, and testing subsets; the 
final segmentation results were evaluated, and are listed 
in Table 3. Figure 5 shows the overall loss function values 
and Dice score during the 300 training round of DCAU-
Net. The combination of the cross-entropy and Dice loss 
functions that was used for the model training ensured 

(12)Sensitivity =
TP

TP + FN

(13)Specificity =
TN

FP + TN

(14)Precision =
TP

TP + FP

Table 3  Comparison of the performances of key components 
on the MICCAI 2020 ADAM testing set

Component Dice Sensitivity Specificity

  Ours 0.7455 0.7881 0.9996

  UNet 0.4629 0.6077 0.9992

  UNet + Dense 0.5424 0.6068 0.9995

  UNet + CAM 0.6783 0.6254 0.9998

  UNet + SAM 0.6426 0.7850 0.9997

  UNet + CBAM 0.6813 0.7398 0.9997

  UNet + Dense + CBAM 0.7292 0.7378 0.9996

  Use BN 0.6612 0.6829 0.9996

  Use ReLU activation 0.5731 0.6560 0.9993
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faster convergence toward the minimal loss configura-
tion, proving that the proposed model has a high learn-
ing efficiency during training and is suitable for solving 
the segmentation problem of intracranial aneurysms. 
The 3D network model used in this study had to be pre-
sented with aneurysm images in three dimensions (axial, 
sagittal, and coronal). Owing to the small sizes of aneu-
rysms, the network was presented with 64 × 64 × 64 
MRA-acquired aneurysm-centered images. The different 
methods are compared in Fig. 6. The segmentation pre-
diction results for example aneurysms suggest that the 

DCAU-Net network segments the aneurysms well, with 
the segmentation results closer to those for the manual 
segmentation mask.

The results of these experiments show that the Dice 
value for DCAU-Net reached 74.55% on the testing 
set. The basic U-Net network exhibited the lowest Dice 
of 46.29%, which is not suitable for segmenting aneu-
rysm-containing images. The Dice value for U-Net with 
dense blocks was 7.95% higher compared with that for 
U-Net alone, proving the effectiveness of dense connec-
tions. The combination of U-Net and CBAM was less 

Fig. 5  Evolution of the overall loss functions and dice score during the 300 rounds of training, for the MICCAI 2020 ADAM dataset

Axial

Sagittal

Coronal

Ground truth (a) (b) (c)Image (d) (e) (f) (g) (h) (i)
Fig. 6  Prediction maps for the models with different components, on the MICCAI 2020 ADAM testing set. The first column is the MRA image of 
an aneurysm, while the second column shows the manually obtained marking mask. a The proposed model; b U-Net; c U-Net with the dense 
block; d U-Net + CAM; e U-Net + SAM; f U-Net + CBAM; g U-Net + dense block + CBAM; h BN only; i With ReLU activation
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sensitive than the system that used only the SAM, but 
the Dice value was higher than that for U-Net com-
bined with a single spatial or channel attention, indi-
cating the effectiveness of the CBAM for segmenting 
aneurysm-containing regions. To validate the effective-
ness of the MFB, a multi-scale fusion block was added 
to the improved U-Net up-sampling part. The Dice 
value increased by 1.63%, and the sensitivity increased 
by 5.03%, indicating that the MFB effectively improved 
the segmentation performance on aneurysm-contain-
ing images. The Dice value and the sensitivity of the 
traditional convolution block using the BN layer were, 
respectively, 8.43% and 10.52% lower than those of 
the currently proposed algorithm. This shows that the 
GN layer effectively improved the segmentation accu-
racy for aneurysm-containing images while reducing 
the memory space. The Dice value obtained using the 
RReLU function was 17.24% higher than that obtained 
using the ReLU function, proving the effectiveness of 
the RReLU function.

To demonstrate that the CBAM can improve the seg-
mentation accuracy of intracranial aneurysm-contain-
ing images, several classical attention modules [45–47] 
were used for comparison experiments. The segmen-
tation results in Table  4 show that the CBAM’s abil-
ity to learn aneurysm-related features was better than 

that of the other considered attention modules. The 
proposed network performed well on segmenting the 
entire region and the edge of the aneurysm, as shown in 
Fig. 7. This shows that the CBAM is more suitable for 
segmenting images containing intracranial aneurysms. 
We also conducted comparative experiments against 
other advanced models, using the ADAM dataset. In 
Table 5, the average Dice, precision, and sensitivity val-
ues, obtained using the DCAU-Net method are listed, 
exhibiting the highest values. Compared with BAMNet 
[47] and with GLIA-Net [33], the model in this study 
exhibited little difference in terms of the average Dice 
value, but there were obvious differences in terms of the 
average sensitivity and precision. The average sensitiv-
ity and precision for the model in this study were 7.82% 
and 2.88% higher than the corresponding values for 
BAMNet [47]. Compared with GLIA-Net [33], the aver-
age sensitivity and precision of DCAU-Net were higher 
by 6.86% and 2.66%, respectively. This demonstrates 
the effectiveness of the currently proposed method. It 
can be seen from the prediction maps (Fig. 8) for differ-
ent models on the test set that the model detected the 
only lesion area in the background, and segmented the 
lesion more accurately.

Table 4  Comparison of the proposed model with other 
attention modules

Model Dice Sensitivity Specificity Precision

  SENet [45] 0.6849 0.6206 0.9995 0.6764

  SKNet [46] 0.6756 0.6172 0.9995 0.6915

  BAMNet [47] 0.7451 0.7099 0.9997 0.7593

  Ours 0.7455 0.7881 0.9996 0.7881

Table 5  Comparison of the performances of some state-of-the-
art models on the ADAM test set

Model Dice Sensitivity Specificity Precision

  MIP + 2D CNN 0.6642 0.7201 0.9993 0.5865

  HeadXNet [29] 0.6462 0.7473 0.9994 0.6771

  DeepMedic [32] 0.7421 0.7247 0.9997 0.7521

  GLIA-Net [33] 0.7443 0.7195 0.9997 0.7615

  DAResUNet [30] 0.7376 0.7014 0.9995 0.7553

  3D U-Net [37] 0.6544 0.7181 0.9993 0.6036

  Ours 0.7455 0.7881 0.9996 0.7881

Fig. 7  Prediction maps of different attention modules, on the ADAM test set. a The proposed model; b SENet; c SKNet; d BAMNet
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Sagittal

Coronal

Axial

Ground truth (a) (b) (c)Image (d) (e) (f) (g)

Fig. 8  Prediction maps of different models, on the ADAM test set. a The proposed model; b MIP + 2D CNN; c HeadXNet; d DeepMedic; e GLIANet; 
f DAResUNet; g 3D U-Net

Table 6  Comparison of the segmentation performances of different methods, on the dataset of the Affiliated Hospital of Qingdao 
University

Model  < 3 mm 3–7 mm  > 7 mm

Dice Sensitivity Specificity Dice Sensitivity Specificity Dice Sensitivity Specificity

  HeadXNet [29] 0.5680 0.6029 0.9998 0.7207 0.7746 0.9996 0.8383 0.8449 0.9983

  DeepMedic [32] 0.4296 0.4759 0.9897 0.5655 0.5541 0.9990 0.7280 0.7028 0.9938

  GLIA-Net [33] 0.4015 0.4707 0.9993 0.7028 0.7059 0.9996 0.8253 0.7899 0.9986

  DAResUNet [30] 0.5369 0.5412 0.9998 0.6791 0.8265 0.6584 0.8784 0.8929 0.9979

  U-Net [36] 0.4286 0.4610 0.9995 0.6393 0.6585 0.9951 0.8191 0.8069 0.9975

  Ours 0.6303 0.7103 0.9998 0.7607 0.7338 0.9997 0.8412 0.8267 0.9986

Fig. 9  Box plots of Dice metric values and sensitivities, for different models, with respect to segmenting images with three sizes of intracranial 
aneurysms
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The universality of DCAU-Net was further tested by 
using it on the clinical dataset provided by the Affiliated 
Hospital of Qingdao University. Comparative experi-
ments were performed using the modeling approach 
proposed in the literature. These networks used the 
same preprocessing method for ensuring quantifica-
tion. After ten-fold cross-validation, the final test results 
were obtained, and are listed in Table 6. Figure 9 shows a 
box plot, which describes the quantitative segmentation 
results (the Dice metric and sensitivity values) for the test 
set obtained after tenfold cross-validation using different 
methods. Table 7 lists the number of parameters for the 
six networks, the average duration of a training round, 
and the average test time for a single 3D TOF MRA-
acquired image.

As shown in Table  6, the DCAU-Net network exhib-
ited the highest average Dice value on the segmentation 
of three different-size aneurysms; the average sensitivity 
was higher than that for most of the other models. Head-
XNet [29] adopts a 50-layer SE-ResNet as the encoder 
part, while the decoder part uses a transposed convolu-
tion. It can segment aneurysms more accurately than the 
currently proposed method, but its segmentation of the 
aneurysm edge regions is relatively rough. DeepMedic 
[32] is a dual-path network that accepts two different-size 
aneurysm images separately, and then unifies the fea-
ture map sizes of the two paths through up-sampling, for 
feature fusion. GLIA-Net [33] combines the global loca-
tion information network and a local segmentation net-
work for ensuring that both global and local information 
of the image can be captured. It poorly segments aneu-
rysms with large size variations, especially small lesions. 
DAResUNet [30] is a U-Net network based on residual 
blocks, which introduces dual attention modules into 
the bottom layer of the network, for learning long-range 
context feature information. This model only consid-
ers expanding the learning of semantic information at 
the bottom layer and ignores the extraction of detailed 
information from the shallow network. U-Net [36] uses 
special software to create large-size markers instead of 

manual markers, for improving the accuracy with respect 
to the ground truth data, which ensures that the feature 
information obtained during the network training is 
more accurate. However, the segmentation performance 
of this model on clinical data is sub-optimal. The cur-
rently proposed model uses the CBAM in the feature 
extraction step, focusing on non-salient feature regions. 
This ensures that the aneurysm contextual informa-
tion is learned in the largest range, and fuses the pixel 
sequence information of different scales during up-sam-
pling. Both semantic information and edge information 
are effectively learned, and the method’s segmentation 
performance on intracranial aneurysms with large size 
differences is improved. According to Table  7, the algo-
rithm parameters of the currently proposed method take 
up 38.35 MB. Although this implies that the memory cost 
of the proposed method is higher than those of the Deep-
Medic and U-Net models, the segmentation accuracy of 
intracranial aneurysms is significantly higher for the cur-
rent method than for the latter models. The parameter 
costs of the other three comparison models are much 
higher than those of the currently proposed model, and 
the average test time for a single case of three image sizes 
is also higher than for the currently proposed model. It 
can be seen that, compared with the GLIA-Net model 
with similar performance, DCAU-Net requires less 
memory, has a lower computational time cost, and has a 
higher segmentation accuracy.

To demonstrate the segmentation performance for 
individual dimensions more comprehensively, Fig.  10 
shows the axial plane views for aneurysms less than 
3  mm in size, the sagittal plane views for aneurysms in 
the 3–7 mm range, and the coronal plane views for aneu-
rysms larger than 7  mm. Overall, both the currently 
proposed model and the comparison model appear to 
segment well larger aneurysm-containing regions with 
obvious texture features. Focusing on local details, the 
segmentation method proposed in this study is more 
accurate, yielding results that are closer to those obtained 
using the manual segmentation mask. The segmentation 

Table 7  Comparison of computational time and memory metrics, for the dataset of aneurysms supplied by the Affiliated Hospital of 
Qingdao University

Method Parameters Train time (s) Test time (s)

 < 3 mm 3–7 mm  > 7 mm

  HeadXNet [29] 101.59 M 423.67 2.01 1.85 1.92

  DeepMedic [32] 2.51 M 396.14 1.41 1.25 1.33

  GLIA-Net [33] 49.95 M 379.31 2.09 1.86 1.92

  DAResUNet [30] 71.97 M 425.85 1.52 1.54 1.51

  U-Net [36] 5.01 M 367.04 1.41 1.37 1.41

  Ours 38.35 M 400.74 1.38 1.26 1.36
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performance of DCAU-Net is better for smaller aneu-
rysms (< 3 mm).

The model in this study verified the effectiveness of 
each component on the MICCAI 2020 ADAM dataset. 
Compared with other models, this network was robust. 
It extracted more contextual information with respect 
to segmenting different-size aneurysms, and exhibited 
a higher segmentation accuracy. It can more accu-
rately segment the edges of intracranial aneurysms, 
and is likely to provide efficient guidance for medical 
diagnosis of aneurysm-containing areas. The memory 
demands are higher, but the test time is shorter, and 
the segmentation performance is better. This provides 
a more valuable reference to clinicians for diagnosing 
aneurysm-containing regions, which not only reduces 
their workload but also results in more accurate 
diagnostics.

Although the model in this study demonstrated good 
segmentation performance on different-size aneurysms, 
some challenges remain. In the test phase, a local image 
input network was used instead of inputting the entire 
original image. Therefore, we will specifically study the 
entire aneurysm image input model in the next step, 
improving the model’s robustness and increasing the 
accuracy of the aneurysms’ segmentation. The present 
model only considered experiments on MRA-acquired 
aneurysm-containing images. The accuracy of the 
method with respect to the imaging data acquired using 

other imaging techniques (such as CTA and DSA) is 
unknown, and additional validation is needed for dem-
onstrating the model’s better generalizability. This will be 
the focus of future studies.

Conclusions
This paper proposed a method for segmenting 3D 
TOF MRA-acquired images, for detection of intrac-
ranial aneurysms, using deep learning-based DCAU-
Net. The proposed algorithm differs from conventional 
algorithms, in that it does not rely on manual feature 
extraction and parameter selection, and enables real-
time segmentation of aneurysm-containing regions. 
The proposed network consists of three structures: (1) 
an encoder, (2) a decoder, and (3) multiscale fusion. 
Dense connections enhance the information transfer 
between the network’s layers, alleviating the problem of 
the vanishing gradient during the model’s training, mul-
tiplexing a large number of target features, and reduc-
ing the training cost to a certain extent. While reducing 
the number of parameters, dense connections allow to 
extract as many aneurysm-related features of different 
sizes and shapes as possible. The CBAM is added after 
dense connections. The CAM performs feature alloca-
tion according to the input and learns the feature infor-
mation of different channels, while the SAM effectively 
focuses on the spatial information of the target region of 
the aneurysm, for improving the segmentation accuracy. 

Fig. 10  Segmentation prediction maps of the comparison model, on an example image from the test set supplied by the Affiliated Hospital of 
Qingdao University. a The currently proposed method; b HeadXNet; c DeepMedic; d GLIANet; e DAResUNet; f U-Net
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The combination of the two sub-modules highlights the 
features of artificially marked areas, which is conducive 
to the segmentation of images containing intracranial 
aneurysm regions. In addition, this study fuses the fea-
ture maps during upsampling to obtain rich semantic 
information about the deep network and the detailed 
information about the shallow network at the same time, 
further improving the segmentation performance of the 
method with respect to aneurysm-containing images.

DCAU-Net performed better than other advanced 
models on segmentation of images containing different-
size aneurysms, and has clinical utility. This network is 
likely to be helpful for recognizing small-scale lesions 
in medical images. It can assist doctors in diagnosing 
tumor areas, speeding up the work process, facilitating 
the timely detection of small-size tumors, slowing down 
disease-related deterioration, and prompting medical 
professionals to formulate more sensible and reasonable 
diagnosis and treatment plans.
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