
Wu and Li ﻿
Visual Computing for Industry, Biomedicine, and Art (2022) 5:17
https://doi.org/10.1186/s42492-022-00114-3

ORIGINAL ARTICLE

Curve intersection based on cubic hybrid
clipping
Yaqiong Wu and Xin Li* 

Abstract 

This study presents a novel approach to computing all intersections between two Bézier curves using cubic hybrid
clipping. Each intersection is represented by two strip intervals that contain an intersection. In each step, one curve is
bounded by two fat lines, and the other is bounded by two cubic Bézier curves, clipping away the domain that does
not contain the intersections. By selecting the moving control points of the cubic hybrid curves, better cubic poly-
nomial bounds are obtained to make the proposed method more efficient. It was proved that the two strip intervals
have second- and fourth-order convergence rates for transversal intersections. Experimental results show that the
new algorithm is the most efficient among all existing curve/curve intersection approaches.

Keywords:  Bézier curve, Curve intersection, Hybrid clipping

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Given an interval [α, β] ⊂ ℝ, a Bézier curve P(t), t ∈ [α, β]
is defined as

where Bn
i,[α,β](t) =

n
i

(t−α)i(β−t)n−i

(β−α)n
, i = 0, 1, . . . , n are

Bernstein polynomials in [α, β], and {Pi}
n
i=0 are the con-

trol points [1]. Given two Bézier curves P(t), t ∈ [α, β] and
Q(s), s ∈ [ξ, η], the problem considered in the present
study is how to compute all (t∗, s∗), t∗ ∈ [α, β], s∗ ∈ [ξ, η]
such that P(t∗) = Q(s∗). Various methods have been devel-
oped to solve this task, such as a subdivision-based
approach [2], binary subdivision approach [3], impliciti-
zation [4] and Bézier clipping [5].

The most common approach consists of clipping
away the regions of the curves that are guaranteed to
not intersect. Each intersection parameter pair (s∗, t∗) is
replaced with an interval that is iteratively computed. The

(1)P(t) =

n
∑

i=0

PiB
n
i,[α,β](t)

k-th iteration interval is denoted as [αk, βk] × [ξk, ηk]. Let
hk = βk − αk and dk = ηk − ξk. If a constant γi exists such that

where Ci are constants independent of k and the curves,
and thus γi is the convergence rate of the sequence inter-
vals {[αk, βk]}k and {[ξk, ηk]}k. The key problem is to find an
algorithm for which γi is as large as possible with as few
computations as possible during each iteration.

The above problem plays an important role in many
engineering fields, such as computer-aided design and
manufacturing (CAD/CAM), collision detection, and
geometric modeling [1], and is a basic operation in solid
modeling. In geometric processing, the intersections and
intersection curves in a solid model are extremely impor-
tant for the visualization, analysis, and manufacturing of
the model [6]. With the continuous development of com-
puter-aided geometric design and CAD/CAM, as well as
the continuous progress made in science and technology,
the numbers of calculations and data to be processed
for intersection problems are increasing. It is therefore
important to develop efficient and stable methods for
dealing with intersection problems.

To solve such problems, the Bézier clipping algo-
rithm introduced in ref. [5] is a widely used, fast, and

(2)hk+1 ≤ C1h
γ1
k + C2d

γ2
k , dk+1 ≤ C3h

γ3
k + C4d

γ4
k

Open Access

Visual Computing for Industry,
Biomedicine, and Art

*Correspondence: lixustc@ustc.edu.cn

School of Mathematical Science, University of Science and Technology
of China, Hefei 200026, Anhui, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-022-00114-3&domain=pdf

Page 2 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17

robust method. The Bézier clipping algorithm was
proven to have a second-order convergence rate [7].
Subsequently, several different approaches have been
proposed to improve the Bézier clipping algorithm.
Bartoň and Jüttler [8] and Liu et al. [9] developed quad-
ratic and cubic clipping techniques based on a degree
reduction to compute all roots of a univariate polyno-
mial equation. Lou and Liu [10] extended the approach
in ref. [9] to curve/curve intersection problems and
proved that the algorithm achieves at least a second-
order convergence rate. In addition, North [11] devel-
oped a geometry interval clipping algorithm based on
quadratic hybrid curves [12] for use with curve/curve
intersection problems, Liu and Li [13] proved that
the algorithm achieves a quadratic convergence rate.
Moreover, Yuan [14] recently developed a cubic hybrid
clipping (HybClip) based on hybrid curves to compute
all roots of a univariate polynomial equation with a
numerically verified fourth-order convergence rate.

In this study, the approach in ref. [14] is extended to
handle curve/curve intersection problems. Unlike the
approach in ref. [14], a better bound is chosen for cubic
HybClip, and thus the algorithm requires 8% less time
than a method that directly uses the cubic hybrid curve
[14]. In addition, it is proved that the two sequences in the
new clipping algorithm have second- and fourth-order
convergence rates. Subsequently, a complete compari-
son is provided with all existing curve/curve intersection
algorithms based on subdivisions on a random 40,000
curve/curve intersection database. The new algorithm
requires 30% less time than the geometry interval clipping
algorithm [11] and 60% less time than the cubic clipping
algorithm [10].

The remainder of this paper is organized as follows. In
Methods section, the cubic hybrid curves are presented
with two moving control points, and the details of the
curve/curve intersection algorithms are described when
applied in both 2D and 3D. In Results section, a proof of
the convergence rate of the new intersection algorithm
is provided, and the six techniques are compared from
various perspectives. Finally, some concluding remarks
are provided in Conclusions section and areas of future
work are discussed in Discussion section.

Methods
Hybrid curve
A hybrid curve refers to a curve with at least one moving
control point, which is itself a parametric curve and shares
one parameter with the hybrid. Sederberg and Kakimoto
[12] originated the idea of using hybrid polynomial Bézier
curves to approximate rational Bézier curves. Later, North
[11] transformed all polynomial Bézier curves of degree
d ≥ 2 into equivalent quadratic hybrid curves with a single
moving control point and fixed endpoints. As an illustra-
tion, a simple quadratic hybrid curve was constructed with
a single moving control point, equivalent to a cubic Bézier
curve, as shown in Fig. 1.

To evaluate a point on a hybrid curve, the locations
of all moving control points are first determined at
the given parameter value t. Once the moving con-
trol points are determined, the hybrid curve can be

(3)
�(t) = �

0(1 − t)
3 + 3�

1(1 − t)
2
t + 3�

2(1 − t)t2 + �
3
t3

= �0B
2

0
(t) +

(

3�1−�0

2
(1 − t) +

3�2−�3

2
t

)

B
2

1
(t) + �3B

2

2
(t)

Fig. 1  A cubic Bézier curve expressed as a quadratic hybrid curve

Page 3 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17 	

evaluated as a common curve. For example, to evaluate
P̂(t) at t = 0.5, P̂1(0.5) is first evaluated and the result-
ing point is then used to evaluate P̂(0.5) , as shown in
Fig. 1.

Using the same principles as in ref. [11], by prop-
erly selecting the moving control points, the hybrid
curve can produce any traditional Bézier curve. In
this study, a hybrid curve having the following form
is focused on:

Theorem 1. Given a degree n ≥ 3 Bézier curve P(t) with
control points {Pi}

n
i=0, there exists an equivalent cubic

hybrid curve P̂(t) with two fixed control
points P̂0 = P0, P̂3 = Pn and two moving control
points P̂1(t), P̂2(t). The two moving control
points P̂1(t), P̂2(t) are Bézier curves of degree n − 3 with
control points

{

P̂1,i−1

}n−2

i=1
 and

{

P̂2,i−2

}n−1

i=2
, respectively,

where

ai =  − (n − i)(n − i − 1)(n − i − 2), bi = n(n − 1)(n − 2),
ci =  − i(i − 1)(i − 2), and i ∈ {1, …, n − 1}.

Proof. The degree n × m tensor product Bézier surface
patch [1] is defined as

where Bn
i (s)B

m
j (t), 0 ≤ s, t ≤ 1 is the product of the two

Bernstein bases in [0, 1], and Qi, j, i = 0, …, n; j = 0, …, m
are the control points of Q(s, t).

From ref. [15], a degree m + d Bézier curve P(t)
with control points Pi can be described as the diago-
nal curve P(t) = Q(t, t) of a degree m × d Bézier surface
Q(s, t), i.e.,

If m = 3, then j ∈ {0, 1, 2, 3} and (j, k) ∈ {(0, i), (1, i − 1), (2, 
i − 2), (3, i − 3)}. Expanding the summation and rearrang-
ing the terms, the following is obtained:

If the control points Pi of degree n = d + 3 diagonal
curve P(t) are known, Q0, i = P0 and Q3, i − 3 = Pn can be
set. Thus,

(4)

n− i − 1

n− 2
P̂1,i−1 +

i − 1

n− 2
P̂2,i−2 =

aiP0 + biPi + ciPn

ai + bi + ci

(5)Q(s, t) =

n
∑

i=0

m
∑

j=0

Qi,jB
n
i (s)B

m
j (t)

(6)Pi =
1

(

m+d
i

)

∑

j+k=i

(

m

j

)(

d

k

)

Qj,k

(7)

(

d+3
i

)

Pi =
(

3
0

)(

d
i

)

Q0,i +
(

3
1

)(

d
i−1

)

Q1,i−1

+
(

3
2

)(

d
i−2

)

Q2,i−2 +
(

3
3

)(

d
i−3

)

Q3,i−3

Simplifying the above formulas, the following is
achieved:

for i ∈ {1, …, n − 1}. Setting ai =  − (n − i)(n − i − 1)
(n − i − 2), bi = n(n − 1)(n − 2), ci =  − i(i − 1)(i − 2), and
observing that ai + bi + ci = 3i(n − i)(n − 2), the following
occur:

Because Q0, i = P0 and Q3, i − 3 = Pn, the s = t diagonal curve
of Q(s, t) can be evaluated using the following formula:

where P̂1(t) and P̂2(t) are the degree n − 3 Bézier curves
comprising the control points P̂1,i−1 and P̂2,i−2 , respec-
tively, where

This is a cubic hybrid curve with two moving control
points P̂1(t), P̂2(t) , and fixed control points P0, Pn.

From Theorem 1, if i = 1 or i = n − 1, the first control
point of P̂1(t) and the last control point of P̂2(t) are fixed
as follows:

Theorem 1 indicates that the two moving con-
trol points are relevant, for which three cases are
discussed:

Case 1
If the first moving control point is a fixed point
denoted by Q̂1 and the second moving control point is
denoted by Q̂2(t) , then the control points

{

Q̂2,i

}n−3

i=0
 of

Q̂2(t) can be calculated from Eq. (4), as indicated by
Yuan [14]:

Case 2
If the second moving control point is a fixed point
denoted by R̂2 and the first moving control point is

(8)

(

n

i

)

�
i
=

(

n−3

i

)

�
0
+ 3

(

n−3

i−1

)

�
1,i−1 + 3

(

n−3

i−2

)

�
2,i−2 +

(

n−3

i−3

)

�
n

(

n−3

i−1

)

�
1,i−1 +

(

n−3

i−2

)

�
2,i−2 =

1

3

[(

n

i

)

�
i
−

(

n−3

i

)

�
0
−

(

n−3

i−3

)

�
n

]

(9)

n−i−1
n−2

Q1,i−1 +
i−1
n−2

Q2,i−2 =
(i−n)(n−i−1)(n−i−2)

3i(n−i)(n−2)
P0 +

n(n−1)(n−2)
3i(n−i)(n−2)

Pi +
−i(i−1)(i−2)
3i(n−i)(n−2)

Pn

(10)

n− i − 1

n− 2
Q1,i−1 +

i − 1

n− 2
Q2,i−2 =

aiP0 + biPi + ciPn

ai + bi + ci

(11)�(t, t) = (1 − t)
3
�0 + 3(1 − t)

2
t�̂1(t) + 3(1 − t)t2�̂2(t) + t

3
�n

(12)
�̂1,i−1 = �1,i−1, i = 1,… , n − 2 and �̂2,i−2 = �2,i−2, i = 2,… , n − 1

(13)�̂1,0 =
(3 − n)�0 + n�1

3
and �̂2,n−3 =

(3 − n)�n
+ n�

n−1

3

(14)
Q̂(t) = P0B

3
0(t)+ Q̂1B

3
1(t)+ Q̂2(t)B

3
2(t)+ PnB

3
3(t)

Page 4 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17

denoted by R̂1(t) , the control points
{

R̂1,i

}n−3

i=0
 of R̂1(t)

can be obtained from Eq. (4), i.e.,

Case 3
In general, P̂1(t) and P̂2(t) are moving to control points.
Because they are equivalent to P(t),

Hence, λ ∈ [0, 1] exists such that

Through a simple approach,

and obtain

where i ∈ {0, …, n − 3}; in addition, Q̂1, Q̂2,i and R̂1,i, R̂2 are
known from the two cases above, and based on Eqs. (4)
and (13), the two moving control points depend on the
value of λ.

Curve/curve intersection based on cubic HybClip
Given two Bézier curves P(t), t ∈ [α, β] and Q(s), s ∈ [ξ, η],
in this section, a cubic hybrid clipping algorithm is pro-
posed for computing all intersections.

(15)
R̂(t) = P0B

3
0(t)+ R̂1(t)B

3
1(t)+ R̂2B

3
2(t)+ PnB

3
3(t)

(16)
�(t) = �̂(t) = �0B

3

0
(t) + �̂1B

3

1
(t) + �̂2(t)B

3

2
(t) + �nB

3

3
(t)

= �̂(t) = �0B
3

0
(t) + �̂1(t)B

3

1
(t) + �̂2B

3

2
(t) + �nB

3

3
(t)

= �̂(t) = �0B
3

0
(t) + �̂1(t)B

3

1
(t) + �̂2(t)B

3

2
(t) + �nB

3

3
(t)

(17)(1− �)Q̂(t)+ �R̂(t) = P̂(t)

(18)(1 − 𝜆)�̂1 + 𝜆�̂1(t) = �̂1(t) and (1 − 𝜆)�̂2(t) + 𝜆�̂2 = �̂2(t)

(19)
P̂1,i = (1− �)Q̂1 + �R̂1,i and P̂2,i = (1− �)Q̂2,i + �R̂2

2D curve/curve intersection
The algorithm for two planar Bézier curves is first dis-
cussed. This algorithm is presented in Algorithm 1, and
illustrated in Fig. 2.

In each step, one curve is bounded by two lines, called fat
lines, which were first introduced in ref. [5]. Let L be a line
passing through P0 and Pn of a degree n Bézier curve, P(t),
and suppose L has an implicit equation:

Fig. 2  Intersection of cubic strip [m, M] of P and fat line LQ of Q 

Page 5 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17 	

The fat line of P is defined as a region

where [dmin, dmax] = [min0 ≤ i ≤ nd(Pi), max0 ≤ i ≤ nd(Pi)], and
d(Pi) = axi + byi + c, Pi = (xi, yi).

The steps of Algorithm 1 are described in more detail in
the following:

(1)	 In line 1, if the intervals are within the specified level
of accuracy, the parameter intervals corresponding to
the intersection in line 21 can be directly obtained.

(2)	 In line 2, the curve with a larger priority parameter
interval is always clipped.

(3)	 In line 5, d̂(t) is a cubic hybrid polynomial in the
Bernstein basis,

where

(4)	In line 6, to obtain the cubic lower and upper bounds,
defining

[

d̂
1

]

,

[

d̂
2

]

 as the intervals containing the coeffi-

cients d
(

�̂1,j

)

 and d
(

P̂2,j

)

 of d̂1(t), d̂2(t) , respectively,
d̂(t) is bound using an interval Bernstein polynomial
[16]:

The lower and upper bounds of
[

d̂
]

(t) are defined
through cubic polynomials in a simple manner:

Hence, d̂min(t) ≤ d̂(t) ≤ d̂max(t) . To obtain a tighter
bound

[

d̂
]

(t) , the following optimization function is used:

where d̂i,j = d
(

P̂i,j

)

, i = 1, 2 , and j ∈ {0, 1, …, n − 3}. In Eq.
(22), if the second moving point of d̂(t) is a fixed point

(20)d
(

x, y
)

= ax + by+ c = 0,

(

a2 + b2 = 1

)

(21)LP =
{(

x, y
)

|d
(

x, y
)

∈ [dmin, dmax]
}

(22)d̂(t) = d

(

�̂(t)

)

= (1 − t)
3
d̂0 + 3t(1 − t)

2
d̂1(t) + 3t

2(1 − t)d̂2(t) + t
3
d̂3

i = 0, 3, d̂i = d
(

P̂i

)

i = 1, 2, d̂i(t) = d
(

P̂i(t)
)

=
∑n−3

j=0 d
(

P̂i,j

)

Bn−3
j (t)

(23)

[

d̂
]

(t) = B3
0
(t)d̂0 + B3

1
(t)

[

d̂1

]

+ B3
2
(t)

[

d̂2

]

+ B3
3
(t)d̂3

[

d̂i

]

=

[

d̂i,min, d̂i,max

]

=

[

min
0≤j≤n−3

d
(

�̂i,j

)

, max
0≤j≤n−3

d
(

�̂i,j

)

]

(24)
d̂min(t) = B

3
0
(t)d̂0 + B

3
1
(t)d̂1,min + B

3
2
(t)d̂2,min + B

3
3
(t)d̂3

d̂max(t) = B
3
0
(t)d̂0 + B

3
1
(t)d̂1,max + B

3
2
(t)d̂2,max + B

3
3
(t)d̂3

(25)

min

{

d̂max(t) − d̂min(t)
}

= min

{

d̂1,max − d̂1,min + d̂2,max − d̂2,min

}

= min

{

max
j

(

d̂1,j

)

−min
j

(

d̂1,j

)

+max
j

(

d2,j
)

−min
j

(

d2,j
)

}

denoted by q̂
2
 , and the first moving point is denoted by

q̂
1
(t) , the following is obtained:

If the first moving point of d̂(t) is a fixed point denoted
by r̂1 , and the second moving point is denoted by r̂2(t) ,
the following is obtained:

There exists λ ∈ [0, 1] such that

From Eqs. (19) and (25), the problem becomes linear, i.e.,

where j ∈ {0, 1, …, n − 3}. Let = maxj
(

q̂1,j
)

−minj
(

q̂1,j
)

and

b = maxj
(

r̂2,j
)

−minj
(

r̂2,j
)

 . If a ≥ b, λ = 1 is set in Eq.
(28). Otherwise, λ = 0. The tighter cubic bounds of d̂(t)
can then be obtained using Eqs. (23) and (24).

(5)	In lines 7–10, the intervals of t for which P(t) lies out-
side of LQ correspond to regions where
[

d̂
]

(t) ∩ [dmin, dmax] = ∅ , as shown in Fig. 3. The
values t ∈ [0, 1], for which d̂min(t) and d̂max(t) cross
dmin and dmax, correspond to the roots of

Because d̂min(t) and d̂max(t) are cubic polynomials, these
roots can be solved directly using the cubic formula.

(26)q̂(t) = B3

0
(t)d̂0 + B3

1
(t)q̂1(t) + B3

2
(t)q̂2 + B3

3
(t)d̂3

(27)r̂(t) = B
3

0
(t)d̂0 + B

3

1
(t)r̂1 + B

3

2
(t)r̂2(t) + B

3

3
(t)d̂3

(28)(1− �)q̂(t)+ �r̂(t) = d̂(t)

(29)
min

{

d̂max(t) − d̂min(t)
}

= (1 − 𝜆)

(

max
j

(

q̂1,j
)

−min
j

(

q̂1,j
)

)

+ 𝜆

(

max
j

(

r̂2,j
)

−min
j

(

r̂2,j
)

)

(30)d̂min(t) = dmin, d̂min(t) = dmax

d̂max(t) = dmin, d̂max(t) = dmax

Fig. 3  Clipping computed from
[

d̂

]

(t) ∩
[

dmin , dmax

]

= ∅

Page 6 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17

(6)	In line 7, if the intersection is empty, no intersec-
tion exists between the two curves. In line 11, if
the lengths of these intervals are sufficiently small
compared to the previous intervals [α, β], Hybrid-
Clip is applied to line 14. Otherwise, the curve
is subdivided into two subsegments and applies
HybridClip to the two halves (line 12).

3D curve/curve intersection
The above algorithm can be naturally generalized to
handle 3D Bézier curve/curve intersection problems. In
the 3D case, “fat lines” in 2D are replaced with several
bounding planes, which are called “fat planes.”

Plane L passes through the end control points P0 and
Pn of a degree n Bézier curve, P(t). Because a plane con-
sists of three points that are not collinear, an arbitrary
control point is simply chosen that is not on the endpoint
line. Here, L is represented using the implicit equation

The fat plane containing curve P(t) and its control
points are defined as

where [dmin, dmax] = [min0 ≤ i ≤ nd(Pi), max0 ≤ i ≤ nd(Pi)], and
d(Pi) = axi + byi + czi + e, Pi = (xi, yi, zi). The distance from
one curve in a cubic hybrid form is then bound to the fat
plane using two cubic polynomials and a strip domain
containing the intersections is computed, which is simi-
lar to Algorithm 1 described in 2D curve/curve intersec-
tion section.

Results
Proof for the convergence rate
Although Yuan’s method [14] is based on cubic Hyb-
Clip, it is mainly used to solve univariate polynomial root
problems. However, a theoretical convergence rate or
proof is not provided.

In this section, the theoretical results are provided on
the convergence rate of the new curve/curve intersection
algorithm. This begins with two technical lemmas:

Lemma 1. For any given polynomial P, there exists two
constants CP and DP depending solely on P, such that for
all intervals [α, β] ⊆ [0, 1] the lower bound m and the
upper bound M generated in line 6 of Algorithm 1 satisfy

where .
Proof. According to Eqs. (22) and (24), P(α) = m(α),

P(β) = m(β), and P(t) ≥ m(t), ∀ t ∈ [α, β], and thus

(31)d
(

x, y, z
)

= ax + by + cz + e = 0,
(

a2 + b2 + c2 = 1
)

(32)LP =
{(

x, y, z
)

|d
(

x, y, z
)

∈ [dmin, dmax]
}

(33)�min =∥ P −m∥
[�,�]

∞
≤ CPh

4 and �max =∥ P −M∥
[�,�]

∞
≤ DPh

4

where P1(t) is a continuous function of degree n − 2, and
m1(t) is a linear function. Let g(t) = b0(β − t) + b1(t − α) be
a line passing through the lowest control point and paral-
lel to the line connecting the end points of P1(t), such that
P1(t) − g(t) ≥ 0, ∀ t ∈ [α, β], and thus

where the constant C depends solely on P.

where {ci}n−2
i=0 are the control points of g after the degree

elevation [1],
P2(t) =

∑n−3
i=0 (ai − ci)

(

n−2
i

)

(β − t)i−1(t − α)n−2−i ≥ 0 ,
and P3(t) = (an − 2 − cn − 2)(t − α)n − 3 ≥ 0.

Let t1, t2 be the minimum values of P2(t), P3(t) in [α, β],
respectively, i.e.,

where s1, s2 ∈ [α, β]. Hence,

From Eqs. (34), (35), and (38),

Similarly, |M(t) − P(t)| < DPh4.
Lemma 2. For any given polynomial P, there exist con-

stantsCP
i ,D

P
i , with i = 0, 1, 2, 3depending solely on P, such

that for all intervals [α, β] ⊆ [0, 1] the lower bound m and
upper bound M generated in line 6 of Algorithm 1 for
∀i ∈ {0, 1, 2, 3} satisfy

whereh = β − α, � r�
[α,β]
∞ = maxt∈[α,β]|r(t)|.

Proof A new norm in [α, β] is introduced as

According to the equivalence of norms in a finite-dimen-
sional real linear space, there exists a constant C such that

where the constant C does not depend on the intervals
[α, β], again owing to the affine invariance. Using argu-
ments similar to those in the previous proof, let r = P − m,

(34)P(t) −m(t) = (t − �)(� − t)
(

P
1
(t) −m

1
(t)

)

≥ 0

(35)P1(t)−m1(t) ≤ C
(

P1(t)− g(t)
)

(36)
P1(t) − g(t) =

n−2
∑

i=0

aiB
n−2
i,[�,�]

(t) −
1
∑

i=0

biB
1

i,[�,�]
(t)

=
n−2
∑

i=0

�

ai − ci
�

Bn−2
i,[�,�]

(t), ai ≥ ci ,∀i

= (� − t)P2(t) + (t − �)P3(t)

,

(37)

∀t ∈ [�, �] ∶ P2(t) ≤ C1

(

P2(t) − P2

(

t1

))

= C1P2
�
(

s1

)(

t − t1

)

≤ C3(� − �)

and P3(t) ≤ C2

(

P3(t) − P3

(

t2

))

= C2P3
�
(

s2

)(

t − t2

)

≤ C4(� − �)

(38)P1(t) − g(t) ≤ C3(� − t)(� − �) + C4(t − �)(� − �) ≤ C5(� − �)
2

(39)
|P(t) −m(t)| ≤ C(t − �)(� − t)

(

P
1
(t) − g(t)

)

≤ C(t − �)(� − t)C5(� − �)
2
≤ CP (� − �)

4 = CPh
4

(40)∥ P
(i) −m

(i)∥
[�,�]

∞
≤ C

P

i
h
(4−i) and ∥ P

(i) −M
(i)∥

[�,�]

∞
≤ D

P

i
h
(4−i)

(41)∥ r∥
[�,�]

∗
=∥ r∥

[�,�]

∞
+ h ∥ r

�∥[�,�]
∞ + h

2 ∥ r
��∥[�,�]

∞ + h
3 ∥ r

(3)∥
[�,�]

∞

(42)� r�[α,β]∗ ≤ C � r�[α,β]∞

Page 7 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17 	

Similarly, � P −M�
[α,β]
∗ ≤ C � P −M�

[α,β]
∞ ≤ DPh

4.
From the above lemmas, the convergence rate can be

analyzed using the HybClip algorithm. In Algorithm 1, if
Q = 0, the curve/curve intersection problem P(t) = Q(s)
becomes a root-finding problem P(t) = 0; that is, the cubic
HybClip technique may be used to compute the roots of
the polynomials and intersections of the two curves. These
two cases are discussed separately.

Theorem 2. (Single root) If polynomial P has a root t∗in
[α, β], and provided that this root has multiplicity 1, the
sequence of the lengths of the intervals generated through
cubic HybClip containing that root has the convergence
rate d = 4.

Proof. Suppose that ([αi, βi])i = 0, 1, 2, …, which converges
to t∗, is a sequence of intervals generated by Algorithm 1,
with lengths hi = βi − αi. It is assumed that the first deriv-
ative satisfies P′(t∗) > 0 (otherwise, the polynomial −P can
be considered instead of P).

Two cubic Bernstein polynomials m and M can be
obtained as the lower and upper bounds of P in [αi, βi]
based on line 6 of Algorithm 1. Because P′ is continuous,
and owing to Lemma 2, the following inequalities

hold for all but a finite number of values of i. These three
inequalities above imply that

and hence

From Lemma 1, the vertical height δ = δmin + δmax of
m and M is bounded by CPh

4
i  . Thus, the length hi of the

intervals satisfies

for all but a finite number of values of i (Fig. 4).
For other clipping techniques [8, 9], multiple roots

reduce the convergence rate. The convergence rate of
cubic HybClip is now discussed in the case of double
roots, as illustrated in Fig. 5.

Theorem 3. (Double root) If the polynomial P has a root
t∗in [α, β], and provided that this root has multiplicity 2,

(43)

∥ P −m∥
[�,�]

∗

=∥ P −m∥
[�,�]

∞
+ h ∥ P� −m�∥

[�,�]

∞
+ h2 ∥ P�� −m��∥

[�,�]

∞
+ h3 ∥ P(3) −m(3)∥

[�,�]

∞

≤ C ∥ P −m∥
[�,�]

∞
≤ C

P
h4

(44)
∥ P� − P�(t∗)∥

[�i ,�i]
∞ ≤

1

4
P�(t∗) and ∥ m� − P�(t)∥

[�i ,�i]
∞ ≤

1

4
P�(t∗)

∥ M� − P�(t)∥
[�i ,�i]
∞ ≤

1

4
P�(t∗)

(45)

∥ m� − P�(t∗)∥
[�i ,�i]
∞ ≤∥ P� − P�(t∗)∥

[�i ,�i]
∞ + ∥ m� − P�∥

[�i ,�i]
∞ ≤

1

2
P�(t∗)

∥ M� − P�(t∗)∥
[�i ,�i]
∞ ≤∥ P� − P�(t∗)∥

[�i ,�i]
∞ + ∥ M� − P�∥

[�i ,�i]
∞ ≤

1

2
P�(t∗)

(46)∀t ∈ [αi,βi] : m
′(t) ≥

1

2
P′(t∗),M′(t) ≥

1

2
P′(t∗)

(47)hi+1 ≤
2δ

P′(t∗)
≤

2CP

P′(t∗)
h4i

the sequence of the lengths of the intervals generated by
cubic HybClip containing that root has the convergence
rate d = 2.

Proof Similar to the proof of the previous theorem,
the sequence of intervals ([αi, βi])i = 0, 1, 2, … is analyzed
with lengths hi = βi − αi generated by Algorithm 1, which
contains the double root. It is assumed that the second
derivative satisfies P″ > 0. Otherwise, polynomial −P can
be considered instead of P.

Again, two cubic Bernstein polynomials m and M can
be obtained as the lower and upper bounds of P in [αi, βi].
Because P″ is continuous, and based on Lemma 2, the
inequalities

hold for all but a finite number of values of i. These two
inequalities imply that

and thus m′′(t) ≥ 1
2
P′′(t∗), ∀t ∈ [αi,βi] . Letting τ = t − t∗,

and based on

∣

∣b2
∣

∣ = 1
2
m′′(t∗) ≥ 1

4
P′′(t∗) > 0 . From Lemmas 1 and 2,

Letting t1, t2 be the roots of m, t∗ ∈ [t1, t2], and
τ2 = t2 − t∗ > 0, τ1 = t1 − t∗ < 0, the following is obtained:

(48)∥ P
�� − P

��(t∗)∥
[�i ,�i]
∞ ≤

1

4
P
��(t∗) and ∥ m

�� − P
��(t)∥

[�i ,�i]
∞ ≤

1

4
P
��(t∗)

(49)∥ m
�� − P

��(t∗)∥
[�i ,�i]
∞ ≤∥ P

�� − P
��(t∗)∥

[�i ,�i]
∞ + ∥ m

�� − P
��∥

[�i ,�i]
∞ ≤

1

2
P
��(t∗)

(50)
↼

m(�) = m(t) = b
3
�
3 + b

2
�
2 + b

1
� + b

0
, b

i
=

1

i!
m

(i)(t∗)

(51)

|

|

b
0
|

|

= |m(t∗)| = |m(t∗) − P(t∗)| ≤ C
0P
h
4

i

|

|

b1
|

|

= |m�(t∗)| = |m�(t∗) − P�(t∗)| ≤ C1Ph
3

i

|

|

b
3
|

|

=
|

|

|

1

6
m(3)(t∗)

|

|

|

≤
1

6

|

|

P(3)(t∗)|
|

+
1

6

|

|

m(3)(t∗) − P(3)(t∗)|
|

≤
1

6

|

|

P(3)(t∗)|
|

+
1

6
C
3P
h
i
∶= D

3P

Fig. 4  Illustration of Theorem 2

Page 8 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17

Because τ1 ≤ hi and hi → 0, D3P|τ1| → 0,

for a sufficiently large i. Therefore,
D2Ph

4
i ≥ 1

2

∣

∣b2
∣

∣

∣

∣τ 21

∣

∣ ≥ 1
8
P′′(t∗)

∣

∣τ 21

∣

∣ , and hence

Similarly, the following bound for t2 is obtained:

Because τ1 < 0, τ2 > 0,

Hence, the sequence (hi)i = 0, 1, 2, … has a convergence
rate of 2.

From Theorems 2 and 3, it can be seen that the new
algorithm has a higher convergence rate compared with
geometry interval clipping [11] and quadratic clipping
[8] when computing all roots of a univariate polynomial
equation. The following theorem provides the conver-
gence rate for the curve/curve intersection problems.

Theorem 4. Suppose f(t), g(s) have a transversal inter-
section (f′(t∗) × g′(s∗) ≠ 0) at p∗ = f(t∗) = g(s∗). Further-
more, supposing that [αi, βi]i = 0, 1, 2, …is the sequence of
generated intervals that contain t∗, and [ξi, ηi]i = 0, 1, 2,

…is the corresponding sequence of generated intervals

(52)
|

|

|

b
2
�
2

1

|

|

|

≤
|

|

|

b3�
3

1

|

|

|

+ |

|

b1�1
|

|

+ |

|

b
0
|

|

≤ �
2

1
· D

3P
|

|

�
1
|

|

+ C
1P
h
4

i
+ C

0P
h
4

i
∶= �

2

1
· D

3P
|

|

�
1
|

|

+ D
2P
h
4

i

(53)
∣

∣

∣
b2τ

2
1

∣

∣

∣
≤

1

2

∣

∣b2
∣

∣

∣

∣

∣
τ 21

∣

∣

∣
+ D2Ph

4
i

(54)τ1 ≤

(

8D2P

P′′(t∗)

)
1
2

h2i

(55)τ2 ≤

(

8D′2P

P′′(t∗)

)
1
2

h2i

(56)h
i+1 =

|

|

t
2
− t

1
|

|

= �
2
− �

1
≤

(

(

8D
2P

P��(t∗)

)
1

2

−

(

8D�2P

P��(t∗)

)
1

2

)

h
2

i

that contain s∗, there then exist constants C1, C2, C3,
C4 depending solely on f and g, such that

Proof From line 11 of Algorithm 1, it can be seen that
the length of intervals [ξi, ηi] tends toward zero as i
tends toward infinity, that is, the interval [ξi, ηi] tends
toward s∗.

Let Lg be the line or plane that passes through the end-
points b0, bm of g in [ξi, ηi]. Denote n as the unit normal
vector of Lg . Then, the distance function from f(t) to Lg is
defined as

Denote T∗
f as the tangent line of f at t∗. Let φ ∈

[

0, π
2

]

 be
the angle between T∗

f and Lg , and θ ∈
[

0, π
2

]

 be the angles
between T∗

f and b0bm. As hi, g = [ξi, ηi] tends toward 0, the
line or plane Lg converges at b0bm, and angle φ converges
at θ. Thus, for a sufficiently small hi, g, φ > θ

2
> 0 , and

thus 0 < sin
(

θ
2

)

< sin (φ) ≤ 1.
The angle ρ between f′(t∗) and n is either ρ = π

2
+ φ

or ρ = π
2
− φ . Using this, the derivative of the distance

function can be bound at the intersection as

Because d′(t∗) ≠ 0, and for convenience, w = d′(t∗) > 0
is denoted (otherwise, the vector −n can be considered
instead of n).

Because d′(t) is continuous, the inequality

holds for all but a finite number of values of i. Hence,

From line 6 of Algorithm 1, the cubic polynomial
bound [dm(t), dM(t)] of the distance function d(t) can be
obtained. Based on Lemma 2,

and by Eq. (61), the following is obtained:

From Fig. 6, the bound for hi + 1, f is obtained as

(57)h
i+1,� ≤ C1h

4
i,�
+ C2h

2
i,�

and h
i+1,� ≤ C3h

4
i,�

+ C4h
4
i,�

(58)d(t) = n· (f(t)− b0)

(59)|

|

d
�(t∗)|

|

= |

|

� · � �(t∗)|
|

=∥ �
�(t∗) ∥

|

|

|

|

cos

(

𝜋

2
± 𝜙

)

|

|

|

|

=∥ �
�(t∗) ∥ sin (𝜙) > 0

(60)� d′ − d′(t
∗)�

[αi ,βi]
∞ <

w

2

(61)∀t ∈ [αi,βi], d
′(t) >

w

2

(62)∥ d
� − d�m∥

[�i ,�i]
∞ ≤

w

4
and ∥ d

�(t) − d�M (t)∥
[�i ,�i]
∞ ≤

w

4

(63)d′m(t) ≥
w

4
and d′M(t) ≥

w

4

(64)
hi+1,f = βi+1 − αi+1 ≤ l1 + l2 + l3
l1 + l3 =

dmax−dmin

w/4

Fig. 5  Illustration of Theorem 3

Page 9 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17 	

Based on Lemma 1, the vertical heights δi of dm and dM
are bounded as follows:

Let t1 and t2 be the roots of dm and dM respectively.
From Eq. (63),

From Eq. (64), the above inequality implies that

This thus implies the first inequality in Eq. (57) from
dmax − dmin < h2i,gCg (see the proof of Theorem 6 in ref.
[7]). Similarly, in the next iteration step, the following is
obtained:

(65)�
i
=∥ d

M
− d

m
∥
[�i ,�i]
∞ ≤∥ d

M
− d∥

[�i ,�i]
∞ + ∥ d − d

m
∥
[�i ,�i]
∞ ≤ C

�
h
4

i

(66)l2 = |t1 − t2| <
δi

w/4
=

Cfh
4
i

w/4

(67)hi+1,f <
dmax − dmin

w/4
+

Cfh
4
i

w/4

where C′f is solely dependent on f, and C′g is solely
dependent on g. Based on the first inequality of Eq. (57),
the following is obtained:

which implies the second inequality.
Note that the property of w being nonzero is key

to binding l1 and l3. Therefore, a transversal intersec-
tion is required in the proof. From Theorem 4, the two
sequences {[αi, βi]}i and {[ξi, ηi]}i of the new intersection
algorithm have second- and fourth-order convergence
rates, respectively, and the 3D curve intersection prob-
lem yields the same results.

Experimental results
In this section, all six algorithms are compared based on
three criteria: the amount of time per iteration step, the
number of iterations, and the computing time required
to achieve a certain accuracy. All algorithms were imple-
mented in C++ on a PC with an 2.60-GHz Intel(R)
Core(TM) i7-9750H CPU and 16.0 GB of RAM. In all
experiments, both curves P(t) and Q(s) have a parameter
domain [0, 1].

For convenience, denote Bézier clipping as BezClip [5];
quadratic clipping and cubic clipping based on a degree
reduction as 2-DegClip [8] and 3-DegClip [10], respec-
tively; geometry interval clipping as 2-HybClip [11];
and cubic HybClip based on hybrid curves in ref. [14]
as 3-HybClip*. In addition, the proposed cubic HybClip
algorithm is denoted as 3-HybClip.

To analyze the relationship between the computational
effort and the desired accuracy, two examples represent-
ing polynomials with transversal and tangent intersec-
tions are discussed. The five algorithms are first applied

(68)hi+1,g ≤ C′gh
4
i,g + C′fh

2
i+1,f

(69)
hi+1,� ≤ C�

�
h
4

i,�
+ C�

�

(

C
�
h
4

i,�
+ C

�
h
2

i,�

)2

≤ C�
�
h
4

i,�
+ C�

�

(

C
2

�
h
8

i,�
+ C2

�
h
4

i,�
+ 2C

�
C
�
h
4

i,�
h
2

i,�

)

≤

(

C�
�
+ C�

�
C2

�

)

h
4

i,�
+

(

C�
�
C

2

�
h
4

i,�
+ 2C�

�
C
�
C
�
h
2

i,�

)

h
4

i,�

Fig. 6  Illustration of Eq. (64)

Table 1  Transversal intersections

Number of iterations [NP, NQ] and computing time t (in microseconds) of accuracy ε. In addition, (n, m) are degrees of P, Q, respectively

(n, m) ε 10−6 10−10

BezClip 2-HybClip 3-HybClip 2-DegClip 3-DegClip BezClip 2-HybClip 3-HybClip 2-DegClip 3-DegClip

(4,4) [NP, NQ] [4,3] [3,3] [3,2] [3,3] [3,2] [16,15] [4,3] [3,3] [4,3] [3,3]

t/μs 125 120 120 150 150 90 90 100 125 130

(8,4) [NP, NQ] [4,3] [3,3] [3,2] [3,3] [3,2] [15,14] [4,3] [3,2] [4,3] [3,3]

t/μs 160 150 150 190 190 100 120 100 140 130

(8,8) [NP, NQ] [4,4] [4,4] [3,3] [3,3] [3,3] [16,16] [5,4] [3,3] [4,4] [3,3]

t/μs 190 180 180 250 250 190 130 140 180 170

Page 10 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17

2 3 4 5
0

0.5

1

1.5 t/ms
BezClip
2-HybClip
3-HybClip
2-DegClip
3-DegClip

2 3 4 5
0

0.5

1

1.5

2 t/ms
BezClip
2-HybClip
3-HybClip
2-DegClip
3-DegClip

2 3 4 5
0.2

0.4

0.6

0.8

1

1.2 t/ms
BezClip
2-HybClip
3-HybClip
2-DegClip
3-DegClip

2 3 4 5
0

2

4

6

8

10 t/ms
BezClip
2-HybClip
3-HybClip
2-DegClip
3-DegClip

2 3 4 5
2

4

6

8

10

12 t/ms
BezClip
2-HybClip
3-HybClip
2-DegClip
3-DegClip

2 3 4 5
2

3

4

5

6

7

8

9

10 t/ms
BezClip
2-HybClip
3-HybClip
2-DegClip
3-DegClip

Fig. 7  Computing time t in milliseconds vs accuracy ε of curve pairs with degrees (4, 4), (8, 4), and (8, 8) from the top to down. a Transversal
intersections; b Tangent intersections

Page 11 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17 	

to three pairs of Bézier curves with a transversal intersec-
tion. Table 1 reports the number of pairs of iterations and
the computing time in microseconds of the desired accu-
racy for computing the transversal intersections between
the three curve pairs with various degrees. Figure 7a
shows the relationship between the computing time and
desired accuracy, and indicates that 3-HybClip based on
cubic hybrid curves is significantly improved in compari-
son with BezClip, 2HybClip, 2-DegClip, and 3-DegClip.

(70)
{

�
4(t) =

(

(t − 1∕2)(t − 3)(t + 1)
2
, (t − 1∕2)(t − 2)(t + 1)

2
)

�4(s) =
(

(s − 1∕2)(s − 2)(s + 2)
2
, (s − 1∕2)(s − 2)

2
(s + 1)

)

(71)
{

�
8(t) =

(

(t − 1∕2)(t − 2)
4
(t + 1∕2)

3
, (t − 1∕2)(t − 2)

4
(t + 1)

3
)

�4(s) =
(

(s − 1∕2)(s − 2)(s + 2)
2
, (s − 1∕2)(s − 2)

2
(s + 1)

)

(72)
{

�
8(t) =

(

(t − 1∕2)(t − 2)
4
(t + 1∕2)

3
, (t − 1∕2)(t − 2)

4
(t + 1)

3
)

�8(s) =
(

(s − 1∕2)(s − 1)
3
(s + 1)

4
, (s − 1∕2)(s − 2)

4
(s + 1)

3
)

The five algorithms are applied to three pairs of
Bézier curves with tangent intersections. Table 2 and
Fig. 7b report the number of pairs of iterations and
the computing time in milliseconds of various desired
accuracies ε for computing the tangent intersections
between the three curve pairs with various degrees.
Experimental results show that the quadratic and cubic
clipping techniques are better than Bézier clipping;
however, compared with quadratic clipping based on
hybrid curves or a degree reduction, the cubic clipping
techniques show no substantial improvements. This
is due to the fact that all clipping algorithms require
a large number of binary subdivisions for tangent
intersections.

(73)
{

P4(t) =
(

2t − 1,−4t4 + 8t3 − 4t + 1.5
)

Q4(s) =
(

2s − 1, 4s4 − 8s3 + 4s − 1
)

(74)
{

�
8(t) =

(

2t − 1,−20t8 + 80t7 − 112t6 + 56t5 − 4t + 1.7031
)

�4(s) =
(

2s − 1, 4s4 − 8s3 + 4s − 1
)

Table 2  Tangent intersections

Number of iterations [NP, NQ] and computing time t (in microseconds) of accuracy ε. In addition, (n, m) are degrees of P, Q, respectively

(n, m) ε 10−6 10−10

BezClip 2-HybClip 3-HybClip 2-DegClip 3-DegClip BezClip 2-HybClip 3-HybClip 2-DegClip 3-DegClip

(4,4) [NP, NQ] [12,10] [6,5] [6,5] [6,6] [5,5] [20,20] [6,6] [6,6] [7,6] [6,5]

t/μs 138 117 93 119 138 164 129 85 124 136

(8,4) [NP, NQ] [20,20] [8,8] [10,10] [6,6] [5,6] [34,34] [9,8] [11,10] [7,6] [5,7]

t/μs 160 175 170 190 200 160 175 185 232 246

(8,8) [NP, NQ] [18,17] [7,7] [10,9] [7,7] [4,6] [32,30] [8,7] [10,10] [8,7] [5,6]

t/μs 170 185 180 226 263 177 157 133 272 282

2 3 4 5
10

20

30

40

50

60

70

80 t/s
BezClip
2-HybClip
3-HybClip
2-DegClip
3-DegClip

2 3 4 5
20

30

40

50

60

70

80 t/s
BezClip
2-HybClip
3-HybClip
2-DegClip
3-DegClip

Fig. 8  Statistical comparisons: Computing time t in seconds vs accuracy ε. a Single intersections; b Multiple intersections

Page 12 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17

Table 3  Relative computing iterations N and computing time t 

ε BezClip 2-HybClip 3-HybClip* 3-HybClip 2-DegClip 3-DegClip

10−6 N 1.36 1.14 1.02 1 1.18 1.02

t 1.85 1.39 1.08 1 1.95 1.71

10−10 N 1.79 1.16 1.03 1 1.18 1.03

t 2.60 1.37 1.09 1 1.88 1.66

To compare these six algorithms numerically, statis-
tics are generated on 40,000 pairs of randomly generated
polynomial curves of degree 4–10 for single and multiple
intersections. Figure 8 shows computing time needed to
achieve the given accuracy of the five algorithms. The rel-
ative computing iterations and computing time for these
tests are listed in Table 3. As shown in Table 3, 3-HybClip
requires 2% fewer iterations and 8% less time than 3-Hyb-
Clip* [14]. In addition, 3-HybClip has 2% fewer comput-
ing iterations than 3-DegClip, and at least 10% fewer
iterations than 2-HybClip and 2-DegClip. With respect to
the computing time, 3-HybClip is at least 60% faster than
3-DegClip and 2-DegClip, and at least 30% faster than
2-HybClip.

Conclusions
In this study, an algorithm called 3-HybClip was
derived for computing all intersections between two
Bézier curves within a given domain. By selecting the
moving control points, better bounds were obtained
than those in ref. [14]. It was proved that the two
sequences of bounded intervals for intersections have
second- and fourth-order convergence rates for trans-
versal intersections. The experimental results show
that the newly proposed 3-HybClip algorithm requires
2% fewer iterations and 8% less time than 3-HybClip*
from ref. [14], 10% fewer iterations than 2-HybClip and
2-DegClip, and at least 30% less time than other tech-
niques such as BezClip, 2-HybClip, 2-DegClip, and
3-DegClip.

Discussion
As discussed in 3D curve/curve intersection section, for
3D curve/curve intersection problems, the “fat planes”
are computed to bound a 3D Bézier curve. The distance
from one curve in a cubic hybrid form to the fat plane is
bound by two cubic polynomials, and a strip domain con-
taining the intersections is then computed. Similarly, in
curve/surface intersection problems, “fat planes” can also
be used to bind a Bézier surface, and then the distance
from the curve to the fat plane is bound by two cubic

(75)
{

�
8(t) =

(

2t − 1,−20t8 + 80t7 − 112t6 + 56t5 − 4t + 1.7031
)

�8(s) =
(

2s − 1, 20s8 − 80s7 + 112s6 − 56s5 + 4s − 1.2031
)

polynomials. Then the intersection of “fat planes” and the
two cubic polynomials is the strip domain containing the
intersections. The details of the algorithm and compari-
sons with previous approaches are left for future work.

Abbreviations
CAD/CAM: Computer-aided design and manufacturing; HybClip: Hybrid
clipping .

Acknowledgements
Not applicable.

Authors’ contributions
XL provided conceptualization, supervision, formal analysis, methodology,
and investigation; YQW provided visualization and validation; and XL and YQW
wrote the paper. The authors have read and approved the final manuscript.

Funding
This work was supported by the National Key R&D Program of China, No.
2020YFB1708900; and Natural Science Foundation of China, No. 61872328.

Availability of data and materials
Code sets and date sets: https://​gitee.​com/​yaqio​ng-​wu/​Curve​Curve​Inter​sect.​
git.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 18 February 2022 Accepted: 5 June 2022

References
	1.	 Farin G (2001) Curves and surfaces for CAGD: a practical guide. Morgan

Kaufmann Publishers Inc., San Francisco.
	2.	 Koparkar PA, Mudur SP (1983) A new class of algorithms for the process-

ing of parametric curves. Comput Aided Des 15(1):41-45. https://​doi.​org/​
10.​1016/​S0010-​4485(83)​80050-5

	3.	 Lane JM, Riesenfeld RF (1980) A theoretical development for the com-
puter generation and display of piecewise polynomial surfaces. IEEE Trans
Pattern Anal Mach Intell PAMI-2(1):35-46. https://​doi.​org/​10.​1109/​TPAMI.​
1980.​47669​68

	4.	 Sederberg TW, Parry SR (1986) Comparison of three curve intersection
algorithms. Comput Aided Des 18(1):58-63. https://​doi.​org/​10.​1016/​
S0010-​4485(86)​80013-6

	5.	 Sederberg TW, Nishita T (1990) Curve intersection using Bézier clipping.
Comput Aided Des 22(9):538-549. https://​doi.​org/​10.​1016/​0010-​4485(90)​
90039-F

	6.	 Patrikalakis NM, Maekawa T (2002) Shape interrogation for computer
aided design and manufacturing. Springer, Berlin Heidelberg.

	7.	 Schulz C (2009) Bézier clipping is quadratically convergent. Comput
Aided Geom Des 26(1):61-74. https://​doi.​org/​10.​1016/j.​cagd.​2007.​12.​006

https://gitee.com/yaqiong-wu/CurveCurveIntersect.git
https://gitee.com/yaqiong-wu/CurveCurveIntersect.git
https://doi.org/10.1016/S0010-4485(83)80050-5
https://doi.org/10.1016/S0010-4485(83)80050-5
https://doi.org/10.1109/TPAMI.1980.4766968
https://doi.org/10.1109/TPAMI.1980.4766968
https://doi.org/10.1016/S0010-4485(86)80013-6
https://doi.org/10.1016/S0010-4485(86)80013-6
https://doi.org/10.1016/0010-4485(90)90039-F
https://doi.org/10.1016/0010-4485(90)90039-F
https://doi.org/10.1016/j.cagd.2007.12.006

Page 13 of 13Wu and Li ﻿Visual Computing for Industry, Biomedicine, and Art (2022) 5:17 	

	8.	 Bartoň M, Jüttler B (2007) Computing roots of polynomials by quadratic
clipping. Comput Aided Geom Des 24(3):125-141. https://​doi.​org/​10.​
1016/j.​cagd.​2007.​01.​003

	9.	 Liu LG, Zhang L, Lin BB, Wang GJ (2009) Fast approach for computing
roots of polynomials using cubic clipping. Comput Aided Geom Des
26(5):547-559. https://​doi.​org/​10.​1016/j.​cagd.​2009.​02.​003

	10.	 Lou Q, Liu LG (2012) Curve intersection using hybrid clipping. Comput
Graph 36(5):309-320. https://​doi.​org/​10.​1016/j.​cag.​2012.​03.​021

	11.	 North NS (2007) Intersection algorithms based on geometric intervals.
Dissertation, Brigham Young University, Utah.

	12.	 Sederberg TW, Kakimoto M (1991) Approximating rational curves using
polynomial curves. Farin G (ed) NURBS for curve and surface design.
SIAM, Philadelphia, 144-158.

	13.	 Liu HX, Li X (2010) Convergence analysis and comparison for geometric
interval clipping. J Comput Aided Des Comput Graph 22(12):2250-2258.

	14.	 Yuan Q (2012) Study on hybrid clipping method for solving polynomial
roots. Dissertation, Zhejiang University.

	15.	 Holliday DJ, Farin GE (1999) A geometric interpretation of the diagonal of
a tensor-product Bézier volume. Comput Aided Geom Des 16(8):837-840.
https://​doi.​org/​10.​1016/​S0167-​8396(99)​00004-7

	16.	 Sederberg TW, Farouki RT (1992) Approximation by interval Bézier curves.
IEEE Comput Graph Appl 12(5):87-95. https://​doi.​org/​10.​1109/​38.​156018

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.cagd.2007.01.003
https://doi.org/10.1016/j.cagd.2007.01.003
https://doi.org/10.1016/j.cagd.2009.02.003
https://doi.org/10.1016/j.cag.2012.03.021
https://doi.org/10.1016/S0167-8396(99)00004-7
https://doi.org/10.1109/38.156018

	Curve intersection based on cubic hybrid clipping
	Abstract
	Introduction
	Methods
	Hybrid curve
	Case 1
	Case 2
	Case 3

	Curvecurve intersection based on cubic HybClip
	2D curvecurve intersection
	3D curvecurve intersection

	Results
	Proof for the convergence rate
	Experimental results

	Conclusions
	Discussion
	Acknowledgements
	References

