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Curve intersection based on cubic hybrid 
clipping
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Abstract 

This study presents a novel approach to computing all intersections between two Bézier curves using cubic hybrid 
clipping. Each intersection is represented by two strip intervals that contain an intersection. In each step, one curve is 
bounded by two fat lines, and the other is bounded by two cubic Bézier curves, clipping away the domain that does 
not contain the intersections. By selecting the moving control points of the cubic hybrid curves, better cubic poly-
nomial bounds are obtained to make the proposed method more efficient. It was proved that the two strip intervals 
have second- and fourth-order convergence rates for transversal intersections. Experimental results show that the 
new algorithm is the most efficient among all existing curve/curve intersection approaches.
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Introduction
Given an interval [α, β] ⊂ ℝ, a Bézier curve P(t), t ∈ [α, β] 
is defined as

where Bn
i,[α,β](t) =

n
i

(t−α)i(β−t)n−i

(β−α)n
, i = 0, 1, . . . , n are 

Bernstein polynomials in [α, β], and {Pi}
n
i=0 are the con-

trol points [1]. Given two Bézier curves P(t), t ∈ [α, β] and 
Q(s), s ∈ [ξ, η], the problem considered in the present 
study is how to compute all (t∗, s∗), t∗ ∈ [α, β], s∗ ∈ [ξ, η] 
such that P(t∗) = Q(s∗). Various methods have been devel-
oped to solve this task, such as a subdivision-based 
approach [2], binary subdivision approach [3], impliciti-
zation [4] and Bézier clipping [5].

The most common approach consists of clipping 
away the regions of the curves that are guaranteed to 
not intersect. Each intersection parameter pair (s∗, t∗) is 
replaced with an interval that is iteratively computed. The 

(1)P(t) =

n
∑

i=0

PiB
n
i,[α,β](t)

k-th iteration interval is denoted as [αk, βk] × [ξk, ηk]. Let 
hk = βk − αk and dk = ηk − ξk. If a constant γi exists such that

where Ci are constants independent of k and the curves, 
and thus γi is the convergence rate of the sequence inter-
vals {[αk, βk]}k and {[ξk, ηk]}k. The key problem is to find an 
algorithm for which γi is as large as possible with as few 
computations as possible during each iteration.

The above problem plays an important role in many 
engineering fields, such as computer-aided design and 
manufacturing (CAD/CAM), collision detection, and 
geometric modeling [1], and is a basic operation in solid 
modeling. In geometric processing, the intersections and 
intersection curves in a solid model are extremely impor-
tant for the visualization, analysis, and manufacturing of 
the model [6]. With the continuous development of com-
puter-aided geometric design and CAD/CAM, as well as 
the continuous progress made in science and technology, 
the numbers of calculations and data to be processed 
for intersection problems are increasing. It is therefore 
important to develop efficient and stable methods for 
dealing with intersection problems.

To solve such problems, the Bézier clipping algo-
rithm introduced in ref. [5] is a widely used, fast, and 

(2)hk+1 ≤ C1h
γ1
k + C2d

γ2
k , dk+1 ≤ C3h

γ3
k + C4d

γ4
k
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robust method. The Bézier clipping algorithm was 
proven to have a second-order convergence rate [7]. 
Subsequently, several different approaches have been 
proposed to improve the Bézier clipping algorithm. 
Bartoň and Jüttler [8] and Liu et al. [9] developed quad-
ratic and cubic clipping techniques based on a degree 
reduction to compute all roots of a univariate polyno-
mial equation. Lou and Liu [10] extended the approach 
in ref. [9] to curve/curve intersection problems and 
proved that the algorithm achieves at least a second-
order convergence rate. In addition, North [11] devel-
oped a geometry interval clipping algorithm based on 
quadratic hybrid curves [12] for use with curve/curve 
intersection problems, Liu and Li [13] proved that 
the algorithm achieves a quadratic convergence rate. 
Moreover, Yuan [14] recently developed a cubic hybrid 
clipping (HybClip) based on hybrid curves to compute 
all roots of a univariate polynomial equation with a 
numerically verified fourth-order convergence rate.

In this study, the approach in ref. [14] is extended to 
handle curve/curve intersection problems. Unlike the 
approach in ref. [14], a better bound is chosen for cubic 
HybClip, and thus the algorithm requires 8% less time 
than a method that directly uses the cubic hybrid curve 
[14]. In addition, it is proved that the two sequences in the 
new clipping algorithm have second- and fourth-order 
convergence rates. Subsequently, a complete compari-
son is provided with all existing curve/curve intersection 
algorithms based on subdivisions on a random 40,000 
curve/curve intersection database. The new algorithm 
requires 30% less time than the geometry interval clipping 
algorithm [11] and 60% less time than the cubic clipping 
algorithm [10].

The remainder of this paper is organized as follows. In 
Methods section, the cubic hybrid curves are presented 
with two moving control points, and the details of the 
curve/curve intersection algorithms are described when 
applied in both 2D and 3D. In Results section, a proof of 
the convergence rate of the new intersection algorithm 
is provided, and the six techniques are compared from 
various perspectives. Finally, some concluding remarks 
are provided in Conclusions section and areas of future 
work are discussed in Discussion section.

Methods
Hybrid curve
A hybrid curve refers to a curve with at least one moving 
control point, which is itself a parametric curve and shares 
one parameter with the hybrid. Sederberg and Kakimoto 
[12] originated the idea of using hybrid polynomial Bézier 
curves to approximate rational Bézier curves. Later, North 
[11] transformed all polynomial Bézier curves of degree 
d ≥ 2 into equivalent quadratic hybrid curves with a single 
moving control point and fixed endpoints. As an illustra-
tion, a simple quadratic hybrid curve was constructed with 
a single moving control point, equivalent to a cubic Bézier 
curve, as shown in Fig. 1.

To evaluate a point on a hybrid curve, the locations 
of all moving control points are first determined at 
the given parameter value t. Once the moving con-
trol points are determined, the hybrid curve can be 

(3)
�(t) = �

0(1 − t)
3 + 3�

1(1 − t)
2
t + 3�

2(1 − t)t2 + �
3
t3

= �0B
2

0
(t) +

(

3�1−�0

2
(1 − t) +

3�2−�3

2
t

)

B
2

1
(t) + �3B

2

2
(t)

Fig. 1  A cubic Bézier curve expressed as a quadratic hybrid curve
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evaluated as a common curve. For example, to evaluate 
P̂(t) at t = 0.5, P̂1(0.5) is first evaluated and the result-
ing point is then used to evaluate P̂(0.5) , as shown in 
Fig. 1.

Using the same principles as in ref. [11], by prop-
erly selecting the moving control points, the hybrid 
curve can produce any traditional Bézier curve. In 
this study, a hybrid curve having the following form 
is focused on:

Theorem 1. Given a degree n ≥ 3 Bézier curve P(t) with 
control points  {Pi}

n
i=0, there exists an equivalent cubic 

hybrid curve  P̂(t)  with two fixed control 
points  P̂0 = P0, P̂3 = Pn  and two moving control 
points  P̂1(t), P̂2(t). The two moving control 
points P̂1(t), P̂2(t)  are Bézier curves of degree n − 3 with 
control points 

{

P̂1,i−1

}n−2

i=1
 and 

{

P̂2,i−2

}n−1

i=2
, respectively, 

where

ai =  − (n − i)(n − i − 1)(n − i − 2), bi = n(n − 1)(n − 2), 
ci =  − i(i − 1)(i − 2), and i ∈ {1, …, n − 1}.

Proof. The degree n × m tensor product Bézier surface 
patch [1] is defined as

where Bn
i (s)B

m
j (t), 0 ≤ s, t ≤ 1 is the product of the two 

Bernstein bases in [0, 1], and Qi, j, i = 0, …, n; j = 0, …, m 
are the control points of Q(s, t).

From ref. [15], a degree m + d Bézier curve P(t) 
with control points Pi can be described as the diago-
nal curve P(t) = Q(t, t) of a degree m × d Bézier surface 
Q(s, t), i.e.,

If m = 3, then j ∈ {0, 1, 2, 3} and (j, k) ∈ {(0, i), (1, i − 1), (2, 
i − 2), (3, i − 3)}. Expanding the summation and rearrang-
ing the terms, the following is obtained:

If the control points Pi of degree n = d + 3 diagonal 
curve P(t) are known, Q0, i = P0 and Q3, i − 3 = Pn can be 
set. Thus,

(4)

n− i − 1

n− 2
P̂1,i−1 +

i − 1

n− 2
P̂2,i−2 =

aiP0 + biPi + ciPn

ai + bi + ci

(5)Q(s, t) =

n
∑

i=0

m
∑

j=0

Qi,jB
n
i (s)B

m
j (t)

(6)Pi =
1

(

m+d
i

)

∑

j+k=i

(

m

j

)(

d

k

)

Qj,k

(7)

(

d+3
i

)

Pi =
(

3
0

)(

d
i

)

Q0,i +
(

3
1

)(

d
i−1

)

Q1,i−1

+
(

3
2

)(

d
i−2

)

Q2,i−2 +
(

3
3

)(

d
i−3

)

Q3,i−3

Simplifying the above formulas, the following is 
achieved:

for i ∈ {1, …, n − 1}. Setting ai =  − (n − i)(n − i − 1)
(n − i − 2), bi = n(n − 1)(n − 2), ci =  − i(i − 1)(i − 2), and 
observing that ai + bi + ci = 3i(n − i)(n − 2), the following 
occur:

Because Q0, i = P0 and Q3, i − 3 = Pn, the s = t diagonal curve 
of Q(s, t) can be evaluated using the following formula:

where P̂1(t) and P̂2(t) are the degree n − 3 Bézier curves 
comprising the control points P̂1,i−1 and P̂2,i−2 , respec-
tively, where

This is a cubic hybrid curve with two moving control 
points P̂1(t), P̂2(t) , and fixed control points P0, Pn.

From Theorem  1, if i = 1 or i = n − 1, the first control 
point of P̂1(t) and the last control point of P̂2(t) are fixed 
as follows:

Theorem  1 indicates that the two moving con-
trol points are relevant, for which three cases are 
discussed:

Case 1
If the first moving control point is a fixed point 
denoted by Q̂1 and the second moving control point is 
denoted by Q̂2(t) , then the control points 

{

Q̂2,i

}n−3

i=0
 of 

Q̂2(t) can be calculated from Eq. (4), as indicated by 
Yuan [14]:

Case 2
If the second moving control point is a fixed point 
denoted by R̂2 and the first moving control point is 

(8)

(

n

i

)

�
i
=

(

n−3

i

)

�
0
+ 3

(

n−3

i−1

)

�
1,i−1 + 3

(

n−3

i−2

)

�
2,i−2 +

(

n−3

i−3

)

�
n

(

n−3

i−1

)

�
1,i−1 +

(

n−3

i−2

)

�
2,i−2 =

1

3

[(

n

i

)

�
i
−

(

n−3

i

)

�
0
−

(

n−3

i−3

)

�
n

]

(9)

n−i−1
n−2

Q1,i−1 +
i−1
n−2

Q2,i−2 =
(i−n)(n−i−1)(n−i−2)

3i(n−i)(n−2)
P0 +

n(n−1)(n−2)
3i(n−i)(n−2)

Pi +
−i(i−1)(i−2)
3i(n−i)(n−2)

Pn

(10)

n− i − 1

n− 2
Q1,i−1 +

i − 1

n− 2
Q2,i−2 =

aiP0 + biPi + ciPn

ai + bi + ci

(11)�(t, t) = (1 − t)
3
�0 + 3(1 − t)

2
t�̂1(t) + 3(1 − t)t2�̂2(t) + t

3
�n

(12)
�̂1,i−1 = �1,i−1, i = 1,… , n − 2 and �̂2,i−2 = �2,i−2, i = 2,… , n − 1

(13)�̂1,0 =
(3 − n)�0 + n�1

3
and �̂2,n−3 =

(3 − n)�n
+ n�

n−1

3

(14)
Q̂(t) = P0B

3
0(t)+ Q̂1B

3
1(t)+ Q̂2(t)B

3
2(t)+ PnB

3
3(t)
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denoted by R̂1(t) , the control points 
{

R̂1,i

}n−3

i=0
 of R̂1(t) 

can be obtained from Eq. (4), i.e.,

Case 3
In general, P̂1(t) and P̂2(t) are moving to control points. 
Because they are equivalent to P(t),

Hence, λ ∈ [0, 1] exists such that

Through a simple approach,

and obtain

where i ∈ {0, …, n − 3}; in addition, Q̂1, Q̂2,i and R̂1,i, R̂2 are 
known from the two cases above, and based on Eqs. (4) 
and (13), the two moving control points depend on the 
value of λ.

Curve/curve intersection based on cubic HybClip
Given two Bézier curves P(t), t ∈ [α, β] and Q(s), s ∈ [ξ, η], 
in this section, a cubic hybrid clipping algorithm is pro-
posed for computing all intersections.

(15)
R̂(t) = P0B

3
0(t)+ R̂1(t)B

3
1(t)+ R̂2B

3
2(t)+ PnB

3
3(t)

(16)
�(t) = �̂(t) = �0B

3

0
(t) + �̂1B

3

1
(t) + �̂2(t)B

3

2
(t) + �nB

3

3
(t)

= �̂(t) = �0B
3

0
(t) + �̂1(t)B

3

1
(t) + �̂2B

3

2
(t) + �nB

3

3
(t)

= �̂(t) = �0B
3

0
(t) + �̂1(t)B

3

1
(t) + �̂2(t)B

3

2
(t) + �nB

3

3
(t)

(17)(1− �)Q̂(t)+ �R̂(t) = P̂(t)

(18)(1 − 𝜆)�̂1 + 𝜆�̂1(t) = �̂1(t) and (1 − 𝜆)�̂2(t) + 𝜆�̂2 = �̂2(t)

(19)
P̂1,i = (1− �)Q̂1 + �R̂1,i and P̂2,i = (1− �)Q̂2,i + �R̂2

2D curve/curve intersection
The algorithm for two planar Bézier curves is first dis-
cussed. This algorithm is presented in Algorithm 1, and 
illustrated in Fig. 2.

In each step, one curve is bounded by two lines, called fat 
lines, which were first introduced in ref. [5]. Let L be a line 
passing through P0 and Pn of a degree n Bézier curve, P(t), 
and suppose L has an implicit equation:

Fig. 2  Intersection of cubic strip [m, M] of P and fat line LQ of Q 
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The fat line of P is defined as a region

where [dmin, dmax] = [min0 ≤ i ≤ nd(Pi), max0 ≤ i ≤ nd(Pi)], and 
d(Pi) = axi + byi + c, Pi = (xi, yi).

The steps of Algorithm 1 are described in more detail in 
the following:

(1)	 In line 1, if the intervals are within the specified level 
of accuracy, the parameter intervals corresponding to 
the intersection in line 21 can be directly obtained.

(2)	 In line 2, the curve with a larger priority parameter 
interval is always clipped.

(3)	 In line 5, d̂(t) is a cubic hybrid polynomial in the 
Bernstein basis,

where

(4)	In line 6, to obtain the cubic lower and upper bounds, 
defining 

[

d̂
1

]

,

[

d̂
2

]

 as the intervals containing the coeffi-

cients d
(

�̂1,j

)

 and d
(

P̂2,j

)

 of d̂1(t), d̂2(t) , respectively, 
d̂(t) is bound using an interval Bernstein polynomial 
[16]:

The lower and upper bounds of 
[

d̂
]

(t) are defined 
through cubic polynomials in a simple manner:

Hence, d̂min(t) ≤ d̂(t) ≤ d̂max(t) . To obtain a tighter 
bound 

[

d̂
]

(t) , the following optimization function is used:

where d̂i,j = d
(

P̂i,j

)

, i = 1, 2 , and j ∈ {0, 1, …, n − 3}. In Eq. 
(22), if the second moving point of d̂(t) is a fixed point 

(20)d
(

x, y
)

= ax + by+ c = 0,

(

a2 + b2 = 1

)

(21)LP =
{(

x, y
)

|d
(

x, y
)

∈ [dmin, dmax]
}

(22)d̂(t) = d

(

�̂(t)

)

= (1 − t)
3
d̂0 + 3t(1 − t)

2
d̂1(t) + 3t

2(1 − t)d̂2(t) + t
3
d̂3

i = 0, 3, d̂i = d
(

P̂i

)

i = 1, 2, d̂i(t) = d
(

P̂i(t)
)

=
∑n−3

j=0 d
(

P̂i,j

)

Bn−3
j (t)

(23)

[

d̂
]

(t) = B3
0
(t)d̂0 + B3

1
(t)

[

d̂1

]

+ B3
2
(t)

[

d̂2

]

+ B3
3
(t)d̂3

[

d̂i

]

=

[

d̂i,min, d̂i,max

]

=

[

min
0≤j≤n−3

d
(

�̂i,j

)

, max
0≤j≤n−3

d
(

�̂i,j

)

]

(24)
d̂min(t) = B

3
0
(t)d̂0 + B

3
1
(t)d̂1,min + B

3
2
(t)d̂2,min + B

3
3
(t)d̂3

d̂max(t) = B
3
0
(t)d̂0 + B

3
1
(t)d̂1,max + B

3
2
(t)d̂2,max + B

3
3
(t)d̂3

(25)

min

{

d̂max(t) − d̂min(t)
}

= min

{

d̂1,max − d̂1,min + d̂2,max − d̂2,min

}

= min

{

max
j

(

d̂1,j

)

−min
j

(

d̂1,j

)

+max
j

(

d2,j
)

−min
j

(

d2,j
)

}

denoted by q̂
2
 , and the first moving point is denoted by 

q̂
1
(t) , the following is obtained:

If the first moving point of d̂(t) is a fixed point denoted 
by r̂1 , and the second moving point is denoted by r̂2(t) , 
the following is obtained:

There exists λ ∈ [0, 1] such that

From Eqs. (19) and (25), the problem becomes linear, i.e.,

where j ∈ {0, 1, …, n − 3}. Let = maxj
(

q̂1,j
)

−minj
(

q̂1,j
)

and

b = maxj
(

r̂2,j
)

−minj
(

r̂2,j
)

 . If a ≥ b, λ = 1 is set in Eq. 
(28). Otherwise, λ = 0. The tighter cubic bounds of d̂(t) 
can then be obtained using Eqs. (23) and (24).

(5)	In lines 7–10, the intervals of t for which P(t) lies out-
side of LQ correspond to regions where 
[

d̂
]

(t) ∩ [dmin, dmax] = ∅ , as shown in Fig.  3. The 
values t ∈ [0, 1], for which d̂min(t) and d̂max(t) cross 
dmin and dmax, correspond to the roots of

Because d̂min(t) and d̂max(t) are cubic polynomials, these 
roots can be solved directly using the cubic formula.

(26)q̂(t) = B3

0
(t)d̂0 + B3

1
(t)q̂1(t) + B3

2
(t)q̂2 + B3

3
(t)d̂3

(27)r̂(t) = B
3

0
(t)d̂0 + B

3

1
(t)r̂1 + B

3

2
(t)r̂2(t) + B

3

3
(t)d̂3

(28)(1− �)q̂(t)+ �r̂(t) = d̂(t)

(29)
min

{

d̂max(t) − d̂min(t)
}

= (1 − 𝜆)

(

max
j

(

q̂1,j
)

−min
j

(

q̂1,j
)

)

+ 𝜆

(

max
j

(

r̂2,j
)

−min
j

(

r̂2,j
)

)

(30)d̂min(t) = dmin, d̂min(t) = dmax

d̂max(t) = dmin, d̂max(t) = dmax

Fig. 3  Clipping computed from 
[

d̂

]

(t) ∩
[

dmin , dmax

]

= ∅
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(6)	In line 7, if the intersection is empty, no intersec-
tion exists between the two curves. In line 11, if 
the lengths of these intervals are sufficiently small 
compared to the previous intervals [α, β], Hybrid-
Clip is applied to line 14. Otherwise, the curve 
is subdivided into two subsegments and applies 
HybridClip to the two halves (line 12).

3D curve/curve intersection
The above algorithm can be naturally generalized to 
handle 3D Bézier curve/curve intersection problems. In 
the 3D case, “fat lines” in 2D are replaced with several 
bounding planes, which are called “fat planes.”

Plane L passes through the end control points P0 and 
Pn of a degree n Bézier curve, P(t). Because a plane con-
sists of three points that are not collinear, an arbitrary 
control point is simply chosen that is not on the endpoint 
line. Here, L is represented using the implicit equation

The fat plane containing curve P(t) and its control 
points are defined as

where [dmin, dmax] = [min0 ≤ i ≤ nd(Pi), max0 ≤ i ≤ nd(Pi)], and 
d(Pi) = axi + byi + czi + e, Pi = (xi, yi, zi). The distance from 
one curve in a cubic hybrid form is then bound to the fat 
plane using two cubic polynomials and a strip domain 
containing the intersections is computed, which is simi-
lar to Algorithm 1 described in 2D curve/curve intersec-
tion section.

Results
Proof for the convergence rate
Although Yuan’s method [14] is based on cubic Hyb-
Clip, it is mainly used to solve univariate polynomial root 
problems. However, a theoretical convergence rate or 
proof is not provided.

In this section, the theoretical results are provided on 
the convergence rate of the new curve/curve intersection 
algorithm. This begins with two technical lemmas:

Lemma 1. For any given polynomial P, there exists two 
constants CP and DP depending solely on P, such that for 
all intervals [α, β] ⊆ [0, 1] the lower bound m and the 
upper bound M generated in line 6 of Algorithm 1 satisfy

where .
Proof. According to Eqs. (22) and (24), P(α) = m(α), 

P(β) = m(β), and P(t) ≥ m(t), ∀ t ∈ [α, β], and thus

(31)d
(

x, y, z
)

= ax + by + cz + e = 0,
(

a2 + b2 + c2 = 1
)

(32)LP =
{(

x, y, z
)

|d
(

x, y, z
)

∈ [dmin, dmax]
}

(33)�min =∥ P −m∥
[�,�]

∞
≤ CPh

4 and �max =∥ P −M∥
[�,�]

∞
≤ DPh

4

where P1(t) is a continuous function of degree n − 2, and 
m1(t) is a linear function. Let g(t) = b0(β − t) + b1(t − α) be 
a line passing through the lowest control point and paral-
lel to the line connecting the end points of P1(t), such that 
P1(t) − g(t) ≥ 0, ∀ t ∈ [α, β], and thus

where the constant C depends solely on P.

where {ci}n−2
i=0  are the control points of g after the degree 

elevation [1], 
P2(t) =

∑n−3
i=0 (ai − ci)

(

n−2
i

)

(β − t)i−1(t − α)n−2−i ≥ 0 , 
and P3(t) = (an − 2 − cn − 2)(t − α)n − 3 ≥ 0.

Let t1, t2 be the minimum values of P2(t), P3(t) in [α, β], 
respectively, i.e.,

where s1, s2 ∈ [α, β]. Hence,

From Eqs. (34), (35), and (38),

Similarly, |M(t) − P(t)| < DPh4.
Lemma 2. For any given polynomial P, there exist con-

stantsCP
i ,D

P
i , with i = 0, 1, 2, 3depending solely on P, such 

that for all intervals [α, β] ⊆ [0, 1] the lower bound m and 
upper bound M generated in line 6 of Algorithm  1 for 
∀i ∈ {0, 1, 2, 3} satisfy

whereh = β − α, � r�
[α,β]
∞ = maxt∈[α,β]|r(t)|.

Proof A new norm in [α, β] is introduced as

According to the equivalence of norms in a finite-dimen-
sional real linear space, there exists a constant C such that

where the constant C does not depend on the intervals 
[α, β], again owing to the affine invariance. Using argu-
ments similar to those in the previous proof, let r = P − m,

(34)P(t) −m(t) = (t − �)(� − t)
(

P
1
(t) −m

1
(t)

)

≥ 0

(35)P1(t)−m1(t) ≤ C
(

P1(t)− g(t)
)

(36)
P1(t) − g(t) =

n−2
∑

i=0

aiB
n−2
i,[�,�]

(t) −
1
∑

i=0

biB
1

i,[�,�]
(t)

=
n−2
∑

i=0

�

ai − ci
�

Bn−2
i,[�,�]

(t), ai ≥ ci ,∀i

= (� − t)P2(t) + (t − �)P3(t)

,

(37)

∀t ∈ [�, �] ∶ P2(t) ≤ C1

(

P2(t) − P2

(

t1

))

= C1P2
�
(

s1

)(

t − t1

)

≤ C3(� − �)

and P3(t) ≤ C2

(

P3(t) − P3

(

t2

))

= C2P3
�
(

s2

)(

t − t2

)

≤ C4(� − �)

(38)P1(t) − g(t) ≤ C3(� − t)(� − �) + C4(t − �)(� − �) ≤ C5(� − �)
2

(39)
|P(t) −m(t)| ≤ C(t − �)(� − t)

(

P
1
(t) − g(t)

)

≤ C(t − �)(� − t)C5(� − �)
2
≤ CP (� − �)

4 = CPh
4

(40)∥ P
(i) −m

(i)∥
[�,�]

∞
≤ C

P

i
h
(4−i) and ∥ P

(i) −M
(i)∥

[�,�]

∞
≤ D

P

i
h
(4−i)

(41)∥ r∥
[�,�]

∗
=∥ r∥

[�,�]

∞
+ h ∥ r

�∥[�,�]
∞ + h

2 ∥ r
��∥[�,�]

∞ + h
3 ∥ r

(3)∥
[�,�]

∞

(42)� r�[α,β]∗ ≤ C � r�[α,β]∞
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Similarly, � P −M�
[α,β]
∗ ≤ C � P −M�

[α,β]
∞ ≤ DPh

4.
From the above lemmas, the convergence rate can be 

analyzed using the HybClip algorithm. In Algorithm  1, if 
Q = 0, the curve/curve intersection problem P(t) = Q(s) 
becomes a root-finding problem P(t) = 0; that is, the cubic 
HybClip technique may be used to compute the roots of 
the polynomials and intersections of the two curves. These 
two cases are discussed separately.

Theorem 2. (Single root) If polynomial P has a root t∗in 
[α, β], and provided that this root has multiplicity 1, the 
sequence of the lengths of the intervals generated through 
cubic HybClip containing that root has the convergence 
rate d = 4.

Proof. Suppose that ([αi, βi])i = 0, 1, 2, …, which converges 
to t∗, is a sequence of intervals generated by Algorithm 1, 
with lengths hi = βi − αi. It is assumed that the first deriv-
ative satisfies P′(t∗) > 0 (otherwise, the polynomial −P can 
be considered instead of P).

Two cubic Bernstein polynomials m and M can be 
obtained as the lower and upper bounds of P in [αi, βi] 
based on line 6 of Algorithm 1. Because P′ is continuous, 
and owing to Lemma 2, the following inequalities

hold for all but a finite number of values of i. These three 
inequalities above imply that

and hence

From Lemma 1, the vertical height δ = δmin + δmax of 
m and M is bounded by CPh

4
i  . Thus, the length hi of the 

intervals satisfies

for all but a finite number of values of i (Fig. 4).
For other clipping techniques [8, 9], multiple roots 

reduce the convergence rate. The convergence rate of 
cubic HybClip is now discussed in the case of double 
roots, as illustrated in Fig. 5.

Theorem 3. (Double root) If the polynomial P has a root 
t∗in [α, β], and provided that this root has multiplicity 2, 

(43)

∥ P −m∥
[�,�]

∗

=∥ P −m∥
[�,�]

∞
+ h ∥ P� −m�∥

[�,�]

∞
+ h2 ∥ P�� −m��∥

[�,�]

∞
+ h3 ∥ P(3) −m(3)∥

[�,�]

∞

≤ C ∥ P −m∥
[�,�]

∞
≤ C

P
h4

(44)
∥ P� − P�(t∗)∥

[�i ,�i]
∞ ≤

1

4
P�(t∗) and ∥ m� − P�(t)∥

[�i ,�i]
∞ ≤

1

4
P�(t∗)

∥ M� − P�(t)∥
[�i ,�i]
∞ ≤

1

4
P�(t∗)

(45)

∥ m� − P�(t∗)∥
[�i ,�i]
∞ ≤∥ P� − P�(t∗)∥

[�i ,�i]
∞ + ∥ m� − P�∥

[�i ,�i]
∞ ≤

1

2
P�(t∗)

∥ M� − P�(t∗)∥
[�i ,�i]
∞ ≤∥ P� − P�(t∗)∥

[�i ,�i]
∞ + ∥ M� − P�∥

[�i ,�i]
∞ ≤

1

2
P�(t∗)

(46)∀t ∈ [αi,βi] : m
′(t) ≥

1

2
P′(t∗),M′(t) ≥

1

2
P′(t∗)

(47)hi+1 ≤
2δ

P′(t∗)
≤

2CP

P′(t∗)
h4i

the sequence of the lengths of the intervals generated by 
cubic HybClip containing that root has the convergence 
rate d = 2.

Proof Similar to the proof of the previous theorem, 
the sequence of intervals ([αi, βi])i = 0, 1, 2, … is analyzed 
with lengths hi = βi − αi generated by Algorithm 1, which 
contains the double root. It is assumed that the second 
derivative satisfies P″ > 0. Otherwise, polynomial −P can 
be considered instead of P.

Again, two cubic Bernstein polynomials m and M can 
be obtained as the lower and upper bounds of P in [αi, βi]. 
Because P″ is continuous, and based on Lemma 2, the 
inequalities

hold for all but a finite number of values of i. These two 
inequalities imply that

and thus m′′(t) ≥ 1
2
P′′(t∗), ∀t ∈ [αi,βi] . Letting τ = t − t∗, 

and based on

∣

∣b2
∣

∣ = 1
2
m′′(t∗) ≥ 1

4
P′′(t∗) > 0 . From Lemmas 1 and 2,

Letting t1, t2 be the roots of m, t∗ ∈ [t1, t2], and 
τ2 = t2 − t∗ > 0, τ1 = t1 − t∗ < 0, the following is obtained:

(48)∥ P
�� − P

��(t∗)∥
[�i ,�i]
∞ ≤

1

4
P
��(t∗) and ∥ m

�� − P
��(t)∥

[�i ,�i]
∞ ≤

1

4
P
��(t∗)

(49)∥ m
�� − P

��(t∗ )∥
[�i ,�i ]
∞ ≤∥ P

�� − P
��(t∗ )∥

[�i ,�i ]
∞ + ∥ m

�� − P
��∥

[�i ,�i ]
∞ ≤

1

2
P
��(t∗ )

(50)
↼

m(�) = m(t) = b
3
�
3 + b

2
�
2 + b

1
� + b

0
, b

i
=

1

i!
m

(i)(t∗)

(51)

|

|

b
0
|

|

= |m(t∗)| = |m(t∗) − P(t∗)| ≤ C
0P
h
4

i

|

|

b1
|

|

= |m�(t∗)| = |m�(t∗) − P�(t∗)| ≤ C1Ph
3

i

|

|

b
3
|

|

=
|

|

|

1

6
m(3)(t∗)

|

|

|

≤
1

6

|

|

P(3)(t∗)|
|

+
1

6

|

|

m(3)(t∗) − P(3)(t∗)|
|

≤
1

6

|

|

P(3)(t∗)|
|

+
1

6
C
3P
h
i
∶= D

3P

Fig. 4  Illustration of Theorem 2
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Because τ1 ≤ hi and hi → 0, D3P|τ1| → 0,

for a sufficiently large i. Therefore, 
D2Ph

4
i ≥ 1

2

∣

∣b2
∣

∣

∣

∣τ 21

∣

∣ ≥ 1
8
P′′(t∗)

∣

∣τ 21

∣

∣ , and hence

Similarly, the following bound for t2 is obtained:

Because τ1 < 0, τ2 > 0,

Hence, the sequence (hi)i = 0, 1, 2, … has a convergence 
rate of 2.

From Theorems 2 and 3, it can be seen that the new 
algorithm has a higher convergence rate compared with 
geometry interval clipping [11] and quadratic clipping 
[8] when computing all roots of a univariate polynomial 
equation. The following theorem provides the conver-
gence rate for the curve/curve intersection problems.

Theorem 4. Suppose f(t), g(s) have a transversal inter-
section (f′(t∗) × g′(s∗) ≠ 0) at  p∗ = f(t∗) = g(s∗). Further-
more, supposing that [αi, βi]i = 0, 1, 2, …is the sequence of 
generated intervals that contain t∗, and [ξi, ηi]i = 0, 1, 2, 

…is the corresponding sequence of generated intervals 

(52)
|

|

|

b
2
�
2

1

|

|

|

≤
|

|

|

b3�
3

1

|

|

|

+ |

|

b1�1
|

|

+ |

|

b
0
|

|

≤ �
2

1
· D

3P
|

|

�
1
|

|

+ C
1P
h
4

i
+ C

0P
h
4

i
∶= �

2

1
· D

3P
|

|

�
1
|

|

+ D
2P
h
4

i

(53)
∣

∣

∣
b2τ

2
1

∣

∣

∣
≤

1

2

∣

∣b2
∣

∣

∣

∣

∣
τ 21

∣

∣

∣
+ D2Ph

4
i

(54)τ1 ≤

(

8D2P

P′′(t∗)

)
1
2

h2i

(55)τ2 ≤

(

8D′2P

P′′(t∗)

)
1
2

h2i

(56)h
i+1 =

|

|

t
2
− t

1
|

|

= �
2
− �

1
≤

(

(

8D
2P

P��(t∗ )

)
1

2

−

(

8D�2P

P��(t∗ )

)
1

2

)

h
2

i

that contain s∗, there then exist constants C1, C2, C3, 
C4 depending solely on f and g, such that

Proof From line 11 of Algorithm 1, it can be seen that 
the length of intervals [ξi, ηi] tends toward zero as i 
tends toward infinity, that is, the interval [ξi, ηi] tends 
toward s∗.

Let Lg be the line or plane that passes through the end-
points b0, bm of g in [ξi, ηi]. Denote n as the unit normal 
vector of Lg . Then, the distance function from f(t) to Lg is 
defined as

Denote T∗
f  as the tangent line of f at t∗. Let φ ∈

[

0, π
2

]

 be 
the angle between T∗

f  and Lg , and θ ∈
[

0, π
2

]

 be the angles 
between T∗

f  and b0bm. As hi, g = [ξi, ηi] tends toward 0, the 
line or plane Lg converges at b0bm, and angle φ converges 
at θ. Thus, for a sufficiently small hi, g, φ > θ

2
> 0 , and 

thus 0 < sin
(

θ
2

)

< sin (φ) ≤ 1.
The angle ρ between f′(t∗) and n is either ρ = π

2
+ φ 

or ρ = π
2
− φ . Using this, the derivative of the distance 

function can be bound at the intersection as

Because d′(t∗) ≠ 0, and for convenience, w = d′(t∗) > 0 
is denoted (otherwise, the vector −n can be considered 
instead of n).

Because d′(t) is continuous, the inequality

holds for all but a finite number of values of i. Hence,

From line 6 of Algorithm  1, the cubic polynomial 
bound [dm(t), dM(t)] of the distance function d(t) can be 
obtained. Based on Lemma 2,

and by Eq. (61), the following is obtained:

From Fig. 6, the bound for hi + 1, f is obtained as

(57)h
i+1,� ≤ C1h

4
i,�
+ C2h

2
i,�

and h
i+1,� ≤ C3h

4
i,�

+ C4h
4
i,�

(58)d(t) = n· (f(t)− b0)

(59)|

|

d
�(t∗)|

|

= |

|

� · � �(t∗)|
|

=∥ �
�(t∗) ∥

|

|

|

|

cos

(

𝜋

2
± 𝜙

)

|

|

|

|

=∥ �
�(t∗) ∥ sin (𝜙) > 0

(60)� d′ − d′(t
∗)�

[αi ,βi]
∞ <

w

2

(61)∀t ∈ [αi,βi], d
′(t) >

w

2

(62)∥ d
� − d�m∥

[�i ,�i]
∞ ≤

w

4
and ∥ d

�(t) − d�M (t)∥
[�i ,�i]
∞ ≤

w

4

(63)d′m(t) ≥
w

4
and d′M(t) ≥

w

4

(64)
hi+1,f = βi+1 − αi+1 ≤ l1 + l2 + l3
l1 + l3 =

dmax−dmin

w/4

Fig. 5  Illustration of Theorem 3
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Based on Lemma 1, the vertical heights δi of dm and dM 
are bounded as follows:

Let t1 and t2 be the roots of dm and dM respectively. 
From Eq. (63),

From Eq. (64), the above inequality implies that

This thus implies the first inequality in Eq. (57) from 
dmax − dmin < h2i,gCg (see the proof of Theorem 6 in ref. 
[7]). Similarly, in the next iteration step, the following is 
obtained:

(65)�
i
=∥ d

M
− d

m
∥
[�i ,�i]
∞ ≤∥ d

M
− d∥

[�i ,�i]
∞ + ∥ d − d

m
∥
[�i ,�i]
∞ ≤ C

�
h
4

i

(66)l2 = |t1 − t2| <
δi

w/4
=

Cfh
4
i

w/4

(67)hi+1,f <
dmax − dmin

w/4
+

Cfh
4
i

w/4

where C′f is solely dependent on f, and C′g is solely 
dependent on g. Based on the first inequality of Eq. (57), 
the following is obtained:

which implies the second inequality.
Note that the property of w being nonzero is key 

to binding l1 and l3. Therefore, a transversal intersec-
tion is required in the proof. From Theorem  4, the two 
sequences {[αi, βi]}i and {[ξi, ηi]}i of the new intersection 
algorithm have second- and fourth-order convergence 
rates, respectively, and the 3D curve intersection prob-
lem yields the same results.

Experimental results
In this section, all six algorithms are compared based on 
three criteria: the amount of time per iteration step, the 
number of iterations, and the computing time required 
to achieve a certain accuracy. All algorithms were imple-
mented in C++ on a PC with an 2.60-GHz Intel(R) 
Core(TM) i7-9750H CPU and 16.0 GB of RAM. In all 
experiments, both curves P(t) and Q(s) have a parameter 
domain [0, 1].

For convenience, denote Bézier clipping as BezClip [5]; 
quadratic clipping and cubic clipping based on a degree 
reduction as 2-DegClip [8] and 3-DegClip [10], respec-
tively; geometry interval clipping as 2-HybClip [11]; 
and cubic HybClip based on hybrid curves in ref. [14] 
as 3-HybClip*. In addition, the proposed cubic HybClip 
algorithm is denoted as 3-HybClip.

To analyze the relationship between the computational 
effort and the desired accuracy, two examples represent-
ing polynomials with transversal and tangent intersec-
tions are discussed. The five algorithms are first applied 

(68)hi+1,g ≤ C′gh
4
i,g + C′fh

2
i+1,f

(69)
hi+1,� ≤ C�

�
h
4

i,�
+ C�

�

(

C
�
h
4

i,�
+ C

�
h
2

i,�

)2

≤ C�
�
h
4

i,�
+ C�

�

(

C
2

�
h
8

i,�
+ C2

�
h
4

i,�
+ 2C

�
C
�
h
4

i,�
h
2

i,�

)

≤

(

C�
�
+ C�

�
C2

�

)

h
4

i,�
+

(

C�
�
C

2

�
h
4

i,�
+ 2C�

�
C
�
C
�
h
2

i,�

)

h
4

i,�

Fig. 6  Illustration of Eq. (64)

Table 1  Transversal intersections

Number of iterations [NP, NQ] and computing time t (in microseconds) of accuracy ε. In addition, (n, m) are degrees of P, Q, respectively

(n, m) ε 10−6 10−10

BezClip 2-HybClip 3-HybClip 2-DegClip 3-DegClip BezClip 2-HybClip 3-HybClip 2-DegClip 3-DegClip

(4,4) [NP, NQ] [4,3] [3,3] [3,2] [3,3] [3,2] [16,15] [4,3] [3,3] [4,3] [3,3]

t/μs 125 120 120 150 150 90 90 100 125 130

(8,4) [NP, NQ] [4,3] [3,3] [3,2] [3,3] [3,2] [15,14] [4,3] [3,2] [4,3] [3,3]

t/μs 160 150 150 190 190 100 120 100 140 130

(8,8) [NP, NQ] [4,4] [4,4] [3,3] [3,3] [3,3] [16,16] [5,4] [3,3] [4,4] [3,3]

t/μs 190 180 180 250 250 190 130 140 180 170
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Fig. 7  Computing time t in milliseconds vs accuracy ε of curve pairs with degrees (4, 4), (8, 4), and (8, 8) from the top to down. a Transversal 
intersections; b Tangent intersections
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to three pairs of Bézier curves with a transversal intersec-
tion. Table 1 reports the number of pairs of iterations and 
the computing time in microseconds of the desired accu-
racy for computing the transversal intersections between 
the three curve pairs with various degrees. Figure  7a 
shows the relationship between the computing time and 
desired accuracy, and indicates that 3-HybClip based on 
cubic hybrid curves is significantly improved in compari-
son with BezClip, 2HybClip, 2-DegClip, and 3-DegClip.
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The five algorithms are applied to three pairs of 
Bézier curves with tangent intersections. Table  2 and 
Fig.  7b report the number of pairs of iterations and 
the computing time in milliseconds of various desired 
accuracies ε for computing the tangent intersections 
between the three curve pairs with various degrees. 
Experimental results show that the quadratic and cubic 
clipping techniques are better than Bézier clipping; 
however, compared with quadratic clipping based on 
hybrid curves or a degree reduction, the cubic clipping 
techniques show no substantial improvements. This 
is due to the fact that all clipping algorithms require 
a large number of binary subdivisions for tangent 
intersections.

(73)
{

P4(t) =
(

2t − 1,−4t4 + 8t3 − 4t + 1.5
)

Q4(s) =
(

2s − 1, 4s4 − 8s3 + 4s − 1
)

(74)
{

�
8(t) =

(

2t − 1,−20t8 + 80t7 − 112t6 + 56t5 − 4t + 1.7031
)

�4(s) =
(

2s − 1, 4s4 − 8s3 + 4s − 1
)

Table 2  Tangent intersections

Number of iterations [NP, NQ] and computing time t (in microseconds) of accuracy ε. In addition, (n, m) are degrees of P, Q, respectively

(n, m) ε 10−6 10−10

BezClip 2-HybClip 3-HybClip 2-DegClip 3-DegClip BezClip 2-HybClip 3-HybClip 2-DegClip 3-DegClip

(4,4) [NP, NQ] [12,10] [6,5] [6,5] [6,6] [5,5] [20,20] [6,6] [6,6] [7,6] [6,5]

t/μs 138 117 93 119 138 164 129 85 124 136

(8,4) [NP, NQ] [20,20] [8,8] [10,10] [6,6] [5,6] [34,34] [9,8] [11,10] [7,6] [5,7]

t/μs 160 175 170 190 200 160 175 185 232 246

(8,8) [NP, NQ] [18,17] [7,7] [10,9] [7,7] [4,6] [32,30] [8,7] [10,10] [8,7] [5,6]

t/μs 170 185 180 226 263 177 157 133 272 282
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Fig. 8  Statistical comparisons: Computing time t in seconds vs accuracy ε. a Single intersections; b Multiple intersections
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Table 3  Relative computing iterations N and computing time t 

ε BezClip 2-HybClip 3-HybClip* 3-HybClip 2-DegClip 3-DegClip

10−6 N 1.36 1.14 1.02 1 1.18 1.02

t 1.85 1.39 1.08 1 1.95 1.71

10−10 N 1.79 1.16 1.03 1 1.18 1.03

t 2.60 1.37 1.09 1 1.88 1.66

To compare these six algorithms numerically, statis-
tics are generated on 40,000 pairs of randomly generated 
polynomial curves of degree 4–10 for single and multiple 
intersections. Figure 8 shows computing time needed to 
achieve the given accuracy of the five algorithms. The rel-
ative computing iterations and computing time for these 
tests are listed in Table 3. As shown in Table 3, 3-HybClip 
requires 2% fewer iterations and 8% less time than 3-Hyb-
Clip* [14]. In addition, 3-HybClip has 2% fewer comput-
ing iterations than 3-DegClip, and at least 10% fewer 
iterations than 2-HybClip and 2-DegClip. With respect to 
the computing time, 3-HybClip is at least 60% faster than 
3-DegClip and 2-DegClip, and at least 30% faster than 
2-HybClip.

Conclusions
In this study, an algorithm called 3-HybClip was 
derived for computing all intersections between two 
Bézier curves within a given domain. By selecting the 
moving control points, better bounds were obtained 
than those in ref. [14]. It was proved that the two 
sequences of bounded intervals for intersections have 
second- and fourth-order convergence rates for trans-
versal intersections. The experimental results show 
that the newly proposed 3-HybClip algorithm requires 
2% fewer iterations and 8% less time than 3-HybClip* 
from ref. [14], 10% fewer iterations than 2-HybClip and 
2-DegClip, and at least 30% less time than other tech-
niques such as BezClip, 2-HybClip, 2-DegClip, and 
3-DegClip.

Discussion
As discussed in 3D curve/curve intersection section, for 
3D curve/curve intersection problems, the “fat planes” 
are computed to bound a 3D Bézier curve. The distance 
from one curve in a cubic hybrid form to the fat plane is 
bound by two cubic polynomials, and a strip domain con-
taining the intersections is then computed. Similarly, in 
curve/surface intersection problems, “fat planes” can also 
be used to bind a Bézier surface, and then the distance 
from the curve to the fat plane is bound by two cubic 

(75)
{

�
8(t) =

(

2t − 1,−20t8 + 80t7 − 112t6 + 56t5 − 4t + 1.7031
)

�8(s) =
(

2s − 1, 20s8 − 80s7 + 112s6 − 56s5 + 4s − 1.2031
)

polynomials. Then the intersection of “fat planes” and the 
two cubic polynomials is the strip domain containing the 
intersections. The details of the algorithm and compari-
sons with previous approaches are left for future work.
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