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Abstract 

In this study, a systematic refinement method was developed for non-uniform Catmull-Clark subdivision surfaces to 
improve the quality of the surface at extraordinary points (EPs). The developed method modifies the eigenpolyhedron 
by designing the angles between two adjacent edges that contain an EP. Refinement rules are then formulated with 
the help of the modified eigenpolyhedron. Numerical experiments show that the method significantly improves the 
performance of the subdivision surface for non-uniform parameterization.
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Introduction
Catmull-Clark surfaces [1] are ubiquitously used in ani-
mation owing to their ability to create smooth surfaces 
with an arbitrary topology. For compatibility with the cur-
rent standard representation, i.e., non-uniform rational 
B-spline (NURBS), several subdivision rules are defined to 
support non-uniform parameterization [2–6]. All meth-
ods express knot information by assigning a knot inter-
val to control the mesh edge, and Catmull-Clark surfaces 
are reproduced if all knot intervals have values of 1. All 
such subdivision schemes have a vexing problem in that 
the blending functions for extraordinary points (EPs) can 
have two local maxima. This problem was solved in ref. [7] 
using a new technology called an eigenpolyhedron.

To define the rule provided in ref. [7], the eigenpolyhe-
dron is first defined based on R2. The final rule is defined 
under certain constraints when applying the rule on an 
eigenpolyhedron. The scale and translation of the original 
polyhedron are obtained and thus different polyhedrons 
lead to different subdivision rules, which affect the quality 
of the surface limit. The eigenpolyhedron selected in ref. [7] 
adopts equal angles between adjacent edges containing an 

EP. However, in the case of non-uniform knots, owing to the 
difference in the knot intervals of adjacent edges, the sub-
division rules no longer have cyclic symmetry. Thus, mak-
ing all angles of the eigenpolyhedron equal is not the best 
choice. Based on this observation, the quality of the subdivi-
sion surface was improved in the present study by designing 
the eigenpolyhedron angles. The numerical results illustrate 
that the new rules can improve the final limit surface if the 
ratios of the knot intervals are large. Figure 1 shows a sim-
ple example of a valence-5 EP with knot intervals of 1, 15, 
1, 1, and 15. Figure 1(a) shows the result of the approach in 
ref. [7], and Fig. 1(b) shows the result of the newly proposed 
method. It is clear that the new method can produce a limit 
surface with higher quality. The limit surfaces produced 
by the other non-uniform subdivision schemes are shown 
in Fig. 2. It can be seen that both the present scheme and 
the rule in ref. [7] can produce much better limit surfaces, 
detailed comparisons of which can be found in ref. [7]. The 
following focuses only on comparisons between the present 
scheme and that in ref. [7].

Prior work
A subdivision is a useful method for geometric mod-
eling, and is typically generalized from a spline repre-
sentation to define an arbitrary topology of free-form 
surfaces. The first two popular types of subdivision are 
the Doo-Sabin [8] and Catmull-Clark [1] subdivisions, 
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which extend uniform bi-quadratic B-spline and uniform 
bi-cubic B-spline surfaces to an arbitrary control grid. 
Subsequently, many subdivision rules have been defined 
for different control grids and different applications, 
such as a loop subdivision [9], 

√
3-subdivision [10], 4–8 

subdivision [11, 12], quad/triangle subdivision [13, 14], 
four-point interpolatory subdivision [15], and butterfly 
scheme [16, 17].

NURBS is the dominant standard in industrial design. It 
is therefore important to construct non-uniform subdivi-
sion schemes to apply a subdivision to CAD [18, 19]. For 
this purpose, Sederberg et al. [2] proposed the first non-
uniform B-spline subdivision scheme called NURSSes. 
In addition, Müller et al. [3] designed a new subdivision 
surface by forcing the knots of the edge containing the EP 
to be equal. Cashman et  al. [4] proposed a local refine-
ment rule such that the largest knot interval is no more 

than twice as large as the smallest knot interval at an EP. 
In ref. [6], a subdivision rule is defined for analysis-suita-
ble T-splines [20] and a new heuristic rule for EPs. All of 
these subdivision schemes have a vexing problem in that 
the blending functions for EPs can have two local max-
ima. The problem was solved in ref. [7] using an eigen-
polyhedron. The technology was applied to construct a 
non-uniform Doo-Sabin subdivision scheme [21] and 
design a subdivision rule supporting sharp features [22]. 
Further improvements include a proven G1 continuous 
non-uniform subdivision scheme [23] and an optimal 
convergence rate non-uniform subdivision scheme [24].

Eigenpolyhedron
This study focuses on the variations in a Catmull-Clark 
subdivision. For such a subdivision rule, focus was on a 
valence-n vertex Vk at level k. Suppose its neighboring 

Fig. 1  Limit surfaces for a non-uniform EP with a different eigenpolyhedron, using a the eigenpolyhedron in ref. [7] and b the proposed approach

Fig. 2  Limit surfaces generalized using a NURSS in ref. [2], b the scheme in ref. [4], c the rule in ref. [6], and d the newly developed method
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face points are Fk
i  and neighboring edge points are 

Ek
i , k = 0, 1, . . . , n− 1 . The subdivision rule computes a set 

of points Vk + 1, Fk+1
i  , and Ek+1

i  as a linear combination of 
Vk, Fk

i  , and Ek
i  , respectively. This relation can be written as

where Pk =
[

Fk
0
, . . . , Fk

n−1
,Ek

0
, . . . ,Ek

n−1
,V k

]T
 , Mk is a 

(2n + 1) × (2n + 1) stochastic matrix, and k is the refine-
ment level. Matrix Mk is called a subdivision matrix. In 
this study, it is assumed that Mk is invariant with level k, 
which is denoted as M in the following:

The above subdivision relation can be used for any con-
trol grid, Pk. The eigen-polyhedron concept attempts to 
study the behavior of the above rule by applying it to a 
control grid in R2, which is denoted as P̂k in the following.

Definition 2.1 A polyhedron P̂0 is an eigenpolyhedron 
of M if

where � ∈ R, T̂ 0 ∈ R2,V̂ 0 of P̂0 is (0, 0), M is a 
(2n + 1) × (2n + 1) matrix whose rows sum to 1, and I is a 
(2n + 1) × 1 vector whose elements are all 1 s.

It can be seen from the definition that, if P̂0 is an 
eigenpolyhedron of M, the following equation is found 
through induction:

Denoting T̂ k = V̂ k+1 − V̂ k , it is easy to obtain 
T̂ k+1 = �T̂ k = �

k T̂ 0, k = 1, 2 . . . . Thus, M has an eigen-
polyhedron if M has two identical eigenvalues λ, and 
the corresponding eigenvectors are the two columns of 
P̂0 − I V̂ 1

1−�
 . Further details are provided in ref. [7].

(1)Pk+1 = MkPk

(2)P̂1 = MP̂0 = �P̂0 + IT̂ 0

(3)P̂
k
= MP̂

k−1
= 𝜆

k
P̂
0
+

∑k−1

i=0
𝜆
i
I T̂

0
= 𝜆

k
P̂
0
+ IV̂

k

To define an eigenpolyhedron P̂0 , it is necessary to define 
the vertices F̂0

i  and Ê0
i  of P̂0, i = 0, 1, . . . , n− 1 . Vertices Ê0

i  
can be determined based on the lengths li of edges V̂ 0Ê0

i  
and angles θi between V̂ 0Ê0

i  and V̂ 0Ê0
i+1

 , as shown in Fig. 3.
The Catmull-Clark scheme and non-uniform bi-cubic 

B-spline refinement rule both have a corresponding eigen-
polyhedron. For the Catmull-Clark subdivision, the eigen-
polyhedron for a valence-n EP can be defined as follows:

where γ = 4

cn+1+
√
(cn+9)(cn+1)

, cn = cos

(

2π
n

)

 . The 
responding translation factor 
� = 1+γ

4γ
= cn+5+

√
(cn+9)(cn+1)
16

, and T̂ 0 = (0, 0).
For a non-uniform bi-cubic B-spline, its eigenpolyhedron 

can be defined as

where di is the knot interval, for which i = 0, 1, 2, 3. In 
this case, the corresponding translation factor � = 1

2
 , and 

T̂ 0
=

(

d0−d2

6
,
d1−d3

6

)

.

(4)V̂ 0 = (0, 0)

(5)Ê0
i = cos

2iπ

n
, sin

2iπ

n

(6)F̂0
i = γ

(

Ê0
i + Ê0

i+1

)

(7)V̂ 0 = (0, 0)

(8)Ê0
i = 2di + di+2

3

(

cos

(

iπ

2

)

, sin

(

iπ

2

))

(9)F̂0
i = Ê0

i + Ê0
i+1

Fig. 3  Notations for an eigen-polyhedron P̂0 for an EP, where V̂0 is (0, 0), li are the lengths of edges V̂0
Ê
0
i
 , and θi are the angles between V̂0

Ê
0
i
 and 

V̂
0
Ê
0
i+1

 . The edge points Ê0
i
 in P̂0 are determined by li and θi
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It can be seen that all angles are the same in the Cat-
mull-Clark scheme and NURBS eigenpolyhedron. Thus, 
the angles of the eigenpolyhedron in ref. [7] were set to 
equal values. However, the experimental results indi-
cate that equal angles for the eigenpolyhedron will lead 
to an unsatisfactory limit surface if the ratio of the knot 
intervals is sufficiently large. This motivated us to design 
non-uniform angles for the eigenpolyhedron, as well as a 
new non-uniform subdivision scheme, which will be dis-
cussed in the next section.

Organization
The remainder of this paper is organized as follows. 
Methods section discusses the modification of the eigen-
polyhedron for a non-uniform Catmull-Clark subdivision 
surface. Result section presents examples of the subdivi-
sion surfaces and compares the effectiveness of the pro-
posed method with that of previous approaches. In the 
final two sections, the Conclusion and Discussion are 
provided.

Methods
Modified eigenpolyhedron
This section provides a detailed definition of the modified 
eigenpolyhedron. To construct a subdivision using eigen-
polyhedron-based technology, it is first necessary to design 
an eigenpolyhedron for an EP, from which a refinement 
matrix is created. In the following, an eigenpolyhedron is 
designed for an EP of valence n. For the eigenpolyhedron, it 
is necessary to define vertices Ê0

i  and F̂0
i , i = 0, 1, . . . , n− 1 . 

Vertices Ê0
i  can be computed through the lengths li of edges 

V̂ 0Ê0
i  and angles θi = ∠Ê0

i V̂
0Ê0

i+1
.

The definition of the angles was inspired by a study on 
B-splines. For a bicubic B-spline surface, the zero-knot 
intervals are equivalent to double knots. The surface patches 
corresponding to the knot degenerate into B-spline curves, 
as shown in Fig. 4. Thus, in the case of an EP, if one knot 
interval is extremely small compared to the other knot 
intervals, the two adjacent angles should be close to π

2
.

Suppose that the knot intervals of the adjacent edges 
are denoted by di, i = 0, 1, …, n − 1, and that 
ki = ndidi+1

∑n−1
i=0

didi+1

 , θprei  is then defined as

The sum of these initial values is denoted by 
θ
pre
sum =

∑n−1
i=0 θ

pre
i  . If θ

pre
sum = 2π , let θi = θ

pre
i  be the 

eigenpolyhedron angle. It is obvious that the con-
dition θ

pre
sum = 2π can be satisfied when n = 4 or 

d0 = d1 = … = dn − 1. However, if n ≠ 4 and di are not the 
same, θpresum = 2π cannot generally be obtained. Therefore, 
it is necessary to modify the values of θprei  . The maximum 
value in the set 

{

θ
pre
i , i = 0, 1, . . . , n− 1

}

 can first be 
found, and is then denoted by θpremax , whereas the number of 
maximums in the set is denoted by Nmax. Next, some ini-
tial values θprei  are modified in Eq. (10) such that the condi-
tion θpresum = 2π can be satisfied.

(1)	 n ≠ 3

•	If θpremax • Nmax < 2π,

	 for i = 0, 1, …, n − 1,

➢ if the value of θprei  is not equal to that of θpremax , let 
θi be 2π−θ

pre
max•Nmax

θ
pre
sum−θ

pre
max•Nmax

• θprei  , and
➢ if θi is equal to that of θpremax , the values of the other 
elements in the set remain unchanged.

•	If θpremax • Nmax ≥ 2π and Nmax = n,
	 for i = 0, 1, …, n − 1,
	 reassign θi to 2π

θ
pre
sum

• θprei .
•	 If θpremax • Nmax ≥ 2π and Nmax < n,
	 let N1/2 = max {Nmax, n − Nmax}.
	 For i = 0, 1, …, n − 1,

(10)𝜃
pre

i
=

⎧

⎪

⎨

⎪

⎩

𝜋

2
−

�

2 −
8

n
arctan

�

ki
�

�

, ki < 1
�

4

n
−

1

2

�

𝜋 +

�

2 −
8

n

�

arctan

�

1+ki

2

�

, ki ≥ 1

Fig. 4  Notations for a crease edge in a NURBS surface, where the edges related to zero knot intervals are shown in yellow. a Control mesh; b NURBS 
surface
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➢ if θi is equal to that of θpremax , let θi be 2π•N1/2

nθ
pre
max•Nmax

•θprei  , and
➢ if the value of θi is not equal to that of θpremax , let θi 
be 2π(n−N1/2)

n
(

θ
pre
sum−θ

pre
max•Nmax

)θ
pre
i .

(2)	 n ≠ 3
	 In this case, the sum of all θprei  values in Eq. (10) can 

be computed as no greater than 2π. In addition, let 
θi = 2π

θ
pre
sum

• θprei , i = 0, 1, . . . , n− 1.

The lengths li of edge V̂ 0Ê0
i  are defined similarly to 

those in ref. [7], as illustrated in Eq. (11):

where

The vertices Ê0
i  of the eigenpolyhedron P̂0 can then be 

obtained as follows:

The face points F̂0
i  of the eigenpolyhedron P̂0 are as 

follows:

The scale λ is same as before, i.e.,

(11)li =
di + d−i + d+i

3

d+i =
∑i+n−1

j=i,|i−j|≤ n
4

dj cos
(

2(i−j)π
n

)

d−i =
∑i+n−1

j=i,|i−j|> n
4

dj cos
(

2(i−j)π
n

)

(12)

�

Ê0

0
=

�

l0, 0
�

Ê0

i
= li

�

cos

�

∑i−1

j=0
𝜃j

�

, sin

�

∑i−1

j=0
𝜃j

��

, i = 1, 2,… , n − 1

(13)F̂0
i = γ

(

Ê0
i + Ê0

i+1

)

, i = 0, 1, . . . , n− 1

where γ = 4

cn+1+
√
(cn+9)(cn+1)

, cn = cos

(

2π
n

)

.
Figure 5 shows an example of different eigenpolyhedrons 

for a valence-5 EP.

New subdivision rule based on modified eigenpolyhedron
A refinement matrix M must satisfy the definition of an 
eigenpolyhedron. If all knot intervals are equal, M must 
specialize in a Catmull-Clark refinement. If the valence of 
the point is 4, M must specialize in a NURBS refinement. 
Creating a refinement matrix M is equivalent to applying 
the design vertex, face, and edge-point rules. The other 
refinement processes are the same as those in ref. [7].

Vertex point rule

where

Let

(14)� = 1+ γ

4γ
= cn + 5+

√
(cn + 9)(cn + 1)

16

(15)V̂ k+1 = n− 3

n
V̂ k + 3

n

∑n−1
i=0

(

miH
k
i + fiG

k
i

)

∑n−1
i=0

(

mi + fi
)

Hk
i
= giÊ

k
i
+

�

1 − gi
�

V̂ k

Gk
i
= gi

�

1 − gi+1
�

Êk
i
+ gi+1

�

1 − gi
�

Êk
i+1

+ gigi+1F̂
k
i
+

�

1 − gi
��

1 − gi+1
�

V̂ k

gi =
di−2+di+di+2

di−2+4di+di+2
, fi =

∏n

j=1,j≠i,i+1
d+

j
,mi = fi + fi−1

(16)T̂ 0 = V̂ 1 = 3

n

∑n−1
i=0

(

miH
0
i + fiG

0
i

)

∑n−1
i=0

(

mi + fi
)

Fig. 5  An eigenpolyhedron for a valence-5 EP, where the black edges have knot intervals of 10, and the red edge has knot intervals of 1. a Using the 
approach in ref. [7]; b Using the proposed method
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Face point rule
The face point rule is defined with the help of an eigen-
polyhedron. According to the definition of an eigenpoly-
hedron, P̂1 = MP̂0 . Thus,

This equation has two functions with two unknowns αi, 
1 and αi, 2, which can be solved in the explicit form shown 
below. Let v1 = F̂1

i − V̂ 0, v2 = F̂1
i − Ê0

i  , v3 = F̂1
i − F̂0

i ,

v4 = F̂1
i − Ê0

i+1
,Si = 1

2
vi × vi+1,Ti = 1

2
vi−1 × vi+1, and 

D = T 2
1
+ T 2

2
+ 2S1S3 + 2S2S4, and thus

Edge point rule
The edge point rule can be similarly defined. Let

as

The above equation contains two functions with two 
unknown coefficients, βi, 1 and βi, 2, which can be solved 
using the same method.

Summarizing the above, the following steps constitut-
ing Algorithm 1 are used to obtain a new and improved 
non-uniform Catmull-Clark surface.

Results
This section presents some results of the improved sub-
division surface using Algorithm  1, and then illustrates 
the effectiveness of the proposed method. Compared 
with the method in ref. [7], the refinement in Algorithm 1 

(17)

F̂
1

i
= T̂ 0

+ 𝜆F̂
0

i

=

(

1 − 𝛼i,1

)(

1 − 𝛼i,2

)

V̂ 0
+ 𝛼i,1𝛼i,2F̂

0

i
+ 𝛼i,1

(

1 − 𝛼i,2

)

Ê
0

i
+

(

1 − 𝛼i,1

)

𝛼i,2Ê
0

i+1

αi,1 =
2S4

2S4 − T1 + T2 +
√
D
,αi,2 =

2S1

2S1 − T1 − T2 +
√
D

P1

i
=

(

1 − 𝛼i−1,1

)

V̂ 0
+ 𝛼i−1,1Ê

0

i−1

P
2

i
=

(

1 − 𝛼i,2

)

V̂ 0
+ 𝛼i,2Ê

0

i+1

P
3

i
=

(

1 − 𝛼i−1,1

)

Ê
0

i
+ 𝛼i−1,1F̂

0

i−1

P
3

i
=

(

1 − 𝛼i,2

)

Ê
0

i
+ 𝛼i,2F̂

0

i

(18)
Ê
1

i
= T̂ 0

+ 𝜆Ê
0

i

=

(

1 − 𝛽i,1

)(

1 − 𝛽i,2

) P
1

i
+V̂ 0

2
+ 𝛽i,1𝛽i,2

P4

i
+Ê

0

i

2

+ 𝛽i,2

(

1 − 𝛽i,1

) P
3

i
+Ê

0

i

2
+

(

1 − 𝛽i,2

)

𝛽i,1

P
2

i
+V̂ 0

2

recalculates the angles of the eigenpolyhedron, and the 
other processes are exactly the same as those in ref. [7]. 
However, the numerical results show that the newly 
developed algorithm can improve the quality of limit 
surfaces.

Figures 1, 6, 7, 8, 9 and 10 shows examples of blending 
functions with EPs of valence-3, 5, 7, and 8. The subdi-
vision surfaces prior to the improvement, as shown in 
these figures, were obtained using the method in ref. 
[7]. In addition, the improved surfaces are obtained 
after modifying the angles of the eigenpolyhedron 
according to the proposed approach. However, a large 
number of experiments have shown that the eigenpoly-
hedron technology can eliminate the poor performance 
of the two local maxima. When the difference between 
knot intervals is greater, if an equal-angle formula 
is used for the eigenpolyhedron design in ref. [7], the 
derivatives of the blending functions do not monotoni-
cally decrease within a neighborhood of the EP in the 
initial control mesh. The comparison results also show 
that the proposed method is more effective in improv-
ing the surface quality if the difference between knot 
intervals of the adjacent edges to the EP is larger. The 
differences in knot interval ratios are 100-times greater 
in Figs. 8 and 9. These results show that the improved 
method provides a surface as good as that in a uniform 
case. In addition, a situation in which there is a sig-
nificant difference in the knot interval ratios was also 
tested. Figure 7 shows a blending function of valence-5 
EP with knot intervals of 1, 1, 10,000, 10,000, and 
10,000. Compared with Fig. 1, it can be seen that when 
the knot interval ratios are extremely large, the eigen-
polyhedron design using an equal-angle formula makes 
the resulting surface behave quite clearly in the above 
problem, whereas the proposed eigenpolyhedron can 
solve this problem well.

When there is little difference between the knot inter-
vals, the curved surface obtained using the original 
equiangular eigenpolyhedron does not demonstrate any 
problems in the above comparison. The basis functions 
were tested at EPs of different valences, the results of 
which showed that the proposed method can retain this 
advantage. Examples of a valence-5 EP with knot inter-
vals of 1, 1, 1, 5, and 5 are shown in Fig. 10.

In geometric modeling, the application of the improved 
eigenpolyhedron method leads to improved models. 
Figure  11 shows a simple wedge model. The improve-
ment in the surface quality is mainly reflected in the EP 
of valence-3 within the mesh. The knot intervals corre-
sponding to one of the adjacent edges differ significantly 
from the knot intervals of the other edges in the mesh. 
The knot interval of the blue edge is 1, whereas that of 
the others is 20. It can be seen that the smoothing quality 
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of the resulting surface before the improvement of the 
eigenpolyhedron is insufficiently optimistic, whereas the 
quality of the improved surface is satisfactory.

Applying the proposed method to more complex 
industrial geometric modeling can also improve the 
quality of the subdivision surfaces. The left and middle 

images of Fig.  12 illustrate a car roof and guitar model, 
respectively, with an EP of valence-5 for each of the two 
models. The knot intervals in the mesh of the car roof 
model were assigned values according to the centripetal 
parameterization [25]. In the figure, there is a large dif-
ference between the knot intervals of the adjacent edges 

Fig. 6  Valence 3, with knot intervals of 1, 10, and 10. a Using the approach in ref. [7]; b Using the proposed method

Fig. 7  Valence 5, with knot intervals of 1, 1, 10,000, 10,000, and 10,000. a Using the approach in ref. [7]; b Using the proposed method

Fig. 8  Valence 7, with knot intervals of 100, 100, 1, 1, 100, 100, and 100. a Using the approach in ref. [7]; b Using the proposed method
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of the EP in each part of the car roof and guitar models. 
Although the surfaces obtained using the method in ref. 
[7] and the proposed approach are both G1, the improved 
surfaces of the latter are smoother. A complex model 
was also tested in which the knot intervals of the adja-
cent edges of the EP were significantly different, as shown 
on the right side of Fig. 12. In the selected space shuttle 

model part, there is an EP of valence-7, and the knot 
intervals are 5000, 1, 1, 5000, 5000, 5000, and 5000. It can 
be seen that the surface quality is obviously better than 
that prior to the improvement.

Conclusions
In this paper, it was specifically shown that different 
eigenpolyhedron designs from ref. [7] can improve the 
quality of subdivision surfaces. In addition, a system-
atic method was developed for designing the angles of 
the eigenpolyhedron. The effectiveness of this method 
was verified through numerical experiments. In particu-
lar, when the distance between adjacent edges at the EP 
is large, the proposed method significantly improves the 
surface quality.

Discussion
In the present study, only those angles in which the 
other construction is similar to that in ref. [7] were mod-
ified. Thus, the current implementation can be applied 
within the same framework as that used in ref. [7]. How-
ever, the same problems as those in ref. [7] occurred in 
the present study, the main one being that an analytical 

Fig. 9  Valence 8, with knot intervals of 100, 100, 1, 1, 100, 100, 1, and 1. a Using the approach in ref. [7]; b Using the proposed method

Fig. 10  Valence 5, with knot intervals of 1, 1, 1, 5, and 5. a Using the approach in ref. [7]; b Using the proposed method

Fig. 11  Wedge model
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proof for a single local maximum and continuous G1 
was unavailable. Thus, similar numerical experiments 
were conducted to verify these two statements. To ver-
ify the existence of a single local maximum, five levels 
of refinement were applied for each test case, and it was 
confirmed that the resulting control mesh had a single 
vertex whose z-coordinate was larger than that of all of 
the neighbors. An EP is tangent-continuous if the char-
acteristic ring is regular and injective. The regularity 
and injectivity were verified by subdividing the control 
mesh of the characteristic map several times and con-
ducting numerical tests to confirm that the determinant 
of the Jacobian matrix did not change its sign and that 
no nonlocal intersections occurred. A million different 
EPs were tested using randomly generated knot inter-
vals of [10−6, 1] and valences of n = 3, 5, 6, 7, and 8, and 
it was found that, in every case, the blending function 
had a single local maximum, i.e., G1.

In this paper, a surface quality improvement stud-
ied based only on the angle configuration factor was 
described. Improving the surface quality to achieve a 
class A surface requires further consideration. However, 
based on this study, a closed-form equation for the limit 
point of an EP, as well as the tangent vectors for the spoke 
curves, can be developed in future research, which will 
be helpful in developing an improved patching solution 
for non-uniform Catmull-Clark surfaces.
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