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Abstract 

Precise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace 
components. In the machining process, different batches of blanks have different residual stress distributions, which 
pose a significant challenge to machining deformation control. In this study, a reinforcement learning method for 
machining deformation control based on a meta-invariant feature space was developed. The proposed method uses 
a reinforcement-learning model to dynamically control the machining process by monitoring the deformation force. 
Moreover, combined with a meta-invariant feature space, the proposed method learns the internal relationship of the 
deformation control approaches under different stress distributions to achieve the machining deformation control of 
different batches of blanks. Finally, the experimental results show that the proposed method achieves better deforma-
tion control than the two existing benchmarking methods.
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Introduction
Structural aerospace components are pivotal compo-
nents of an aircraft. They are subjected to strict manu-
facturing standards to ensure improved assembly quality, 
service performance, product life, and other critical per-
formance criteria. However, because of the high material 
removal rate during machining of structural components, 
their large size, and complex residual stress distributions, 
severe deformation often occurs during their production 
and processing, for example, bending, twisting, or their 
combination [1]. The European Union spends 10 million 
euros yearly on the aerospace manufacturing industry to 
cope with machining deformation problems [2]. There-
fore, controlling the machining deformation of structural 

aerospace components is a critical and challenging prob-
lem in aviation manufacturing.

The deformation control of structural components for 
machining is shown in Fig. 1. Given a raw blank enclos-
ing the design part, the machining process removes the 
material between them (Fig.  1a). Because of the ini-
tial residual stress distribution in the blank (Fig.  1b), 
the machined part deforms. In particular, the degree of 
deformation is determined by the stress distribution 
of the blank and the relative position of the part within 
the blank [3], as shown in Figs.  1c and d. Nevertheless, 
the dimensions of the blank are larger than those of the 
part, providing a space for position adjustment. There-
fore, given a specific initial residual stress distribution of 
a blank, deformation control requires adjusting the part 
position in the blank to minimize the resultant deforma-
tion of the machined part.

Although the residual stress distribution of a blank 
can be obtained to predict and control the part defor-
mation, it is challenging to determine a general optimal 
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machining positioning approach tending to a general 
blank. This is because the stress distribution varies sig-
nificantly among blanks owing to different heat treat-
ment and prestretching parameters and the random 
error. Despite the development of traditional machining 
deformation control methods based on analytical and 
numerical modeling, these methods significantly depend 
on the prior residual stress and constitutive equations, 
both of which are difficult to obtain; thus, they cannot 
guarantee deformation control accuracy. As emerging 
data-acquisition techniques can collect a large amount of 
actual data during machining, it has become possible to 
develop data-driven approaches for solving manufactur-
ing problems [4], such as industrial robot grasping based 
on deep reinforcement learning [5], remaining service life 
prediction of machinery based on deep learning [6], and 
tool wear prediction based on causal inference [7]. Nev-
ertheless, the significant variations in blank materials and 
machining conditions make it challenging to adapt many 
existing data-driven methods to a specific machining 
deformation control problem.

To address these problems, the authors propose a rein-
forcement learning method for machining deformation 

control based on the meta-invariant feature space, 
which is a method for cross-condition learning based 
on meta-learning. Instead of measuring the stress distri-
butions in the entire blank, the deformation force [8, 9] 
is determined on a few monitoring points as the input. 
This approach reduces the problem complexity and 
fully utilizes the nonlinear mapping of machine learning 
between the force input and adjustment position output. 
A model can be established using a meta-invariant fea-
ture space by learning the underlying laws under different 
stress distributions. This enables the model to dynami-
cally adjust the machining allowance and determine the 
final machining position based on the online-monitored 
machining data. Before proceeding to the methodology, 
related work is reviewed first.

Related work
Machining deformation is an essential factor that affects 
the quality of parts, and its effective control has been 
investigated extensively. Relevant existing methods 
are divided into two categories: mechanism-based and 
data-driven.

Fig. 1  Influence of machining position on deformation of machined part
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Mechanism‑based methods
In mechanism-based methods for deformation con-
trol, the residual stress of the material to be machined is 
measured first, and machining deformation is then pre-
dicted by analytical or numerical modeling to adjust the 
process based on the predicted results. Wang et al. [10] 
used finite element software to simulate the removal pro-
cess of aluminum alloys and reported that the release 
and redistribution of residual stress is the main cause of 
machining deformation. Cerutti and Mocellin [11] con-
sidered the effect of the initial residual stress and used 
a numerical tool to analyze the effect of the machining 
sequence on machining deformation. Wang et  al. [12] 
developed a slope method to measure the residual stress 
of materials and controlled the deformation by optimiz-
ing the machining position. Wang et al. [13] established 
an analytical model for predicting the machining defor-
mation of multi-frame components based on an energy 
method and minimized the deformation by optimiz-
ing the cutting parameters using a cornstarch suspen-
sion. Li et  al. [14] established a deformation prediction 
model between the initial residual stress and finish-
ing allowance. They developed a linear-programming 
optimization model to optimize the overall machining 
deformation. Jiang et  al. [15] proposed a nonuniform 
allowance allocation method based on the interim state 
stiffness of machining features. Their proposed method 
can effectively improve the stiffness of a part and hence, 
reduce its deformation.

The accuracy of mechanism-based deformation con-
trol significantly depends on the accuracy of the residual 
stress measurements. Current methods for measuring 
residual stress include destructive and nondestructive 
test methods [16], but their accuracy and efficiency do 
not satisfy the high requirements of deformation predic-
tion and control.

Data‑driven methods
In the data-driven manufacturing era, the extensive 
growth of data has completely changed data collection 
and analysis methods [17]. Process control based on data 
monitoring during machining processes has gradually 
become effective for improving machining quality [18]. 
Bakker et al. [19] proposed a new fixture design concept 
in which the clamping force is controlled by combining 
sensors and active clamping elements to minimize the 
deformation of parts during manufacturing. Li et al. [20] 
developed responsive fixtures for monitoring and con-
trolling machining deformation. Hao et  al. [21] reduced 
machining deformation by controlling the machining 
sequence, pre-deformation [22], and machining allow-
ance allocation [23]. Gonzalo et  al. [24] developed an 

intelligent fixture to correct the machining deformation 
of parts by evaluating the reaction force of clamping 
points. However, as the machining deformation of parts 
is highly nonlinear with respect to the observed data, it 
is difficult to satisfy the accuracy and reliability require-
ments of deformation control by relying only on the 
monitoring data in current machining processes.

With the rapid development of automation, an increas-
ing number of tasks have relied on artificial intelligence 
applications [25]. Many machine-learning methods have 
been developed to characterize the nonlinearity of defor-
mation control. Reinforcement learning algorithms such 
as deep Q-networks (DQNs) [26] have attracted atten-
tion in industrial control systems [27], path planning 
[28], manufacturing scheduling [29], and other indus-
tries because of their excellent learning ability. Recently, 
a reinforcement learning algorithm has been applied to 
deformation control by dynamically selecting machining 
processes using monitored machining data [30]; however, 
its generalization to new problems is somewhat limited. 
To this end, transfer learning [31] applies learned knowl-
edge to new problems. For example, Alam et al. [32] and 
Liu et al. [33] used the transfer learning method to enable 
data-driven models to exhibit improved adaptability in 
learning the parameters of a manufacturing process and 
drilling-burr prediction, respectively. However, trans-
fer learning is not always effective when significant dif-
ferences exist between tasks. Meta-learning [34] is a 
learn-to-learn algorithm that shows satisfactory results 
in generalization to new tasks. Liu et  al. [35] proposed 
a meta-invariant feature space method to accurately 
predict tool wear across conditions with only a few new 
samples. Li et  al. [36] developed a multitask reinforce-
ment learning method combined with meta-learning that 
could enable an unmanned aerial vehicle to adapt to a 
new target motion mode faster with only a few training 
steps. Xiao et al. [37] used a meta-reinforcement learning 
algorithm to determine optimal machining parameters 
during turning. Liu et al. [38] proposed a meta-reinforce-
ment learning method that incorporated simulations 
with actual data for machining deformation control of 
the finishing machining process.

Inspired by the meta-learning method, a reinforcement 
learning method combined with a meta-invariant feature 
space is proposed in this study. The proposed method has 
distinct advantages over existing methods: (1) Two sub-
networks are established for the model to learn the invar-
iant features of the paired conditions; (2) An autoencoder 
is incorporated into the model, which can map the input 
to latent variables as invariant features; (3) Reinforce-
ment learning is incorporated into the model, which can 
dynamically control the machining positions; and (4) The 
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meta-model can learn the underlying and intrinsic fea-
tures under different stress distributions and control the 
machining deformation of different blanks.

Methods
As mentioned in the introduction, the residual stress 
distributions in different batches of blanks are different 
owing to the variation in blank material preparation, such 
as the heat treatment parameters and prestretching. In 
addition, perturbations of stress distributions occur in 
the same batch of blanks owing to random errors. In this 
study, these two reasons for distribution variations were 
considered. First, different groups for different material 
preparation parameters were set, and random perturba-
tions within each group were added to reflect the random 
errors within each batch. Next, the deformation forces on 
a few monitored points were selected as the input, and 
different batches were paired, that is, machining condi-
tions, using the maximum mean discrepancy (MMD) 
method. For each pair, a base-model consisting of two 
subnetworks was then established to learn its invari-
ant features. The learned model was combined with the 
principle of meta-invariant feature space [35] to make the 
model learn the intrinsic relationship guiding different 
batch control approaches to achieve stable and accurate 
decision-making. Finally, when facing a new machining 
task, the meta-model will use a small amount of moni-
toring data to fine-tune the model parameters to adapt to 
new tasks and achieve accurate machining deformation 
control. The flowchart of the proposed method is shown 
in Fig. 2.

The algorithm framework consists of base-models and 
a meta-model (Fig. 3). Each base-model learns a specific 
task, making process decisions according to a specific 
pair of machining conditions. First, the groups are paired. 
For each pair (S, T), a base-model is defined. Next, coop-
erative learning is applied to map the marginal distribu-
tions of S and T into an invariant feature space of the 

base-model, thereby closing the marginal distributions 
for different conditions. The base-model then passes the 
learned results to a meta-model. Finally, the meta-model 
learns more helpful information in related tasks from the 
obtained base-models to attain a meta-invariant feature 
space. In summary, the entire algorithm includes three 
aspects: condition pairing, base-model learning, and 
meta-model learning. Each aspect is described below.

Machining condition pairing
Before training the meta-invariant feature space model, 
the first step is to pair the machining conditions. In this 
study, MMD, the most widely used in marginal distribu-
tion adaptation, was used to measure the distance of the 
margin distribution between the two conditions. Specifi-
cally, for condition set {Cn}n=1,...,N under N conditions, 
the first condition, C1 , is selected as the current condition 
Ccur = C1 , and the MMDs between Ccur and the remain-
ing N-1 candidate conditions are calculated. The candi-
date condition, Ccan , which has the minimum MMD to 
Ccur , is paired with the current condition, for example, 
(Ccur, Ccan) . Next, Ccur is replaced by the just paired Ccan , 
and the new Ccur is paired with the remaining N-2 candi-
date conditions. This procedure is repeated until all con-
ditions are paired.

The S and T data samples are embedded into the repro-
duced kernel Hilbert space HZ to calculate the MMDs of 
both conditions, in which each function f  corresponds to 
a feature map. Let PT and PS denote the data distribu-
tions in S and T, respectively. The means of the data dis-
tributions, that is, µPS and µPT , are embedded under f  as 
follows.

Equation (1) represents the kernel concept that simpli-
fies the calculation of the feature space transformation. 
The square of the MMD between PT and PS can thus, be 
expressed as follows:

(1)�Pcon ∈ H
Z
s.t.Ex

�
f
�
= ⟨f ,�Pcon ⟩H,∀f ∈ H

Z
, con = S,T

Fig. 2  Flowchart of proposed method
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where xSi  is the ith sample from condition S, which is a 

vector, k xconi , xconj = exp −
�xconi −xconj �

2

2σ 2  represents 

the Gaussian kernel, F  is the function space of f, and m 
and n are the numbers of samples in S and T, 
respectively.

Base‑model learning
The monitoring data are somewhat different because 
of the different residual-stress distributions from dif-
ferent batches of blanks. The model trained only in a 
specific batch could not achieve an ideal deformation 
control effect in other batches. Therefore, an invari-
ant feature space [39] was designed in this study, into 
which the features under different distributions were 
transformed through collaborative learning of the rein-
forcement learning model under paired machining con-
ditions. Therefore, common features under different 
machining conditions were extracted to lay a foundation 

(2)

MMD2
�
PS ,PT ;F

�
=
�
sup

�
Ex

�
f
�
xS
��

− Ex

�
f
�
xT

����2

= ‖�PS − �PT ‖2
H

= ExS
i
,xS
j

�
k
�
xS
i
, xS

j

��
− 2ExS

i
,xT
j

�
k
�
xS
i
, xT

j

��
+ ExT

i
,xT
j

�
k
�
xT
i
, xT

j

��

=
1

m2

∑m

i,j=1
k
�
xS
i
, xS

j

�
−

2

mn

∑m,n

i,j=1
k
�
xS
i
, xT

j

�
+

1

n2

∑n

i,j=1
k
�
xT
i
, xT

j

�

for meta-learning to determine the intrinsic laws of the 
model. The invariant feature space model framework 
is shown in Fig.  4, and the parameters are defined as 
follows:

(1)	 SS and ST are the monitoring deformation force 
data of Agent_S and Agent_T, respectively;

(2)	 EnS and EnT are the encoding networks of Agent_S 
and Agent_T, respectively;

(3)	 ZS and ZT are the latent variables of Agent_S and 
Agent_T, respectively;

(4)	 DeS and DeT are the decoding networks of Agent_S 
and Agent_T, respectively;

(5)	 RLS and RLT are the reinforcement learning net-
works used for process decision-making of Agent_S 
and Agent_T, respectively;

(6)	 L1
S and L1

T are the reconstruction losses of monitor-
ing data SS and ST , respectively;

(7)	 L2
M is the match loss of the latent variables ZS and 

ZT ;
(8)	 L3

S and L3
T are the losses of reinforcement learning 

models RLS and RLT , respectively.

The base-model uses Agent_S and Agent_T to take 
machining decisions on conditions S and T, respec-
tively. First, states SS and ST are mapped onto latent 
variables ZS and ZT to construct the invariant feature 

Fig. 3  Learning framework of reinforcement learning method for machining position adjustment strategy based on meta-invariant feature space
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space through encoding networks EnS and EnT , respec-
tively. Simultaneously, decoding networks DeS and DeT 
are trained, forming an autoencoder whose outputs are 
S
′

S and S′

T , respectively, to ensure the reversibility of the 
mapping, that is, to retain the information of the input 
data as much as possible. The latent variables of the two 
autoencoders, ZS and ZT , are used to train the invariant 
feature space of the pair (S, T). The reinforcement learn-
ing models, RLS and RLT , then determine the machin-
ing processes according to latent variables ZS and ZT . In 
base-model learning, the loss function of the base-model 
comprises three parts: reconstruction, match, and rein-
forcement learning losses.

(1)	 Reconstruction loss:

	 Here, MSE denotes the mean square error.
(2)	 Match loss:

	 In Eq.  (5), l
�
ZS ,ZT

�
= 1 − cos

�
ZS ,ZT

�
=

‖ZS‖2∙‖ZT ‖2−ZS ∙ZT

‖ZS‖2∙‖ZT ‖2
 . 

The cosine distance is adopted as the metric dis-
tance between the latent variables rather than the 
absolute difference in length because the angular 
difference can reflect the characteristics of the 
encoded monitoring signal more effectively.

(3)	 Reinforcement learning loss:

(3)L
1
S = MSE(SS − S

′

S)

(4)L
1
T = MSE(ST − S

′

T )

(5)L
2
M =

1
∣

∣zS
∣

∣

∑

l(ZS ,ZT )

The reinforcement learning model for each condition 
was trained based on monitoring data and latent vari-
ables. During the machining process, the model deter-
mined the machining position to obtain the final part. In 
terms of implementation, the DQN algorithm was used 
in this study to achieve machining deformation control, 
in which the state, action, and reward are indispensable 
parts of the algorithm.

State
The deformation force can be monitored in real time 
during machining and contains deformation and stress 
information of the parts [8, 9]. By taking the position 
adjustment of a part as an example, the blank can be 
divided into two fixed process layers and one dynamic 
adjustment layer before machining [23], as shown in 
Fig. 5. The cavities of the fixed process layers are removed 
by multilayer rough machining, during which the defor-
mation force information can reflect the initial stress 
information of the blank. After machining the fixed pro-
cess layers, the dynamic adjustment layer is machined, 
during which the current machining position and defor-
mation force data represent the current machining state. 
Therefore, the state of reinforcement learning is a com-
bination of (1) the deformation force of the fixed pro-
cess layer, (2) current machining position of the dynamic 
adjustment layer, and (3) deformation force of the 
dynamic adjustment layer.

Action
The dynamic adjustment layer is divided into several sub-
layers with specific intervals; that is, several machining 
positions are determined, and each is regarded as an action.

Fig. 4  Base model with two subnetworks. Each subnetwork has an autoencoder and a reinforcement learning component
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Reward
The reward function represents the direction of training 
optimization. Because the deformation of the machined 
part increases with increasing deformation force, a low 
force is required for deformation control. Therefore, the 
negative maximum absolute value of the deformation 
force is considered the reward function for reinforcement 
learning:

where Fn is the deformation force of the nth monitor-
ing point during the machining process. When the defor-
mation force is large, the reward is small; thus, the model 
reduces the possibility of selecting this position.

The DQN model has two value functions with the 
same structure, but different parameters expressed as 
target_net and eval_net. eval_net is used to evaluate the 
greedy policy, whereas target_net is used to estimate 
its value. Therefore, based on the parameter-updating 
mechanism of the DQN model, the loss functions L3

S and 
L3
T of Agent_S and Agent_T can be expressed as follows, 

respectively:

where γ is a discount factor, rewardS and rewardT are 
the reward values obtained from Eq.  (6), maxQ

target
S  and 

maxQ
target
T  are the maximum Q values of target_net in the 

current state, and Qeval
S  and Qeval

T  are the Q values of eval_
net in the current state.

(6)reward = −max
n

|Fn|

(7)L
3
S = [rewardS + γ ∗maxQ

target
S − Qeval

S ]
2

(8)L
3
T = [rewardT + γ ∗maxQ

target
T − Qeval

T ]
2

Thus, the total loss function, L , is obtained by summing 
the loss functions of Eqs. (3)–(5), (7), and (8). Parameter 
θbase of this base-model can be trained and updated using 
the gradient descent method:

where α is the learning rate of the base-model, and 
∇θbase is the gradient with respect to θbase.

Meta‑model learning
The meta-learning method derives the law of deforma-
tion control from multiple tasks (pairs) to obtain a meta-
invariant feature space. This achieves the machining 
deformation control of different batches of blanks. The 
network structure of the meta-model is the same as that 
of the base-model, but the parameters are different. The 
meta-model can learn from different base-models and 
rapidly adapt to a new task with limited data. With the 
help of the meta-model memory, the historical experi-
ence of the base-models is stored for training and updat-
ing the meta-model parameters:

where θmeta is the meta-model parameter, β is the meta-
learning rate, ∇θmeta is the gradient with respect to θmeta , 
Ti is ith task, and p(T ) is the task distribution set.

The algorithm of the reinforcement learning method 
based on the meta-invariant feature space is outlined as 
follows.

(9)L = (L1
S + L

1
T )+ L

2
M + (L3

S + L
3
T )

(10)θbase = θbase − α∇θbaseL

(11)θmeta = θmeta − β∇θmeta

∑

Ti∼p(T )

LTi

Fig. 5  The layering diagram of a blank
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Algorithm 1  Reinforcement learning based on meta-invariant feature space

Results and discussion
Machining parameters and finite element settings
In this study, the deformation of the machined part 
was controlled by changing its position in the blank in 
the thickness direction, as shown in Figs.  1 and 5. The 
shapes of the three analogous parts are shown in Fig. 6b. 
The blank dimensions were the same for the three parts 
(Fig. 6a), whose material was 7075-T651 aluminum alloy. 
The thicknesses of the fixed process and dynamic adjust-
ment layers of the part were 10 and 9 mm, respectively 
(Fig. 6c).

The simulation was performed using ABAQUSTM . The 
meshing of the finite elements is shown in Fig. 7a, and the 
fixed restraints are shown in Fig. 7b. Regarding data col-
lection during machining, the deformation forces of the 
parts were probed at four monitoring points, as shown in 
Fig. 7b.

Initial residual‑stress distributions of different blanks
In this subsection, simulations of the initial residual-
stress distributions of different blank batches for moni-
toring the data collection are discussed. Aluminum alloys 
are generally prepared by hot rolling, quenching, stretch-
ing, aging, and other steps [40]. During quenching, sig-
nificant residual stress is generated, and the blank surface 
is under compressive stress, whereas the core is under 
tensile stress. A prestretching process is typically applied 
to reduce stress and induce 1%-3% plastic deformation to 
the blank on a stretching machine, thereby redistribut-
ing the residual stress in the thickness direction [41]. In 
this study, ABAQUSTM was used to simulate quenching 
and prestretching of the materials to obtain the resultant 
residual-stress distribution [42, 43].

The mechanical and thermophysical properties of 7075 
aluminum alloy were obtained from ref. [44]. The specific 
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preprocess is as follows. First, the material was heated to 
465–475 °C. Next, it was subjected to quenching in water 
at 25 °C and mechanically stretched, exhibiting a 1%–3% 
permanent plastic deformation. In the simulations, six 
groups with different parameter combinations were 
selected, and each group corresponded to a machining 

condition (working condition or batch). The tempera-
ture and mechanical stretching parameters are listed in 
Table 1.

Figure 8 shows the different residual stress fields of the 
six groups. Compressive stress existed near the blank sur-
face, and tensile stress existed in the interior, conforming 

Fig. 6  Schematic of blank and parts

Fig. 7  Machining parameters and finite element settings

Table 1  Heating temperature and mechanical stretching parameters for residual stress simulation

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Heating temperature 465 °C 470 °C 475 °C 465 °C 475 °C 465 °C

Stretching rate 1% 2% 3% 3% 1% 2%
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Fig. 8  Preparation parameters and residual-stress distributions of six groups of 7075 aluminum alloy

Table 2  Condition pairing of three test parts

Part 1 Condition pair Group 1 | Group 5 Group 5 | Group 2 Group 2 | Group 3 Group 3 | Group 4

MMD 0.900 6.257 5.562 0.335

Part 2 Condition pair Group 1 | Group 5 Group 5 | Group 2 Group 2 | Group 3 Group 3 | Group 4

MMD 0.850 6.168 5.575 0.306

Part 3 Condition pair Group 1 | Group 5 Group 5 | Group 2 Group 2 | Group 3 Group 3 | Group 4

MMD 0.820 6.111 5.499 0.289

Fig. 9  Convergence curves in training process of Part 1
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to the stress distribution. The six stress distribution 
groups were regarded as the stress field distributions of 
the six blank batches. However, the heating temperature 
and stretching amount varied within a specific range. 
Therefore, it was difficult to precisely control them at a 
constant value, which was a reason for the random differ-
ence in the stress field within the same batch. Assuming 
that this random error followed a normal distribution, the 
simulated stress distribution was adopted as mean µ in 
each group, and the field distributions were randomized 
using the standard deviation, σ = 10%× µ . Many sub-
conditions were then randomly sampled within this batch 
(in this study, there were 200 samples per group).

Machining condition pairing
For the implementation, Groups 1–5 were used to train 
the base-models and meta-model, whereas Group 6 was 
used for testing. For each group (batch), 200 stress distri-
butions were sampled. In each sample, the fixed process 
layer was further divided into five sublayers, which were 
sequentially machined. When machining each sublayer, 
four force probes at the monitoring points received the 
deformation force (Fig.  7b). Each sample had 5 × 4 = 20 
deformation forces, forming a vector x of length 20. Thus, 
each group contained 200 samples, forming a 200 × 20 
input data matrix. Before model training, the machining 
conditions were paired using the MMD obtained from 

Fig. 10  Convergence curves in training process of Part 2

Fig. 11  Convergence curves in training process of Part 3
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Eq. (2) based on the deformation force samples of the dif-
ferent parts, as listed in Table 2.

Model training
The base-models and meta-model were trained according 
to the pairing results. The convergence curves of Parts 1, 
2, and 3 plotted during the training are shown in Figs. 9, 
10, and 11, respectively. For the base-model training, the 
training error sharply fluctuated at the beginning because 
the reinforcement learning used a greedy strategy to 
randomly select actions during the initial stage. With 
increased training steps, all the base-models in the four 
pairs learned how to make correct decisions from expe-
rience; therefore, the training errors gradually decreased 
and eventually stabilized. The meta-model learned from 
the experience of the base-models. Despite the fluctuat-
ing errors in the later stage of the training curve owing 
to significant differences among the conditions, the 
meta-model converged gradually. Verification of the final 
deformation control performance is presented in the next 
subsection. Additional training steps can be incorporated 
to reduce training loss and improve convergence results.

Comparative verification and discussion
The proposed method is compared with the middle 
positioning method (that is, positioning the part in 
the middle position in the thickness direction) and the 
meta-reinforcement learning method [38] to verify the 
deformation control effect of the proposed method. We 
sampled 100 stress distributions from Group 6 as 100 
testing samples. Similar to the training stage, each sample 
obtained 20 deformation forces after machining the fixed 
process layer. For each testing sample vector from Group 
6, the MMDs between the sample and all input data 
matrices from other groups were first calculated, and the 
group with the minimum MMD was selected for pairing, 
for example, Group 3. Next, the base-model, which only 
tested the trained meta-model by assigning Groups 3 and 
6 as Agent_S and Agent_T, respectively, was skipped. 
Finally, the meta-model could rapidly generalise to this 

new pair and make correct machining position decisions. 
The machining deformation of each testing sample was 
defined as the maximum absolute value of the machin-
ing deformations probed at the four monitoring points in 
Fig. 7c.

The machining deformations of the 100 testing cases 
validated using these three algorithms are presented in 
the Appendix. These three methods are ranked as best 
position, suboptimal position, and worst position. The 
“best position,” “worst position,” and “sub-optimal posi-
tion” indicate the smallest deformation, largest defor-
mation, and somewhere in between, respectively. If two 
methods yield a similar deformation value, they rank the 
best or suboptimal position according to the value com-
pared to the third value. The ranks of the 100 samples for 
each method are shown in Fig. 12.

Based on the results of the comparative experiments, 
the proposed algorithm performed best in all three parts. 
Taking Part 1 as an example, the decision-making results 
of the proposed method are 91% for the optimal posi-
tion, 8% for the suboptimal position, and only 4% for the 
worst position. Compared with the other two methods, 
the decision-making results of the proposed meta-rein-
forcement learning method are 81% for the optimal posi-
tion and 19% for the suboptimal position. In contrast, 
those of the middle position method are 1% for the opti-
mal position, 95% for the suboptimal position, and 4% 
for the worst position. Similar conclusions can be drawn 
from Fig. 12 for the other two parts. From the controlling 
effect perspective, the proposed method not only exhibits 
the highest accuracy in controlling machining deforma-
tion but also shows good stability to the shape of a part. 
The meta-reinforcement learning method fares signifi-
cant worse in the third part than in the other two parts. 
However, the proposed method achieves improved and 
stable performance in all three parts, demonstrating that 
the proposed method learns the intrinsic laws govern-
ing stress distributions and can make correct and stable 
decisions.

Fig. 12  Deformation control effects of three methods on three test parts
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Conclusions
This study proposes a reinforcement learning method 
based on a meta-invariant feature space used to control 
machining deformation with different batches of blanks. 
The proposed method first establishes two subnetworks 
to learn the invariant features of the paired conditions 
through cooperative learning. A meta-model is then used 
to learn the essential laws governing the spatial changes 
in invariant features under multiple pairs of conditions 
based on the meta-learning principle. The meta-model 
can be adapted to achieve precise machining deformation 
control under new conditions with only a small amount 

of monitoring data. Compared to two benchmarking 
methods, the proposed method achieves improved defor-
mation control when a new batch of blanks is machined. 
Moreover, the proposed method can be valuable for solv-
ing other manufacturing problems caused by differences 
in task distribution.

In future studies, the efficiency of the model training 
should be considered. In addition, the proposed method 
was only verified in a simulation environment; although 
it is viable and practical, it must be validated based on 
physical machining experiments.

Appendix
The machining deformation produced by different strategies under 100 samples of stress distribution

Index Part 1 Part 2 Part 3

Proposed 
method (mm)

Meta-
reinforcement 
learning (mm)

Middle 
position (mm)

Proposed 
method (mm)

Meta-
reinforcement 
learning (mm)

Middle 
position (mm)

Proposed 
method (mm)

Meta-
reinforcement 
learning (mm)

Middle 
position (mm)

1 0.0239 0.0239 0.0405 0.0128 0.0128 0.0461 0.0336 0.0660 0.0336

2 0.0208 0.0208 0.0577 0.0148 0.0148 0.0501 0.0144 0.0316 0.0520

3 0.0192 0.0192 0.0580 0.0102 0.0102 0.0563 0.0132 0.0132 0.0513

4 0.0223 0.0223 0.0476 0.0159 0.0159 0.0697 0.0291 0.0678 0.0393

5 0.0213 0.0213 0.0441 0.0173 0.0173 0.0544 0.0281 0.0675 0.0369

6 0.0122 0.0122 0.0455 0.0238 0.0238 0.0520 0.0185 0.0373 0.0393

7 0.0127 0.0127 0.0473 0.0106 0.0331 0.0539 0.0193 0.0659 0.0409

8 0.0130 0.0130 0.0520 0.0260 0.0260 0.0276 0.0199 0.0573 0.0453

9 0.0240 0.0240 0.0459 0.0220 0.0220 0.0649 0.0301 0.0664 0.0386

10 0.0092 0.0092 0.0444 0.0229 0.0229 0.0482 0.0182 0.0542 0.0370

11 0.0220 0.0220 0.0591 0.0200 0.0200 0.0588 0.0351 0.0351 0.0514

12 0.0183 0.0183 0.0550 0.0124 0.0124 0.0481 0.0253 0.0603 0.0468

13 0.0111 0.0111 0.0495 0.0229 0.0229 0.0682 0.0139 0.0139 0.0433

14 0.0188 0.0188 0.0648 0.0134 0.0134 0.0428 0.0103 0.0579 0.0567

15 0.0140 0.0140 0.0458 0.0164 0.0164 0.0557 0.0114 0.0396 0.0400

16 0.0128 0.0128 0.0545 0.0085 0.0230 0.0489 0.0143 0.0421 0.0482

17 0.0165 0.0165 0.0639 0.0218 0.0218 0.0446 0.0121 0.0570 0.0557

18 0.0137 0.0137 0.0504 0.0132 0.0132 0.0664 0.0209 0.0550 0.0435

19 0.0127 0.0127 0.0525 0.0152 0.0461 0.0461 0.0205 0.0205 0.0450

20 0.0168 0.0168 0.0651 0.0122 0.0331 0.0461 0.0108 0.0505 0.0573

21 0.0352 0.0095 0.0352 0.0151 0.0151 0.0421 0.0169 0.0438 0.0305

22 0.0121 0.0121 0.0585 0.0151 0.0511 0.0570 0.0103 0.0103 0.0517

23 0.0149 0.0149 0.0431 0.0146 0.0146 0.0513 0.0209 0.0457 0.0371

24 0.0193 0.0604 0.0604 0.0258 0.0301 0.0258 0.0113 0.0113 0.0533

25 0.0111 0.0111 0.0515 0.0443 0.0151 0.0605 0.0138 0.0563 0.0440

26 0.0097 0.0097 0.0498 0.0148 0.0148 0.0601 0.0182 0.0182 0.0429

27 0.0136 0.0136 0.0581 0.0125 0.0125 0.0545 0.0104 0.0383 0.0508

28 0.0178 0.0580 0.0580 0.0196 0.0196 0.0488 0.0510 0.0543 0.0510

29 0.0122 0.0122 0.0573 0.0195 0.1160 0.0606 0.0189 0.0511 0.0501

30 0.0163 0.0163 0.0557 0.0131 0.0131 0.0529 0.0242 0.0242 0.0474
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Index Part 1 Part 2 Part 3

Proposed 
method (mm)

Meta-
reinforcement 
learning (mm)

Middle 
position (mm)

Proposed 
method (mm)

Meta-
reinforcement 
learning (mm)

Middle 
position (mm)

Proposed 
method (mm)

Meta-
reinforcement 
learning (mm)

Middle 
position (mm)

31 0.0146 0.0146 0.0600 0.0197 0.0197 0.0600 0.0524 0.0606 0.0524

32 0.0129 0.0129 0.0423 0.0125 0.0317 0.0675 0.0199 0.0503 0.0356

33 0.0195 0.0195 0.0487 0.0132 0.0132 0.0478 0.0262 0.0262 0.0411

34 0.0150 0.0150 0.0570 0.0119 0.0293 0.0568 0.0105 0.0105 0.0500

35 0.0253 0.0296 0.0253 0.0138 0.0138 0.0451 0.0196 0.0587 0.0196

36 0.0150 0.0449 0.0449 0.0185 0.0185 0.0568 0.0227 0.0227 0.0380

37 0.0150 0.0460 0.0460 0.0096 0.0283 0.0611 0.0598 0.0388 0.0388

38 0.0674 0.0124 0.0674 0.0265 0.0265 0.0785 0.0157 0.0410 0.0591

39 0.0243 0.0353 0.0590 0.0141 0.0432 0.0577 0.0282 0.0345 0.0526

40 0.0215 0.0215 0.0645 0.0208 0.0208 0.0482 0.0154 0.0381 0.0571

41 0.0394 0.0194 0.0597 0.0182 0.1061 0.0690 0.0123 0.0499 0.0524

42 0.0130 0.0130 0.0661 0.0151 0.0470 0.0570 0.0130 0.0518 0.0579

43 0.0154 0.0154 0.0550 0.0098 0.0098 0.0498 0.0225 0.0643 0.0469

44 0.0547 0.0146 0.0499 0.0117 0.0472 0.0522 0.0217 0.0628 0.0428

45 0.0129 0.0129 0.0443 0.0223 0.0223 0.0594 0.0206 0.0562 0.0372

46 0.0290 0.0290 0.0358 0.0095 0.0095 0.0533 0.0293 0.0342 0.0293

47 0.0176 0.0176 0.0558 0.0310 0.0310 0.0691 0.0257 0.0257 0.0470

48 0.0082 0.0486 0.0486 0.0143 0.0143 0.0588 0.0176 0.0176 0.0437

49 0.0142 0.0634 0.0634 0.0244 0.0354 0.0591 0.0132 0.0132 0.0549

50 0.0130 0.0130 0.0493 0.0539 0.0170 0.0533 0.0614 0.0614 0.0421

51 0.0442 0.0260 0.0442 0.0447 0.0290 0.0358 0.0329 0.0329 0.0368

52 0.0194 0.0194 0.0508 0.0103 0.0103 0.0360 0.0137 0.0330 0.0455

53 0.0202 0.0271 0.0271 0.0195 0.0195 0.0655 0.0221 0.0269 0.0221

54 0.0124 0.0124 0.0481 0.0146 0.0146 0.0465 0.0200 0.0482 0.0415

55 0.0148 0.0567 0.0567 0.0263 0.0263 0.0447 0.0150 0.0581 0.0494

56 0.0124 0.0124 0.0581 0.0189 0.0189 0.0555 0.0188 0.0444 0.0512

57 0.0306 0.0306 0.0687 0.0590 0.0346 0.0590 0.0617 0.0457 0.0617

58 0.0111 0.0111 0.0637 0.0132 0.0132 0.0506 0.0154 0.0504 0.0560

59 0.0290 0.0115 0.0564 0.0136 0.1143 0.0530 0.0155 0.0381 0.0505

60 0.0236 0.0284 0.0284 0.0152 0.0152 0.0571 0.0229 0.0562 0.0229

61 0.0260 0.0260 0.0443 0.0157 0.0157 0.0553 0.0334 0.0703 0.0371

62 0.0232 0.0232 0.0539 0.0266 0.0266 0.0454 0.0305 0.0305 0.0446

63 0.0183 0.0183 0.0602 0.0154 0.0154 0.0436 0.0131 0.0131 0.0523

64 0.0088 0.0493 0.0493 0.0598 0.0232 0.0598 0.0172 0.0172 0.0422

65 0.0097 0.0097 0.0614 0.0169 0.0169 0.0643 0.0167 0.0604 0.0540

66 0.0225 0.0594 0.0594 0.0231 0.0979 0.0600 0.0157 0.0157 0.0523

67 0.0146 0.0146 0.0600 0.0130 0.0130 0.0594 0.0096 0.0515 0.0535

68 0.0264 0.0452 0.0452 0.0130 0.0339 0.0547 0.0374 0.0340 0.0374

69 0.0099 0.0099 0.0532 0.0094 0.0498 0.0647 0.0165 0.0421 0.0458

70 0.0230 0.0230 0.0596 0.0241 0.0241 0.0548 0.0160 0.0453 0.0524

71 0.0126 0.0126 0.0500 0.0209 0.0209 0.0579 0.0131 0.0131 0.0435

72 0.0220 0.0220 0.0672 0.0124 0.0124 0.0581 0.0157 0.0515 0.0587

73 0.0346 0.0236 0.0708 0.0246 0.0246 0.0717 0.0169 0.0450 0.0638

74 0.0258 0.0274 0.0274 0.0123 0.0123 0.0574 0.0312 0.0546 0.0217

75 0.0092 0.0092 0.0530 0.0098 0.0480 0.0503 0.0457 0.0588 0.0457

76 0.0163 0.0163 0.0554 0.0118 0.0118 0.0645 0.0230 0.0561 0.0474

77 0.0081 0.0081 0.0570 0.0211 0.0211 0.0280 0.0164 0.0164 0.0489

78 0.0235 0.0235 0.0518 0.0260 0.0260 0.0442 0.0292 0.0622 0.0443
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Index Part 1 Part 2 Part 3

Proposed 
method (mm)

Meta-
reinforcement 
learning (mm)

Middle 
position (mm)

Proposed 
method (mm)

Meta-
reinforcement 
learning (mm)

Middle 
position (mm)

Proposed 
method (mm)

Meta-
reinforcement 
learning (mm)

Middle 
position (mm)

79 0.0602 0.0087 0.0602 0.0244 0.0244 0.0292 0.0143 0.0373 0.0528

80 0.0270 0.0270 0.0684 0.0275 0.0275 0.0689 0.0204 0.0457 0.0610

81 0.0101 0.0101 0.0562 0.0089 0.0089 0.0555 0.0190 0.0618 0.0475

82 0.0320 0.0320 0.0401 0.0431 0.0431 0.0660 0.0323 0.0323 0.0323

83 0.0260 0.0260 0.0781 0.0184 0.0451 0.0585 0.0184 0.0609 0.0696

84 0.0116 0.0116 0.0455 0.0084 0.0527 0.0499 0.0183 0.0420 0.0389

85 0.0150 0.0587 0.0587 0.0134 0.0134 0.0524 0.0429 0.0429 0.0514

86 0.0204 0.0204 0.0479 0.0165 0.0165 0.0556 0.0262 0.0605 0.0410

87 0.0088 0.0554 0.0554 0.0203 0.0203 0.0517 0.0152 0.0474 0.0492

88 0.0199 0.0199 0.0703 0.0157 0.0766 0.0456 0.0111 0.0620 0.0622

89 0.0181 0.0689 0.0689 0.0084 0.0084 0.0574 0.0105 0.0105 0.0610

90 0.0156 0.0156 0.0695 0.0244 0.0244 0.0463 0.0091 0.0091 0.0624

91 0.0137 0.0137 0.0573 0.0148 0.0591 0.0640 0.0125 0.0524 0.0503

92 0.0161 0.0161 0.0524 0.0329 0.0329 0.0410 0.0244 0.0623 0.0446

93 0.0268 0.0268 0.0349 0.0205 0.0205 0.0709 0.0277 0.0342 0.0277

94 0.0149 0.0149 0.0568 0.0132 0.0132 0.0495 0.0124 0.0568 0.0487

95 0.0148 0.0148 0.0417 0.0188 0.0188 0.0606 0.0221 0.0221 0.0349

96 0.0164 0.0164 0.0535 0.0521 0.0099 0.0616 0.0234 0.0508 0.0459

97 0.0087 0.0087 0.0640 0.0118 0.0118 0.0501 0.0171 0.0577 0.0555

98 0.0541 0.0122 0.0541 0.0277 0.0277 0.0358 0.0176 0.0397 0.0481

99 0.0127 0.0127 0.0521 0.0094 0.0438 0.0446 0.0203 0.0203 0.0448

100 0.0079 0.0495 0.0495 0.0245 0.0245 0.0411 0.0159 0.0159 0.0419

Abbreviations
MMD: Maximum mean discrepancy; DQN: Deep Q-network; MSE: Mean 
square error.
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