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Deep learning tomographic reconstruction 
through hierarchical decomposition of domain 
transforms
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Abstract 

Deep learning (DL) has shown unprecedented performance for many image analysis and image enhancement tasks. 
Yet, solving large-scale inverse problems like tomographic reconstruction remains challenging for DL. These prob-
lems involve non-local and space-variant integral transforms between the input and output domains, for which no 
efficient neural network models are readily available. A prior attempt to solve tomographic reconstruction problems 
with supervised learning relied on a brute-force fully connected network and only allowed reconstruction with a 1284 
system matrix size. This cannot practically scale to realistic data sizes such as 5124 and 5126 for three-dimensional 
datasets. Here we present a novel framework to solve such problems with DL by casting the original problem as a 
continuum of intermediate representations between the input and output domains. The original problem is broken 
down into a sequence of simpler transformations that can be well mapped onto an efficient hierarchical network 
architecture, with exponentially fewer parameters than a fully connected network would need. We applied the 
approach to computed tomography (CT) image reconstruction for a 5124 system matrix size. This work introduces a 
new kind of data-driven DL solver for full-size CT reconstruction without relying on the structure of direct (analytical) 
or iterative (numerical) inversion techniques. This work presents a feasibility demonstration of full-scale learnt recon-
struction, whereas more developments will be needed to demonstrate superiority relative to traditional reconstruction 
approaches. The proposed approach is also extendable to other imaging problems such as emission and magnetic 
resonance reconstruction. More broadly, hierarchical DL opens the door to a new class of solvers for general inverse 
problems, which could potentially lead to improved signal-to-noise ratio, spatial resolution and computational effi-
ciency in various areas.
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Introduction
The surge in deep learning (DL) imaging research in 
recent years has resulted in a plethora of applications and 
network architectures [1–5]. Most of these approaches 
can be categorized in two major areas:

Image analysis applications seek to make a deci-
sion or diagnosis. The input to the DL network is 

an image and the output is a discrete set of labels 
(Fig. 1a). All the voxels in the input image are indi-
rectly linked to the final labels through a com-
plex neural relationship. Examples of this category 
include the classification of images as cats and dogs 
[6] and the diagnosis of lesions in medical images as 
malignant or benign [7].
Image enhancement applications aim to improve the 
image in some context-dependent way. The input 
is an image; the output is another image (Fig.  1b). 
Input and output images are spatially ‘linked’ so the 
network exhibits a high degree of locality – input 
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values mostly affect only output values in their 
immediate vicinity – hence training is commonly 
performed with small image patches. In this cat-
egory, typical applications include image sharpening 
[8], image denoising [9–11], and semantic segmen-
tation [12, 13].

The focus of this paper will be a third category of appli-
cations  –  domain transforms. In these problems both 
input and output are relatively large datasets represented 
as two- or higher-dimensional arrays, but without a local 
spatial linkage between the two (Fig. 1c). This is the case 
for many inverse problems. The transform between the 
two domains may take the form of an integral transform 
and the spatial relationship between the input and out-
put may be non-local and shift-variant. Each input datum 
contributes to many output data and – vice versa – each 
output datum is defined by many input data. This cat-
egory includes the Fourier transform [14], tomographic 
reconstruction [15], and many inverse problems in geo-
science, physics, healthcare, and defense applications.

The challenge with this third category is the very high 
dimensionality of the neural networks. Unlike the other 
two categories of applications, it can be difficult or infea-
sible to train a network for the third category of appli-
cations. In matrix terminology, the absence of simple 
spatial linkage results in non-sparse matrices or non-con-
volutional matrices, making conventional neural network 
models less effective. A brute-force network model of 
such problems would result in an extremely high-dimen-
sional network, which poorly generalizes to large-scale 

problems. For example, using a dense network to model 
the transformation between two-dimensional (2D) 
images of size 512 × 512 would result in a number of net-
work weights on the order of 5124 ≈ 64 billion. This also 
explains why prior attempts to address the third category 
of problems using DL are typically limited to 64 × 64 or 
128 × 128 images [14, 15].

Here we present a hierarchical DL approach for the 
third category of problems along with a more broadly 
applicable hierarchical DL framework. Instead of using a 
brute-force neural network to model a high-dimensional 
and non-local domain transform, the proposed approach 
decomposes the transform into hierarchical stages via a 
sequence of intermediate data representations, where the 
transforms between the intermediate representation only 
employ local operations, which can be efficiently mapped 
to neural networks. Such hierarchical decomposition 
leads to exponentially fewer parameters than a fully con-
nected network would need. In matrix terminology, this 
is analogous to approximating a dense matrix by a prod-
uct of sparse matrices. In addition, we introduce the idea 
of training DL networks with computer simulated ran-
dom noise patterns, which overcomes the need for large 
amount of training data for supervised learning.

We apply the hierarchical DL framework to computed 
tomography (CT) reconstruction to show its feasibil-
ity in full-scale inverse problems. Until recently, all CT 
reconstruction algorithms could be categorized as direct 
reconstruction or iterative reconstruction. Direct recon-
struction approaches such as filtered backprojection 
(FBP) [16–18] have relatively low complexity and result 

Fig. 1  Schematic representation of DL for three categories of problems: image analysis (a), image enhancement (b) and domain transforms (such 
as Fourier transform) (c). Domain transform remains challenging for DL because there is no direct spatial linkage between the input and output 
domains, hence large-scale problems are usually infeasible to a neural network
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in perfect images under strongly idealized conditions. 
Iterative reconstruction approaches [19–21] can more 
effectively deal with noise and other non-idealities but 
have high computational complexity. The hierarchical 
DL framework proposed here replaces the entire domain 
transform by a data-driven learned inversion, and it 
is a radical change that does not rely on a conventional 
direct inversion or on an iterative data fit optimization. 
In other words, direct reconstruction relies on a math-
ematical inversion of a Radon transform or a cone-beam 
transform, and iterative reconstruction relies on numeri-
cal inversion of the same, while the proposed hierarchi-
cal reconstruction is a supervised learning method that 
belongs to neither of them. The use data-driven inversion 
techniques for image reconstruction opens the door to an 
entirely new third type of reconstruction [2].

To our knowledge, only a few groups have attempted 
to realize such pure data-driven DL CT reconstruc-
tion [15, 22]. The first and most prominent example is 
AUTOMAP [15], which is based on dense networks 
and thus are difficult to scale to full-size data. The hier-
archical approach we present here was conceived inde-
pendently of the AUTOMAP approach [23, 24]. Based 
on a novel hierarchical decomposition of the domain 
transform, the proposed approach has the advantage of 
being fundamentally scalable to full-size problems. In 
comparison, most other existing approaches that use DL 
for image reconstruction are limited to augmenting con-
ventional reconstruction algorithms instead of replac-
ing them, due to the high dimensionality associated with 
modeling domain transforms by neural networks. They 
often rely on a conventional reconstruction algorithm 
to produce an initial image or a conventional forward/
back projection operator to perform the domain trans-
form. Such DL-augmented signal processing components 
have been used in acceleration of iterative reconstruc-
tion [25], post-reconstruction image denoising or resto-
ration [9–11, 26], improved prior functions for Bayesian 
reconstruction [27, 28], unrolled iterative reconstruction 
[5, 29, 30], optimization of projection or image-domain 
filter weights [3], DL-based reconstruction with FBP-like 
processing pipeline [31–33] or stacked analytical back-
projection [34], and raw data analysis to bypass recon-
struction entirely [35]. However, these efforts did not aim 
to replace the entire domain transform by a data-driven 
supervised learning approach, and they still rely – at least 
in part – on the pipeline of conventional algorithms.

Since the proposed hierarchical reconstruction is a 
novel framework for modeling domain transforms, this 
paper focuses on the theoretical development and is 
limited to a feasibility study to demonstrate scalabil-
ity to full-scale 2D CT problems, as well as image qual-
ity equivalent with FBP reconstruction. In future work, 

the proposed computationally efficient networks can be 
augmented to model rich data-driven prior information 
and compete with state-of-the-art iterative methods or 
DL-augmented reconstructions in terms of image qual-
ity and dose-efficiency. The hierarchical framework is 
extendable to three dimensions and to other applications 
such as magnetic resonance reconstruction and emission 
reconstruction, although these extensions are not imple-
mented within the scope of this paper.

It is worth noting that the proposed hierarchical recon-
struction framework is not related to the previously 
published hierarchical projection and backprojection 
approach [36]. The latter is a fast, numerical implemen-
tation of a traditional component and is used as part of 
a direct or iterative reconstruction algorithm, while the 
proposed technique is an entirely new reconstruction 
framework.

Methods
General theory
Consider inverse problems whose forward models can be 
written in the form of the Fredholm integral equation of 
the first kind

The goal is to infer the function f (u) , given the kernel 
function K (u, v) and the observation p(v) . When the ker-
nel K (u, v) is non-local and space-variant, it is often dif-
ficult or impractical to model the solution with a neural 
network, especially for large-scale problems.

A complicated transform can sometimes be decom-
posed into a sequence of simpler hierarchical steps, pro-
viding an avenue for fast and efficient algorithms. Here 
we propose a new framework to make such problems 
more amenable to data-driven supervised learning. Since 
the major challenge of the problem are the non-local ker-
nels (hence a non-sparse network), we introduce a virtual 
intermediate data domain by applying a window function 
�(·) to the integration

where �(x) is a window function and �(x) = 1 for 
|x| < 0.5 and �(x) = 0 elsewhere, α is a scale factor con-
trolling the window size, and t is a parameter specifying 
the location of the window. By varying α , a continuum of 
intermediate representations between p(v) and f (u) (like 
a homotopy) can be defined. Both p(v) and f (u) can be 
viewed as marginal cases of qα(v, t) . In the limiting case 
that α → 0 , the window becomes a Dirac delta impulse, 
thus lim

�→0
q
�
(v, t) = K (t, v)f (t) and the integral vanishes. On the 

(1)p(v) = K (u, v)f (u)du

(2)qα(v, t) =

∫

K (u, v)f (u)�(
t − u

α
)du
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other hand, α → ∞ corresponds to an infinite window, 
making qα(v, t) equal to the original measurement p(v).

Although qα(v, t) represents virtual data that can-
not be physically measured, we propose that they can 
be synthesized and serve as intermediate steps in DL 
reconstruction. With progressively smaller integration 
window, α1 > α2 > · · · > αN  , the original problem may 
be decomposed into a series of incremental steps

Here qα(v, t) represents a continuum between p(v) and 
f (u) , and the incremental transitions from qαn(v, t) to 
qαn+1(v, t) possess a high degree of locality like a conven-
tional image enhancement task. This gives rise to a hier-
archical DL architecture that can tackle original domain 
transform problems by breaking them down to a hierar-
chy of simpler problems that are well-suited for imple-
mentation with neural networks.

Hierarchical CT reconstruction
Here we present a detailed example of applying the 
hierarchical framework for solving the problem of 
domain transform in CT reconstruction. The pur-
pose of CT reconstruction is to infer an image of the 
internal structure of an object from projection meas-
urements taken along various rays passing through 
the object. The CT forward model can be expressed 
in the form of the Fredholm equation, with the kernel 
K (u, v) = δ

(

uxcosvθ + uysinvθ − vr
)

 , where δ(·) is the 
Dirac delta function, u = (ux,uy) are the image-domain 
coordinates, and v = (vr , vθ ) are the projection-domain 
coordinates.. The kernel represents projection rays 

(3)p(v) → q
�1
(v, t) → q

�2
(v, t) → ⋯ → q

�N
(v, t) → f (u)

parameterized by an offset r and an angle θ in a 2D 
plane.

We define three data domains for hierarchical CT recon-
struction (Fig.  2). First, the original CT measurements 
p(r, θ) , namely the projections or sinogram, reside in the 
line integral domain. They represent the  line integrals 
with the original kernel over the entire length of the object. 
We introduce a coordinate system x–y and a second coor-
dinate system r–t, rotated by θ . The projection lines are 
parametrized by a radial distance r and a rotation angle θ , 
and in the three-dimensional (3D) case, also by a z-distance 
(or cone angle). There is no depth resolution along t since 
the line integrals are over the entire projection lines. Sec-
ond, the reconstructed image f (x, y) is represented in the 
regular voxel domain. A voxel value can be interpreted 
as a marginal case of a line integral, where the integral is 
only over the length of the voxel. The voxel values are para-
metrized by x - and y-coordinates or by r- and t-coordi-
nates, but there is no angular parameter because all voxels 
share the same angle; and in the 3D case also by a z-coor-
dinate. Finally, the proposed intermediate data qα(r, θ , t) 
are defined in the partial line integral domain, gener-
ated by restricting the line integral with a window function 
�(

−uxsinθ+vycosθ−t

α
) which corresponds to a line segment of 

length α centered at position t along the projection line. The 
partial line integrals are parameterized by a radial distance 
r , an in-plane rotation angle θ (but typically fewer rotation 
angles than in the line integral domain), and a depth t . The 
partial line integral is also associated with the parameter α , 
which specifies the width of the window function. Both the 
line integrals and the reconstructed voxels can be viewed as 
marginal cases of the partial line integrals.

Fig. 2  Partial line integrals are proposed as an intermediate representation between line integrals and image voxels, both of which being its 
marginal cases. The original CT measurements are line integrals over the entire length of the object. The reconstructed image is represented by the 
image voxels, which are essentially line integrals over the length of the voxel (except for a typical scale factor normalizing by the voxel size)
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With the intermediate domain defined, CT reconstruc-
tion may be viewed as a process that progressively solves 
for partial line integrals with shorter and shorter integra-
tion length, until regular image voxels are reached.

where α1 > α2 > · · · > αN . In the last step, the rota-
tion angle θ is sampled at angle zero so that the radial 
and depths coordinates (r, t) are identical to the spatial 
coordinates (x, y) . In the marginal case that αN reaches 
the desired size of the regular voxel, the partial line inte-
gral representation f (r, t) becomes identical to a regular 
reconstructed image f (x, y) . Such a decomposition of 
tomographic reconstruction into incremental stages gives 
rise to a novel hierarchical flow for CT reconstruction 
(Fig. 3). The input data are line integrals with various off-
sets and orientations, but without depth resolution. Then, 
the proposed network transforms line integrals into par-
tial line integrals, gaining depth resolution, while the 
number of angular sampling is reduced. Multiple inter-
mediate stages with progressively finer depth resolution 

(4)p(r, θ) → qα1(r, θ , t) → qα2(r, θ , t) → · · · → qαN (r, θ , t) → f (r, t) |θ=0

may be used (although only a single intermediate stage 
is shown in Fig.  3). Finally, the partial line integrals are 
transformed into regular image voxels as output, further 
gaining depth resolution. Overall, as data go through the 

hierarchy, the depth resolution increases, while the angu-
lar sampling density decreases, keeping the total amount 
of data approximately unchanged. Such a reconstruction 
may be viewed as a process that gradually trades angu-
lar resolution in the original sinogram for better depth 
resolution in a partial line integral domain and ultimately, 
generates the reconstructed image. Intuitively, the incre-
mental elementary reconstruction step is analogous to 
a limited-angle tomosynthesis reconstruction, where a 
coarse level of depth resolution can be estimated from 
only a few projections in adjacent angles. In hierarchi-
cal reconstruction such incremental reconstruction step 
is repeated to incorporate information from wider and 
wider angular ranges and ultimately produces a regular 
reconstructed image with isotropic spatial resolution.

Fig. 3  Illustration of the concept of hierarchical CT reconstruction. The diagrams in the outer ring represent the input data, i.e., line integrals at 
various rotation angles and radial offsets. The diagrams in the middle ring represent data in the intermediate domain, i.e., partial line integrals. The 
diagram at the center represents the output, i.e., the reconstructed image. The gray connections illustrate the flow of data through the network. 
As data go through the hierarchy, the depth resolution improves, while the number of angles decreases. The final reconstructed image is formed 
when the number of depth bins equals the desired size of the reconstructed image, and the number of angles reaches unity. The key benefit of 
hierarchical reconstruction is that the elementary reconstruction steps in each hierarchical stage are relatively localized, making it suitable for 
efficient implementation as neural networks. The red rectangles illustrate the localized correspondence across hierarchical stages
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The key benefit of this hierarchical framework is that 
the elementary reconstruction from one stage to the next 
is localized in terms of number of angular ranges, num-
ber of radial distances and number of depth positions 
considered. The estimation of the partial line integrals 
only requires the line integrals that are at nearby angu-
lar positions and nearby radial positions. Similarly, the 
estimation of the voxel values requires as inputs only the 
partial line integrals that are at nearby radial and depth 
positions (indicated by red rectangles in Fig.  3). Hence 
the hierarchical framework decomposes a large-scale, 
non-local transform in a series of incremental local 
transforms, making the algorithm suitable for efficient 
implementation with a neural network. In matrix termi-
nology, this decomposition is analogous to factorization 
of a large-scale dense matrix as the product of a series of 
sparse matrices.

Figure  4 shows the actual outputs from a hierarchical 
reconstruction network at different hierarchical stages 
for a realistic CT reconstruction example. (More details 
about the network architecture and training are provided 
in the next sections). The intermediate reconstructions 
are outputs from intermediate hierarchical layers and 
illustrate the inner workings of the hierarchical network. 
The original input sinogram gradually transforms into 
the final reconstructed image through a number of inter-
mediate representations. The intermediate images have 
non-isotropic voxel sizes with coarser resolution along 
the depth dimension (t) compared to the radial channel 
dimension (r). As reconstruction progresses, the inter-
mediate images become more isotropic and the num-
ber projection angles (or the number of partial images) 
decreases, until the final reconstructed image is formed.

Network structure
The results in Fig.  4 were generated by a feed forward 
network consisting of 5 hierarchical stages ( L1 to L5 ). 
The overall network structure is illustrated in Fig. 5. The 
input sinogram contains 512 parallel-beam CT detector 

channels and 512 projection angles equally spaced over 
360 degrees. The output image size is 512 × 512. As the 
reconstruction progresses through the hierarchy ( L1 
through L5 ), the number of angular bins is reduced, and 
the number of depth bins is increased, while the total 
size of data (#depths × #angles × #radial bins) remains 
constant. The data dimension at each hierarchical stage 
is shown in Table 1. These dimensions are chosen as an 
example illustration. For other CT geometries or when 
the sinogram dimension is not equal to the reconstructed 
image dimension, the specific data sizes in the radial, 
angular, and depth dimensions at each hierarchical stage 
should be properly chosen to allow a gradual transition 
from the sinogram dimension to the reconstructed image 
dimension. The ratio of the number of depth bins and 
projection angles between hierarchical stages do not have 
to be a power of two or an integer, because the network 
can be trained to perform resampling and interpolation 
of the data between hierarchical stages. The total size 
of data is preferably kept approximately constant across 
hierarchical stages to preserve all information from the 
original sinogram, but this is not a strict constraint. The 
implementation and evaluation of the hierarchical frame-
work for more general data dimensions and fan- or cone-
beam geometry can become an important topic of future 
study.

In this initial study, the elementary partial reconstruc-
tion in each hierarchical stage ( L1 to L5 ) is modeled as 
a linear transform. If each partial reconstruction were 
implemented by a fully connected network layer, this 
would require 5124 or 69 billion parameters per stage, 
which is unrealistic to implement and train. However, as 
mentioned earlier, the high dimensionality is overcome 
by the fact that the elementary partial reconstruction in 
each hierarchical stage is a local transform, thus most 
of the network weights are zeros and do not need to be 
stored or trained. In our implementation, L1 through 
L5 are implemented as customized “sparse connection” 
network layers, which are similar to fully connected 

Fig. 4  The progression of reconstruction through hierarchical stages. Two intermediate reconstructions are shown. All partial images at different 
rotation angles are stacked vertically for better visualization
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layers but only non-zero network weights are stored and 
trained. More specifically, in the sparse connection lay-
ers, each input neuron is only connected to a small neigh-
borhood of output neurons. In this work, we empirically 
chose the neighborhood size to be 3 depths × 5 angles 
× 3 radial bins. In the limiting case where the neighbor-
hood of each neuron is expanded to the full output data 
(e.g., for L3, this means 32 depths × 15 angles × 512 radial 
bins), the sparse connection layer would become a fully 
connected layer. We used the sparse matrix structure 
provided by Tensorflow to represent these sparse con-
nections. The network forward operator for the sparse 
connection layer is the product of the layer’s input data 
and the sparse matrix. Similarly, the network back propa-
gation operator is the product of the transpose of the 
sparse matrix and the backpropagated gradient. We did 
not enforce rotational symmetry or other constraints in 
the non-zero network weights, making the sparse layers 
very flexible in expressing more general operations. It is 

worth noting that the sparse connection layer is differ-
ent from a drop out layer, which removes output neurons 
instead of the connections between the input and output 
neurons of this layer.

Let n denotes the data dimension of the sparse con-
nection layer, in this case n = 512× 512 . The number 
of network parameters in each sparse connection layer 
is on the order of O(n) . Because the number of angles 
decreases exponentially from one hierarchical stage 
to the next, the total number of hierarchical stages is 
expected to be on the order of O(logn) . Multiplying these 
two factors, a hierarchical reconstruction network over-
all would require a number of network parameters on 
the order of O(nlogn) . This contrasts with a generic fully 
connected network, which would require O(n2) param-
eters and become intractable for realistic data sizes. In 
our implementation, all sparse connection layers ( L1 to 
L5 ) together used about 42 million trainable parameters, 
corresponding to only 0.06% of those in a fully connected 
layer of the same input and output dimensions ( 5124 or 
69 billion parameters). For the 3D case, the number of 
parameters of a fully connected network would be on 
the order of O(n3) ( 5126 or 18 quadrillion), where we 
estimate – by extrapolation – the proposed approach 
would require on the order of O(n2logn) or 21 billion 
parameters.

In this initial study, the network layer at stages L1 
through L5 used linear activation. The first layer was a 
sinogram domain convolutional layer with a filter kernel 
size of 512. The last four layers were image domain con-
volutional layers with 3 × 3 kernels and ReLU activation. 

Fig. 5  Network architecture for hierarchical CT reconstruction. Layers L1 through L5 are sparse connection layers that gradually transform the data 
from the sinogram domain to the image domain. Optional sinogram-, image-, or intermediate-domain convolutional layers can be incorporated to 
further optimize image quality

Table 1  Data dimension at each hierarchical stage

Hierarchical stage (L) Data dimension

#depth bins ( Nt) #proj. angles ( Nθ) #radial bins ( Nr)

L = 0 (line integrals) 1 512 512

L = 1 2 256 512

L = 2 8 64 512

L = 3 32 16 512

L = 4 128 4 512

L = 5 (image voxels) 512 1 512
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Optional convolutional layers and non-linear activation 
could also be inserted between hierarchical stages, which 
could be a topic for a follow up study.

Training
Mean squared error was used as the training loss. Sto-
chastic gradient descent with a batch size of 20 was used. 
The sparse connections were initialized with all ones and 
convolution kernels were initialized with the Glorot uni-
form initializer. All networks were implemented in Ten-
sorFlow with Keras frontend. Training was performed 
with a NVIDIA Tesla V100 GPU.

Training of the hierarchical network was first per-
formed with 200 realizations of computer generated 
white Gaussian random noise patterns and their cor-
responding distance-driven [37] forward projections. 
These data pairs encode the tomographic transform and 
thus can be used for training the inverse transform. We 
also analytically generated intermediate training labels 
for each hierarchical stage (partial line integrals) by FBP 
reconstructions onto the corresponding non-isotropic 
voxel grids at this stage. An instance of the training labels 
is shown in Fig. 6. (Alternatively, these intermediate data-
sets could be computed by reprojecting the noise images 
over partial line integrals). The sparse connection layers 
( L1 through L5 ) were first pre-trained individually, then 
an end-to-end training of the entire network was per-
formed (i.e., without intermediate training labels). The 
purpose of the pre-training is to initialize the weights 
in the sparse connection layers to a reasonable order of 
magnitude and reduce the total training time. The pre-
training did not affect the loss function for the final end-
to-end training. When trained end-to-end, to address the 
issue of vanishing gradients, a single network layer was 
updated at each training iteration, while the parameters 
of other network layers were frozen. The network layer 
being updated is randomly selected at each iteration. We 
did not include non-linear activation units in the network 
during the noise-based training, to constrain the network 

into learning a linear inverse operator without adversely 
learning the appearance of noise as prior information.

Following the noise-based training, the network was 
refined by an end-to-end training/validation with 200 
clinical CT images. The training pairs were obtained 
by reprojecting the clinical CT images with the same 
parallel-beam geometry and inserting random noise to 
emulate additional measurement noise. The non-linear 
activation units were included in the convolutional layers 
during the training with clinical images to learn the non-
linear prior information from the high-quality, low-noise 
clinical images. For testing, 50 additional clinical images 
were used, obtained the same way as the above training 
pairs, i.e., by reprojection and noise insertion. In this ini-
tial implementation, it took about 4  h to train the indi-
vidual layers in the pre-training step, and it took about a 
day for the end-to-end refinement.

Results
Figure  7 shows the loss function during end-to-end 
training with random noise patterns. Reasonable con-
vergence behavior is observed for both the training and 
the validation data sets. The validation loss is lower than 
the training loss because the validation dataset consists 
of clinical images, which contain more regular image fea-
tures instead of random noise patterns.

To visualize how the intermediate reconstruction steps 
work, an array of points was fed as the input to the sparse 
connection layer L5 (Fig. 8, left). These points are mapped 
to short line segments in various orientations at the out-
put (Fig. 8, right). This is because each point at the input 
of L5 represents a partial line integral in the intermediate 
data domain. It also illustrates that the elementary recon-
struction step has local-to-local correspondence between 
its input and output.

Figure  9 shows the final hierarchical DL reconstruc-
tions along with the corresponding FBP reconstructions 
and the original clinical images (prior to reprojection 
and noise insertion). Two versions of the hierarchical 

Fig. 6  An instance of the noise pattern realizations used for training labels for intermediate representation levels. For better visualization, partial 
reconstructions of the same hierarchical stage (for different angles) are stacked together vertically
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reconstruction, without and with the optional image-
domain convolutional layers, were compared. The hierar-
chical DL without the convolutional layers were trained 
only with the simulated noise patterns (Fig.  6), without 
any prior information from the clinical images. This net-
work is intended to show the feasibility of learning the 
CT reconstruction transform without any pre-conceived 
notion of emphasizing certain locations, frequencies or 
patterns. When tested with clinical CT images, the noise-
trained hierarchical reconstruction without the convolu-
tional layers is visually comparable to the FBP reference 
reconstruction, suggesting that the hierarchical network 

can effectively model the inverse Radon transform. In 
the second version of hierarchical reconstruction, con-
volutional layers were added to hierarchical DL network 
and further included clinical CT images in the training. 
As show in Fig.  9, the convolutional layers and addi-
tional training with clinical images further reduced noise 
in the hierarchical reconstruction relative to the FBP 
reconstruction.

Discussion
The results illustrate the feasibility of hierarchical DL for 
CT reconstruction and also provide some intuition about 
its inner working. The hierarchical decomposition frame-
work leads to a progressive transformation from many 
view angles to fewer view angles, while gaining depth 
resolution (Fig. 4). This illustrates the intuitive origin of 
the proposed approach, as humans also perceive some 
depth information from the limited stereoscopic range 
of the eyes [38]. Similarly, tomosynthesis imaging pro-
duces images with limited depth resolution from a lim-
ited angular view range [39]. The final hierarchical stage 
in our proposed framework is more commensurate with 
time-of-flight (TOF) PET reconstruction, where meas-
urements with some level of depth resolution (depend-
ing on the TOF timing resolution) provide higher quality 
reconstruction than traditional PET measurements [40].

This hierarchical framework effectively localizes each 
phase of the reconstruction in the sense that the recon-
structed variables in each hierarchical level only depend 
on a limited range of variables in the adjacent hierarchi-
cal levels, as illustrated in Fig.  8. Mathematically, this 
means that the respective matrix representations of the 
intermediate reconstruction steps are multiple orders of 

Fig. 7  Loss function of the hierarchical network when trained 
end-to-end with pure noise. The validation loss is lower than the 
training loss because the validation dataset consists of clinical images, 
which contain more typical image features rather than random noise 
patterns

Fig. 8  Visualization of the elementary reconstruction step at layer L5. Four partial images, each containing a row of points (left) were fed as input 
to layer L5 and the corresponding output (right) are displayed. Each point in the input is mapped to a small line segment corresponding to a partial 
line integral in the intermediate data domain
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magnitude smaller than the inverse of the system matrix 
of the full forward model, which we believe is the key to 
making learnt reconstruction possible for realistic data 
sizes. While our work so far was limited to (full-size) 2D 
datasets, the framework is extendable to three dimen-
sions. Because network connections between hierarchi-
cal levels are sparse, the computational complexity of 
our approach scales only linearly with data size, even for 
extension to three dimensions.

The image quality of the full-scale learnt CT recon-
struction visually matches that of FBP reconstruction, a 
technique that has been the gold-standard for decades. 
The new approach has a long runway ahead in terms of 
possible improvements. In future work, image quality 
will be improved by building on the proposed hierarchi-
cal framework and incorporating more advanced net-
work layers and training schemes, and further topics for 
development and evaluation may include more generic 
imaging geometries, metal artifacts in CT, and the data 
statistics and correction factors for emission reconstruc-
tion. We hope that it could eventually outperform state-
of-the-art direct and iterative reconstruction techniques 
and combine the best of both other classes of reconstruc-
tion, i.e., exceed the image quality of iterative recon-
struction at computation times below those of direct 
reconstruction.

We introduced the idea of training DL networks with 
computer simulated random noise patterns, overcom-
ing the needs for large amount of clinical training data 

for supervised learning. The rationale for using random 
noise images is rooted in the robustness of training the 
network without any pre-conceived notion of empha-
sizing certain locations, frequencies or patterns. The 
counter-argument is that this noise-based training does 
not teach the networks any prior information about what 
clinical images look like. In fact, it may steer the net-
work towards reconstructing noisy patterns, which is not 
a desired outcome. In other words, the noise-training 
approach is well-suited for training a network to robustly 
perform the inverse Radon transform. The incorporation 
of prior information has proven to be highly powerful, 
initially through Markov Random Field regularization 
techniques [41], later in approaches such as diction-
ary learning [42] and non-local means [43], and most 
recently in DL based priors [44–46]. Hence, we expect 
that the performance of the proposed hierarchical recon-
struction will be enhanced by relying entirely on a wide 
variety of high-quality clinical images and correspond-
ing noisy sinograms. Future research will include more 
extensive training, validation and comparison with state-
of-the-art iterative reconstruction and more traditional 
DL techniques.

In this study, non-linear activation was only used in the 
convolutional layers at the end of the network. However, 
as a future topic, convolutional layers and non-linear 
activations can be inserted between the sparse connec-
tion layers to incorporate non-linear prior information 
into the intermediate reconstruction domains. We except 

Fig. 9  Examples images of hierarchical reconstruction in comparison with reference reconstructions. Two anatomical slices are shown. Window 
width/level = 400/0 HU
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this to further improve the image quality of the proposed 
hierarchical reconstruction.

A key ingredient for the implementation of the pro-
posed hierarchical network is the sparse connection 
layers. These layers are a general tool for realizing trans-
forms with a high degree of locality without using a fully 
connected layer. In this study the sparse connections 
were based on an empirically pre-determined neighbor-
hood size in the intermediate data domain. The trade-
off between the neighborhood size (i.e., the sparsity of 
partial reconstruction steps) and the accuracy of recon-
structed image may be evaluated in the future. Another 
future research topic is that, instead of using predeter-
mined sparse connections, dynamic routing algorithms 
could be potentially used to prune or create connections 
during training and further optimize these connections.

While the hierarchical framework suggests rotational 
symmetries (Fig. 3), these were currently not yet explic-
itly exploited. In principle, DL network could be at one 
angle and redeployed at all angles. This should greatly 
improve training efficiency and further decrease net-
work dimensionality. This may be achieved manually or 
through more implicit structural changes and will be an 
interesting area for future research.

The proposed hierarchical framework is not limited 
to applications in CT reconstruction. Fourier-related 
transforms are another example that can be efficiently 
mapped to a neural network with the proposed hierar-
chical decomposition. To show this, one can express 
Fourier transform in the form of the Fredholm equa-
tion, with the integration kernel being K (u, v) = e−iuv . 
As shown in the previous analysis, a window function 
can be applied to the integral and define intermediate 
domains between input and output. Applying the win-
dow function to the Fourier transform gives rise to the 
short-time Fourier transform, thus the intermediate 
domain is essentially a time–frequency joint distribu-
tion of the input data. Due to the uncertainty principle, 
a wider time-window leads to coarser timing resolution 
but finer frequency resolution, and vice versa. By varying 
the window size one can obtain a progressive transform 
between the time- and frequency-domains, factoriz-
ing the Fourier transform into incremental steps, which 
can be more efficiently mapped to a deep neural net-
work than a brute-force fully connected network model 
(Fig. 10). We further notice that if the window function 
is widened by a factor of two at each hierarchical stage, 
the resulting data flow will resemble the classic radix-2 
fast Fourier transform (FFT) algorithm, thus should offer 
a similar order of savings in terms computational com-
plexity. It is conceivable that the hierarchical framework 
can be adapted to Fourier-related reconstructions such 
as MRI reconstruction. Overall, it is possible to extend 

the hierarchical framework to a wide range of image 
reconstruction problems.

More broadly, the proposed methodology can be gen-
eralized to other transforms or inverse problems, where 
the hierarchy can be defined explicitly (such as through 
Fredholm’s equation) or implicitly (through end-to-end 
learning and using dynamic routing algorithms to prune 
out connections). Similarly, the approach can be used to 
solve large sets of equations and for numerical decompo-
sition of large matrices.

Conclusions
We have presented a hierarchical approach to DL which 
enabled purely data-driven supervised-learning of CT 
reconstruction from full-size 2D data without relying 
on conventional analytical or iterative reconstruction 
algorithm structures. Sparse connection layers were 
introduced to implement the hierarchical network and 
reduce the dimensionality of the tomographic inversion 
problem. The network was partially trained with ran-
dom noise patterns that encode the transform of inter-
est. The image quality of these first learnt reconstruction 
results matches that of FBP reconstruction. In terms of 
computational cost, the hierarchical approach required 
only O(nlogn) parameters compared to O(n2) parameters 
as needed by a generic network, making the proposed 
approach scalable to large data dimensions. In theory 
such a hierarchical approach should require a smaller 
order of arithmetic operations than analytical FBP recon-
struction. The method opens the door to an entirely new 

Fig. 10  A hierarchical network to realize a Fourier transform. Each 
block represents a sparse network layer. The overall the dataflow 
resembles the classic radix-2 FFT
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type of reconstruction, which – with further improve-
ments – could potentially lead to a new breakthrough 
in the tradeoff between image quality and computa-
tional complexity. The proposed hierarchical decompo-
sition framework can be extended to Fourier transforms 
and other tomographic reconstruction problems. More 
broadly, it is conceivable to generalize the same meth-
odology for solving any large-scale inverse problems and 
matrix decompositions.
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