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Abstract 

In classical smoothed particle hydrodynamics (SPH) fluid simulation approaches, the smoothing length of Lagrangian 
particles is typically constant. One major disadvantage is the lack of adaptiveness, which may compromise accuracy 
in fluid regions such as splashes and surfaces. Attempts to address this problem used variable smoothing lengths. 
Yet the existing methods are computationally complex and non-efficient, because the smoothing length is typically 
calculated using iterative optimization. Here, we propose an efficient non-iterative SPH fluid simulation method with 
variable smoothing length (VSLSPH). VSLSPH correlates the smoothing length to the density change, and adaptively 
adjusts the smoothing length of particles with high accuracy and low computational cost, enabling large time steps. 
Our experimental results demonstrate the advantages of the VSLSPH approach in terms of its simulation accuracy and 
efficiency.
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Introduction
Fluid simulations are important in computer graph-
ics. Physics-based fluid simulation technologies, such 
as smoothed particle hydrodynamics (SPH) [1, 2], have 
been widely applied in feature films and computer games. 
As a Lagrangian particle-based method, SPH discretely 
samples a fluid into a group of particles. The physical 
quantities (e.g., density and velocity) at any location are 
interpolated using the neighboring fluid particles within a 
given distance. By storing the information about the par-
ticles’ physical quantities, computational resources focus 
on relevant fluid regions; hence, the simulation efficiency 
of SPH is usually higher than that of Eulerian grid-based 
methods [3, 4]. In SPH, the accuracy of interpolation is 

important for maintaining the stability and realism of the 
corresponding fluid simulations.

One of the main factors affecting the SPH interpolation 
accuracy is the smoothing length (i.e., the support radius 
of the smoothing kernel), which determines the number 
of neighboring particles involved in the interpolation. It 
is clear that the interpolation accuracy decreases when 
there are too few neighbors. Increasing the number of 
neighbors improves the accuracy, but at the cost of an 
exponential increase in the computational overhead. For 
these reasons, a constant support radius with an appro-
priate length (usually two to four times the particle 
radius) is usually chosen for these simulations [1, 5, 6].

However, a constant smoothing length has its own 
disadvantages owing to the lack of adaptiveness. Parti-
cles at splashes usually have fewer neighbors than those 
in steady regions, for example, places where the fluid 
is steady and far away from the free surface, when the 
smoothing length is fixed. An opposite situation arises 
in regions where the fluid motion is quite violent and 
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particles are compressed. Both these situations destabi-
lize simulations, reducing their accuracy.

Some attempts have been made to address the above 
problem using iterative optimization methods for deter-
mining optimal solutions, such as PCISPH [7], IISPH 
[8], and DFSPH [9, 10]. However, these iterative meth-
ods usually incur high computational costs. Variable 
smoothing-length methods have also been proposed [11] 
for addressing the adaptation problem, but interpolation 
processes have been iteration-based, negatively affecting 
the simulation efficiency.

Leveraging the relationship between the particles’ den-
sity and smoothing length, in this study, we propose a 
variable smoothing-length method with a non-iterative 
solution. By adaptively adjusting the smoothing length 
of fluid particles, the neighbors of each particle can be 
kept stable; hence, the interpolation accuracy is usually 
higher than that of the previously proposed constant 
smoothing-length methods. The proposed non-iterative 
equation is computationally more efficient than iteration-
based methods. With higher accuracy owing to the varia-
ble smoothing length, the simulation efficiency is further 
improved, owing to larger time steps.

In summary, the proposed non-iteration-based vari-
able smoothing-length method contains the following 
contributions.

1.	 A variable smoothing-length update scheme based 
on the particles’ density variation is proposed, which 
does not need to be solved by iterative optimization, 
ensuring high computational efficiency.

2.	 A symmetric interpolation kernel is used to ensure 
the force symmetry between particles with variable 
smoothing length, guaranteeing the method’s numer-
ical stability.

3.	 The smoothing length-update scheme is validated in 
extensive experiments, and its advantages are dem-
onstrated by comparison with several state-of-the-art 
methods.

Related work
Stability and efficiency of SPH
An improvement of the SPH computational accuracy is 
typically accompanied by an improvement of the corre-
sponding simulation stability [12, 13]. The improved sim-
ulation stability affords larger simulation time steps, thus 
improving the simulation efficiency. In computer graph-
ics, many classical SPH algorithms have been improved 
toward this objective.

Researchers have used various methods to improve 
the interpolation accuracy for calculating physical quan-
tities such as density and force. Density is an important 

physical parameter in simulations. Many studies in 
fluid simulations have attempted to modify the density 
changes of fluids to ensure the fluids’ incompressibility. 
Among them, the classical PCISPH method [7] corrects 
the displacement of particles using prediction and cor-
rection operations, yielding more stable particle density 
changes compared with the simple WCSPH method [14] 
(which uses the Tait equation for direct pressure compu-
tation). The PCISPH method affords several-fold longer 
time steps than the WCSPH method, owing to its bet-
ter simulation stability. The IISPH method [8] obtains a 
more accurate pressure field by solving the Poisson equa-
tion to maintain the density field as constant as possible. 
Compared with the WCSPH method, the IISPH method 
has a more uniform density field, higher incompressibil-
ity, and higher simulation stability. The DFSPH method 
[9, 10] improves the stability and efficiency of the simu-
lation process by constructing velocity fields without 
divergence or density changes. Wu et  al. [15] further 
improved the DFSPH method using the SOR method, to 
reduce the number of iterations for the pressure solver. 
In the above algorithms, iterative calculation processes 
are used to compute the physical quantities of interest. 
Although these algorithms allow increasing the time step 
to improve the simulation efficiency, the efficiency of 
these single-step simulations is significantly lower than 
that of the WCSPH method.

Yang et  al. [16] proposed a pairwise force smooth-
ing particle hydrodynamics model with a larger support 
radius than the standard SPH method and an anisotropic 
filtering term, to avoid particle aggregation on free sur-
faces, for improving the simulations’ stability. Weiler 
et  al. [17] proposed an implicit viscosity solver based 
on physical continuity, which outperformed previous 
methods in terms of physical accuracy and memory con-
sumption, thus enabling high-resolution complex fluid 
animations. Using a volumetric-centered SPH discre-
tization method, Band et  al. [18] proposed a boundary 
pressure-treatment method for the IISPH method that 
effectively reduced pressure oscillations at the boundary 
and afforded large time steps. Bender et al. [19, 20] pro-
posed a boundary processing method based on density 
maps, which improved the stability and authenticity of 
simulations. Gissler et al. [21] proposed a chain-type SPH 
pressure solver for strong fluid-structure interactions, 
which stabilized the processing of the fluid-structure 
interface and significantly reduced the computational 
overhead by affording larger time steps.

Adaptivity in SPH
The main objectives of all fluid simulations are to 
improve the simulations’ quality and efficiency. However, 
the two are often contradictory and difficult to ensure 
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simultaneously; thus, researchers have been using adap-
tive technologies to effectively allocate computational 
resources. In the temporal dimension, existing works [10, 
22–24] have mainly used the Courant–Friedrichs–Lewy 
condition to select optimal time steps, on the premise of 
maintaining the simulations’ numerical stability. In the 
following section, we discuss, in detail, adaptive tech-
niques in the spatial domain.

Using different-size particles to discretize the simulated 
areas and dynamically adjust the particles’ radii dur-
ing simulations enables adaptive allocation of computa-
tional resources to visually important areas. Keiser et al. 
[25] introduced a virtual particle-based multi-resolution 
coupling method to effectively split or merge particles, 
which increased the simulation speed up to six-fold. 
Adams et  al. [5] proposed a method based on skeleton 
extraction, and then used coarse particles near the fluid 
skeleton, while using fine particles in areas far away from 
the skeleton, which improved the efficiency by three to 
eight times. Zhang et al. [26] implemented adaptive fluid 
sampling in a graphics processing unit (GPU)-based SPH 
framework. Orthmann and Kolb [27] used fine particles 
to conduct high-resolution simulations at the bound-
ary of a multiphase flow, which improved the simulation 
accuracy. Winchenbach et al. [28] proposed an improved 
particle-splitting method that significantly improved 
stability during the particle-splitting process. Zhang 
et  al. [29] dynamically refined the target computational 
domain by capturing the boundary of the simulated fluid, 
and proposed a particle splitting/merging criterion to 
avoid chain reactions during splitting/merging. Recently, 
Winchenbach and Kolb [30] derived a discretized objec-
tive function to adaptively adjust the particles’ radii in 
very high volume ratio scenarios (i.e., 1:1000000, or 
higher).

In Eulerian fluid simulation methods, adaptive remesh-
ing can effectively improve the computational effi-
ciency. Nakanishi et  al. [31] proposed an adaptive PIC 
solver based on the radial basis function finite differ-
ence method to dynamically build a quadtree/octree in 
a narrow band near the liquid interface, maintaining the 
stability of the simulated system while reducing numeri-
cal dissipation and improving simulation accuracy. Xiao 
et al. [32] proposed an adaptive staggered tilted grid for 
incompressible flow simulations. Compared with a uni-
form Cartesian grid, adaptive grids can better discretize 
the complex simulation space, improving the simulation 
accuracy.

In addition to the field of computer graphics, some 
researchers in the field of computational physics have 
committed to the study of adaptive fluid simulation 
technologies. Qiang and Gao [11] proposed a method to 
adaptively determine the smoothing length of particles 

by combining changes in the particles’ density and the 
number of neighbors, but the iterative process for find-
ing solutions is rather time-consuming. Yang and Kong 
[33] determined the particle smoothing length adaptively, 
using various physical properties of the neighboring par-
ticles, such as density and pressure, but the stability of 
this method is poor, especially in the cases of violent fluid 
movements.

Methods
Classical SPH
As a Lagrangian method, the SPH method seeks to 
discretize the simulated fluid into a collection of parti-
cles in space. Accounting for inter-particle interactions 
and external forces, the fluid particles’ dynamics obey 
Newton’s second law. The motion of all the fluid parti-
cles constitutes the overall motion of the fluid. During a 
simulation, the physical properties of the fluid particles, 
such as the density and force, are calculated by interpo-
lation [3]:

where A represents the physical quantity to be computed, 
x represents the position of the particle, i and j denote the 
index of the particle, m is the mass of the particle, ρ is 
the particle density, W is the interpolation kernel, and h 
is the smoothing length of the particle.

In the interpolation calculation, the neighboring parti-
cles of a particle are determined by its smoothing length. 
The criterion for determining that particle j is a neighbor 
of particle i is that the Euclidean distance between parti-
cles i and j is less than the smoothing length h of particle 
i. When particle j is the neighbor of particle i, it influ-
ences the computation of the physical quantity of particle 
i through the above equation. Typically, the smoothing 
lengths are the same for all particles.

Before calculating the forces on a particle, it is neces-
sary to calculate an important physical quantity, namely 
the density of particles. Based on Eq.  1, the density of 
particle i can be calculated as follows:

After the particle density is obtained, the forces acting 
on the particles can be calculated. The forces acting on a 
particle generally include pressure, viscosity, and external 
forces. The pressure and viscosity forces are calculated as 
follows:

(1)A(xi) =
∑

j
mj

Aj

ρj
W

(

xi − xj , h
)

(2)ρ(xi) = jmjW xi − xj , h

(3)f
pressure
i = −

∑

j

mj
pj
ρj
∇W

(

xi − xj , h
)
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where p is the pressure, v is the velocity, and μ denotes 
the viscosity coefficient. ∇ and ∇2 are the gradient opera-
tor and the Laplacian operator, respectively.

The external force usually refers to gravity; therefore, 
the total force on particle i is:

(4)f
vis cos ity
i = µ

∑

j

mj
vj
ρj
∇2W

(

xi − xj , h
)

(5)fi = f
pressure
i + f

vis cos ity
i + ρig

Based on the above physical quantities, the acceleration 
and displacement of particles are calculated as follows:

where a represents acceleration and t is time.
The entire simulation process is summarized in 

Algorithm 1.

(6)ai =
dvi
dt

=
fi
ρi

(7)∆xi = (vi + ai∆t)∆t

Algorithm 1  Overview of traditional SPH method 

Overview of our method
In the SPH approach, physical quantities are discretely 
stored in Lagrangian fluid particles. During the simula-
tion, physical quantities, such as a particle’s density and 
velocity, are interpolated based on their values for the 
particle’s neighbors. The number of neighboring particles 
is determined by the smoothing length, which is typically 
constant. A fixed smoothing length can cause numeri-
cal instability because it tends to take fewer neighbors for 
interpolation at splashes and surfaces. Variable smooth-
ing-length methods [11, 33], in contrast, adaptively deter-
mine the smoothing length to maintain a constant number 
of neighboring fluid particles for interpolation (Fig.  1); 
however, their computational complexity is typically much 
higher, owing to their use of iterative optimization.

Aiming to improve the adaptiveness and efficiency 
of existing methods [11, 33], in this paper, we propose 
a variable smoothing-length method based on a non-
iterative solution. The novel method first defines a 
control equation that assumes the mass of neighbor-
ing particles to be static, and then deduces the variable 
smoothing length in a non-iterative manner. By adjust-
ing the number of neighboring particles directly and 
in a physically based manner, our method performs 
better in terms of the interpolation accuracy, and is 
more efficient because it only requires a non-iterative 
process to find the solution. Algorithm  2 provides an 
overview of our method, where the bold statements 
represent our improvements over the classical SPH 
method.
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Algorithm 2  Overview of our method 

Variable smoothing length
The main objective of our method is to adaptively 
maintain the number of neighbors constant. Because 
the mass of a fluid particle remains unchanged, our 
objective can be reformulated as keeping the total 
mass [34] msum of the particles in the neighborhood 
unchanged.

Suppose hi is the smoothing length of particle i, and ρi 
is its density; then, the total mass msum within its neigh-
borhood is

where D is the dimension of the simulated system. Here, 
σ = π when D = 2, and σ = 4/3π when D = 3.

(8)σhDi ρi = msum

Fig. 1  Illustration of the variable smoothing length concept. The smoothing length of particle i is the default value h owing to the uniform 
distribution of particles around it, while the smoothing length of particle j has to be expanded from h to hj to maintain sufficient number of 
neighbors, owing to the sparse distribution of neighboring particles
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Because the mass is conserved in our simulations, msum 
does not depend on time. Differentiating the above vol-
ume-density equation (i.e., Eq. 8) with respect to time t 
yields the following equation:

After eliminating the common factor σhD−1
i  , Eq. 9 can 

be further simplified into

By rearranging Eq.  10 and dividing both sides by Dρi, 
we finally obtain

The above equation can also be expressed as

Equation  12 establishes the relationship between the 
smoothing length and density and shows how they are 
connected to each other. Suppose the smoothing length 
and density of particle i are to be changed to h′i and ρ′i 
respectively after a time step dt (i.e., dhi = h′i − hi and 
dρi = ρ′i − ρi); then, we have

The above equation can be rearranged to

By multiplying both sides of the equation by hi, we get

In simulations, numerical errors inevitably occur, 
which causes the distribution of particles to become 
uneven and causes density changes. Our aim is to keep 
the density of particles stable by adjusting the smooth-
ing length of the particles. Therefore, the initial density 
of the particles (i.e., ρi) in the above formula can be set 
as the net density value ρ0, which is usually 1000 kg/m3. 
Finally, we obtain the following equation to compute the 
new smoothing length of particle i based on the density 
change:

where the current density ρ′
i of particle i is computed by 

interpolation from its neighboring particles [3, 9] using 
Eq. 2.

(9)σ

(

DhD−1
i

∂hi
∂t ρi + hDi

∂ρi
∂t

)

= 0

(10)D ∂hi
∂t ρi + hi

∂ρi
∂t = 0

(11)∂hi
∂t = −

1

D
hi
ρi

∂ρi
∂t

(12)dhi
dt

= −
1
D

hi
ρi

dρi
dt

(13)h′i−hi
hi

= −
1

D

ρ′i−ρi
ρi

(14)
h′i
hi

= 1−
1

D

(

ρ′i
ρi

− 1

)

(15)h′i =
[

1−
1

D

(

ρ′i
ρi

− 1

)]

hi

(16)h′i =
[

1−
1

D

(

ρ′i
ρ0

− 1

)]

hi

Using Eq.  16, the smoothing length is adaptively 
adjusted. For ρ′

i > ρ0 (i.e., when the interpolated density 
is too high and there are too many particles in the neigh-
borhood, we attempt to correct the error by decreasing 
the smoothing length based on Eq.  16. In contrast, for 
ρ′
i < ρ0 , we increase the smoothing length accordingly. 

Note that for ρ′
i = ρ0 , we have h′i = hi and no correction 

is required.
In addition, a significant advantage of Eq.  16 is that its 

calculation is simple and direct, and no iterative solution 
is needed. As will be shown in the Results and Discussion 
section, the computational cost of adjusting the smoothing 
length in our method is almost negligible compared with 
the time-consuming step of searching for nearest neighbors.

Symmetrical forces
To ensure the stability of the simulated system, the forces 
applied to the particles must satisfy Newton’s third 
law; that is, the force fij exerted by particle i on particle 
j should be equal to the force fji exerted by particle j on 
particle i, but in the opposite direction.

According to the proposed variable smoothing-length 
algorithm, each particle is assigned a unique smoothing 
length, which may cause instability. Suppose the smooth-
ing lengths of particles i and j are hi and hj respectively, hij 
is the larger value of hi and hj, and the Euclidean distance 
between the two particles is dij. When hi > dij > hj, particle j is 
considered to be the neighbor of particle i, and forces gener-
ated by particle j are applied to particle i. However, particle 
i is not considered as the neighbor of particle j in this case, 
and no force is exerted on particle j by particle i. As a result, 
the interaction between these two particles is asymmetrical, 
which does not conform to Newton’s third law.

To solve the above problem, inspired by the work 
in refs. [5, 9], we adopted a very effective strategy to 
form symmetrical forces between any pair of interact-
ing particles. For particles i and j, if and only if dij < hij, 
it is determined that particles i and j are neighbors. The 
interpolation weight is taken as the average of the weight 
obtained by taking hi and hj as the smoothing length. 
Specifically, the pressure and viscosity forces between the 
particles can be obtained using the following equations:

where Vi = m/ρi, Pi = k(ρi/ρ0 − 1) and k is a gas constant 
that depends on temperature [3].

(17)

f
pressure
i = −Vi

∑

j

Vj

(

Pi + Pj
)

∇Wij

∇Wij =
(

∇W
(

xi − xj , hi
)

+ ∇W
(

xi − xj , hj
))

/2

(18)

f
viscosity
i = µVi

∑

j

Vj

(

vj − vi
)

∇2Wij

∇2Wij =
(

∇2W
(

xi − xj , hi
)

+∇2W
(

xi − xj , hj
))

/2
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Results and discussion
In this section, we present the experimental results of 
our proposed variable smoothing length SPH method 
(VSLSPH), and compare them with those obtained 
using several state-of-the-art methods, including 

WCSPH [14], PCISPH [7], IISPH [8], and DFSPH [9, 
10]. All of the reported experiments were implemented 
using the open-source SPH library SPlisHSPlasH [35] 
on the same platform with an Intel i7-10700F CPU and 
16 GB RAM.

Fig. 2  Simulation of a 3D dam-break scene using VSLSPH (131328 particles), where the smoothing lengths of particles are shown by different 
colors, ranging from purple to red

Fig. 3  Simulations of a 2D dam-break scene (5476 particles) using different methods, where the number of neighbors per particle is shown by 
different colors, ranging from purple to red. Top: VSLSPH (the proposed method), WCSPH [14], and PCISPH [7]. Bottom: IISPH [8] and DFSPH [9, 10]
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Variable smooth length of VSLSPH
Our proposed VSLSPH method is advantageous for 
improving the accuracy of fluid simulations. Figure  2 
shows the result of a three-dimensional (3D) dam break 

simulation, where particles with different smoothing 
lengths are shown with different colors. After applying 
our method, the smoothing lengths of individual parti-
cles were adjusted adaptively. Evidently, the smoothing 

Fig. 4  Variation in the number of neighbors

Fig. 5  Simulation of water flow impacting a sculpture in ruins using the VSLSPH (top) and DFSPH [9, 10] (bottom) methods, with 20000 particles, 
where the number of neighbors per particle is shown by different colors, from purple to red. In the DFSPH case, many of the particles at the splash 
site are purple and the ones at the fluid surface are blue, while in the VSLSPH case, particles at the splash site are blue and the ones at the fluid 
surface are green, showing a better distribution of the number of neighbors
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lengths of the particles near the surface was clearly 
longer than for those in the liquid bulk, and particles in 
the splash area had even longer smoothing lengths. If 
required, more particles can be included in the interpo-
lation using our method, yielding even higher simulation 
accuracies.

Number of neighbors
Maintaining the number of neighboring particles within 
a reasonable and fixed range is key to ensuring stable 
SPH simulations. Figure  3 shows the simulation results 
of a two-dimensional (2D) dam-break scene using the 
VSLSPH, WCSPH, PCISPH, IISPH, and DFSPH meth-
ods, where particles with different numbers of neighbors 
are plotted using different colors. Evidently, the proposed 
method yielded the most satisfactory result, because the 
color distribution is very uniform, which means that 
the number of neighbors per particle remained very 

stable throughout the system. In contrast, the color dis-
tributions for the other methods are very heterogeneous, 
implying significant variation in the number of neigh-
bors, which can easily cause numerical instabilities.

To further demonstrate the effectiveness of our 
method, we quantitatively compared the variance in the 
number of neighboring particles during the entire simu-
lation, and the results are shown in Fig.  4. The average 
variance associated with the WCSPH method was the 
largest, implying significant changes in the number of 
particle neighbors. The other three methods that used 
a fixed smoothing length, namely the PCISPH, IISPH, 
and DFSPH methods, performed slightly better than the 
WCSPH method, but performed significantly worse than 
our proposed VSLSPH method, suggesting that our vari-
able smoothing-length scheme effectively maintained the 
number of neighbors.

Figure  5 shows the simulation results of the water 
flow impacting a sculpture in ruins, performed using 
the DFSPH method [9, 10] and the proposed VSLSPH 
method. In the DFSPH case, most of the particles at the 
splash site are purple and those at the fluid surface are 
blue, implying that the number of particle neighbors at 
these sites is too low. In the VSLSPH case, the color of 
many particles at the splash site changed from purple 
to blue, and the color of the particles at the fluid surface 
changed from blue to green. In other words, the pro-
posed method adaptively adjusted the smoothing length 
to obtain a more stable number of neighbors.

Fig. 6  Fluid density fields of a 2D dam-break scenario simulated using different SPH-based algorithms (5476 particles). Top: VSLSPH (currently 
proposed), WCSPH [14], and PCISPH [7] methods; Bottom: IISPH [8] and DFSPH [9, 10] methods

Table 1  Comparison of the simulation efficiency

Method Δt (s) tsim (ms/
step)

Tsim × 106 
(ms)

tns (ms/
step)

Speedup

WCSPH 0.00002 75.704 18.907375 31.5168 –

PCISPH 0.00030 152.793 2.547075 36.4349 7.42

IISPH 0.00100 448.026 2.240130 33.5886 8.44

DFSPH 0.00150 306.114 1.020890 34.1696 18.52

VSLSPH 0.00150 271.625 0.909942 222.2490 20.78
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Density
As discussed, density is a very important physical 
quantity in SPH fluid simulations and is involved in 
many interpolation calculations; therefore, an impor-
tant guarantee for improving the simulation accuracy 
is keeping the density of the entire fluid field stable. 
Figure  6 shows the fluid density field for a 2D dam-
break scenario, simulated using different SPH-based 

algorithms. Because the WCSPH method [14] sim-
ply used a state equation to calculate the pressure, 
the incompressibility of the fluid was difficult to guar-
antee, resulting in a very uneven distribution of the 
density field. The VSLSPH method, on the other hand, 
yielded a uniform density field using the proposed vari-
able smoothing-length scheme, which was competi-
tive with the results of the algorithms using iterative 

Fig. 7  Visual simulation of a fluid pouring into a water tank and gradually filling a container, using the VSLSPH method (10000 particles)

Fig. 8  Visual simulation of a fluid scouring a dragon-shaped obstacle, using the VSLSPH method (117649 particles)

Fig. 9  Visual simulation of a fluid flooding the ruins, using the VSLSPH method (200000 particles)
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density corrections, such as the PCISPH [7], IISPH [8], 
and DFSPH [9, 10] methods. Furthermore, as we show 
below, the simulation efficiency of the VSLSPH method 
was much higher than of the methods using iterative 
density corrections.

Simulation efficiency
In this section, we compare the simulation efficiency of 
the VSLSPH method with that of related methods, using 
the 3D dam-break scenario in Fig. 2 as an example. The 
overall fluid simulation time was 5 s, and the number 
of particles was 131328. Table  1 lists some parameters, 
where ∆t is the time step, tsim is the average time cost per 
step, Tsim is the time cost of the entire simulation (i.e., 
Tsim = 5.0/∆t ∗ tsim), tns is the average time cost of neigh-
bor-searching per step, and speedup is the speedup ratio 
of various algorithms over the entire simulation time 
Tsim, compared with the WCSPH method.

Although the average single-step simulation cost 
using the WCSPH method is the lowest, its time step 
is also the smallest to maintain the numerical stability, 
resulting in the highest overall simulation time at the 
end. Compared with the three methods based on itera-
tive density corrections (i.e., the PCISPH [7], IISPH 
[8], and DFSPH [9, 10] methods), the single-step simu-
lation time cost of the VSLSPH method ranked in the 
middle, but its time step could be as large as that of the 
DFSPH method, enabling the lowest time cost for the 
entire simulation. As a result, the VSLSPH method was 
the most efficient, with 20-fold higher efficiency than 
the WCSPH method.

Additional rendering results
In addition to the above simulation results, which were 
specifically used for analysis and comparison, we also 
used the VSLSPH method to simulate and render addi-
tional fluid animations, to further demonstrate its effec-
tiveness. Figure  7 shows the effect of fluid poured into 
a water tank and gradually filling a container. Figure  8 
shows the effect of water scouring a dragon-shaped 
obstacle, while Fig. 9 shows the rendering result for the 
scenario in which a fluid flooded the ruins, which is also 
shown in the particle view in Fig. 5. The numbers of par-
ticles in the above three scenarios were 10000, 117649, 
and 200000, respectively. The above rendering results 
reveal very rich fluid details, including splashes, water 
sprays, and breaking waves, while maintaining the stabil-
ity of the simulations.

Discussion
In computational physics, methods such as the one 
proposed by Qiang and Gao [11] also used variable 
smoothing length for SPH fluid simulations. However, 

these methods typically involve complex numeri-
cal solutions for high accuracy, and are mainly tested 
in 2D simulations, which are not suitable for 3D fluid 
animations in computer graphics, as considered in this 
study, because they have higher requirements on the 
simulation speed. Moreover, the method proposed 
by Qiang and Gao [11] is only suitable for simulat-
ing physical phenomena such as explosions and shock 
waves.

As shown in Table 1, for the three algorithms based on 
iterative density corrections (i.e., the PCISPH [7], IISPH 
[8], and DFSPH [9, 10] methods), the average time cost 
of neighbor search accounted for approximately 7%–25% 
(estimated as tns/tsim ∗ 100%) of the total cost of each step, 
and the main computational cost was the iterative opti-
mization process for determining optimal density correc-
tions. However, in the WCSPH and VSLSPH approaches, 
neighbor search incurred significant computational cost, 
reaching 81.82% for the VSLSPH method. The VSLSPH 
method uses variable smoothing length, and the com-
monly used fast neighbor-search methods (e.g., using 
auxiliary grids [1] or searching trees [36]) are no longer 
applicable; thus, neighbor search becomes very time-
consuming in the VSLSPH approach. The excessive com-
putational overhead of neighbor search is a limitation of 
our approach, and we leave it as an important problem to 
be solved in the future.

Conclusions and future work
In this paper, a non-iterative SPH fluid simulation 
method, called VSLSPH, was proposed for adaptively 
adjusting the smoothing length of particles, allowing to 
effectively maintain a stable number of particle neigh-
bors (especially on the fluid surface) and thus improv-
ing the simulation accuracy. In contrast to the existing 
methods based on iterative optimization to correct the 
particle density, our method establishes a direct connec-
tion between the smoothing length and density change, 
resulting in a very low computational cost and high simu-
lation efficiency.

As shown in our experiments, neighbor searching 
constitutes most of the computational overhead in the 
VSLSPH approach. One of the main tasks in the future 
will be to develop a fast neighbor-search algorithm for 
variable smoothing lengths, to improve the overall simu-
lation efficiency of the VSLSPH method. In addition, the 
GPU implementation of our algorithm is an interesting 
topic for future work.
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