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Over recent years, the importance of the patent literature has become increasingly more recognized in the aca-
demic setting. In the context of artificial intelligence, deep learning, and data sciences, patents are relevant to not
only industry but also academe and other communities. In this article, we focus on deep tomographic imaging and
perform a preliminary landscape analysis of the related patent literature. Our search tool is PatSeer. Our patent biblio-
metric data is summarized in various figures and tables. In particular, we qualitatively analyze key deep tomographic
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Introduction
With the advances of artificial intelligence (AI), deep
learning (DL) has emerged as a mainstream approach
with successful applications in many areas. Since 2016,
deep reconstruction or deep imaging methods have
been actively developed, especially in the field of medi-
cal imaging [1-3]. Promising results on medical imaging
are widely reported on diverse topics ranging from data
acquisition and processing [4], image reconstruction and
enhancement [5, 6] to radiomics and health analytics [7],
and more. Clearly, AI/DL is paving an exciting way to
improve or innovate medical imaging devices, and diag-
nostic and therapeutic procedures. With rigorous and
systematic assessment and regulation, Al imaging soft-
ware and devices may assist or compete effectively with
radiologists, eventually transforming the current model
of medical and healthcare practice in various aspects.
According to a 2020 press release from the Yole Group
(https://www.yolegroup.com/press-release/medic
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al-imaging-artificial-intelligence-changes-the-rules/),
“Al has the potential to change all of our diagnostics and
treatment procedures to enable more personalized and
effective medicine” “At Yole, we estimate the total market
in 2025 for software generated revenues through the sale
of Al tools will reach US$2.9 billion with a 36% CAGR
(Compound Annual Growth Rate) between 2019 and
2025 (Fig. 1). These revenues can be shared between the
main applications including improved image capture,
noise reduction, image reconstruction, screening, diagnos-
tic and treatment planning”

Given the huge commercial potential of Al-based imag-
ing technologies, intellectual property plays an increas-
ingly important role in the imaging industry, research
and user communities. In this context, for researchers
and developers, patent landscape analysis and literature
review are indispensable. To understand the landscape
of Al-based deep tomographic imaging technologies that
promise to be clinically relevant, we are motivated to sur-
vey relevant patent literature over the past decade or so.
As used herein, “patent literature” includes issued patents
and published patent applications (i.e., pre-grant patent
application publications). As further used herein, “pat-
ent documents” (“PGPubs”) are also used to mean patent
literature.
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Fig. 1 Al revenue of the medical imaging companies from 2015 to 2025 (adapted from www.yolegroup.com)

The rest of this paper is organized as follows. In the
second section, we present our methodology. Our main
patent search tool is PatSeer [8]. Our search strategy and
analysis methods are described in this section. In the
third section, we present our PatSeer search results in
figures and tables. While the third section is largely data-
driven, in the fourth section we analyze key deep tomo-
graphic patent documents aided by citation analysis. In
the last section, we discuss relevant issues and conclude
the paper.

Methods

Over recent years, the importance of patent literature
has become more recognized in the academic setting,
as evidenced by the establishment of the National Acad-
emy of Inventors in 2010. In the context of Al, DL, and
data science, patents are relevant to not only industry but
also academe and other communities. To perform our
landscape analysis of the patent literature on deep tomo-
graphic imaging, we used the patent search and analysis
tool PatSeer. We note that other patent search and analy-
sis tools are also available including, but not limited to,
AcclaimlIP (available from Anaqua), LexisNexis TotalPat-
ent One®, etc.

Specifically, the tool we used is PatSeer ProX, devel-
oped by Gridlogics. PatSeer ProX includes big-data ana-
lytic methods and performs relatively fast through, in
our opinion, a very user-friendly interface. We find that
the search rules used by PatSeer ProX are like those used
by Scopus. According to the PatSeer website, the Pat-
Seer ProX patent database covers more than 136-million

patent publications, and 96-million full-text records. Fur-
thermore, PatSeer maintains a scalable big-data platform
with Al-based semi-automated algorithms to process and
analyze raw data from over 300 sources.

As an illustration, with the “deep learning” as the
search phrase in the title, abstract and claim fields from
January 1, 2010 to the end of 2021 (TAC:("deep learning”)
AND PBD:[2010-01-01 TO 2021-12-31]), Figs. 2 and 3
were generated in seconds.

Results

Visualization of Patents on Deep Tomographic Imaging

In this section, we focus on our patent search results on
Al-based medical imaging techniques. Initially, we per-
formed keyword-based searches in the title, abstract and
claim fields but we obtained quite many irrelevant results.
For example, the inclusion of claims included French
PGPub FR2733596B1 [9] which only mentions ‘Ultra-
sound’ in the claims. As another example, International
PGPub WO0124700A1 [10] is for fingerprint detection.
As a result, our searches were limited to the title and
abstract fields only. After further deliberation, we defined
the following search expression: TA:(("machine learn-
ing" or "deep learning” or "deep nets” or "neural network”
or "deep network” or "deep neural network” or 'artificial
intelligence”) and ((raw data process* or "k-space data” or
"tomographic data” or "sinogram” or image reconstruct*
or post-process*) or ("image quality” or "artifact reduc-
tion" or “low dose scan” or “fast scan” or “under sample”
or “noise reduction”)) and (medical imag* or tomograph*
or "CT" or "computed tomography” or "PET" or "posi-
tron emission tomography” or "SPECT" or "single photon
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Fig. 2 Patenting trend in the field of DL. The chart shows filing and grant data, with the applications being plotted by filing date and the grants by
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Fig. 3 Distribution of inventors by country of residence. The left chart shows the number of records by the country of residence of inventors. The
right chart shows the number of records by the country where the application was filed. Note that a record is included in each unique country (the
same record may be repeatedly counted)

”

emission computed tomography” or "nuclear imaging”  overall expression but only describes a method to opti-

or "MRI" or "magnetic resonance” or "Ultrasonography” mize a display window, and US8086007B2 [12] describes

or "ultrasound” or "optical coherence tomography” or
"OCT") and not ("display apparatus” or assess*)), where
TA means in the title and abstract fields. Note that the
filter function, not ("display apparatus” or assess*), was
empirically added to exclude irrelevant hits; for exam-
ple, DE69031523D1 [11] matches the other parts of the

an image quality assessment method. In total, this search
yielded 757 records.

Figure 4 summarizes the numbers of patents per
application year grouped by the original assignee.
Figure 5 lists the top 10 most cited patents in this
domain. A few examples are described here. PGPub
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Fig. 5 Top 10 most cited issued patents and PGPubs in the domain of interest

US20180018757A1 describes a method to improve the
quality of the projection data using machine learning
(ML) models. International PGPub W(02017223560A1
[13] describes ML-based tomographic/tomosyn-
thetic techniques that use a neural network that
includes more than three layers and can be applied
to either raw data or initial image domains. PGPub
US2020034998A1 [14] is an example of DL for MRI
imaging, where a neural network model is used with
data consistency.

To assess the quality of an issued patent or published
patent application quantitatively, PatSeer provides a 360°
Quality metric, which is a weighted average of 4 con-
tributing scores. The contributing scores include Cita-
tion Quality (CQ), Market Quality (MQ), Legal Quality
(LQ) and Document Quality (DQ) [8]. CQ considers

the number, recency and type of forward citations of
a patent document. MQ is based on the patent family’s
global market coverage. LQ reflects how aggressive the
company protects the patent family. DQ measures the
intrinsic quality of a patent based on its structural ele-
ments. Then, the portfolio value index is defined as the
sum of the 360 Quality scores of all the patent families
present in a portfolio, which, according to Gridlogics, is
roughly proportional to the overall realizable value of the
portfolio.

Figure 6 shows the most valuable portfolios, accord-
ing to the PatSeer Quality metric. Among them, Generic
Electric Co (GE), Canon Inc and Siemens AG hold the
most valuable portfolios as industry leaders, while Rens-
selaer Polytechnic Institute (RPI), Zhengzhou University
and Stanford University are the academic leaders.
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Fig. 6 Most valuable portfolios (benchmarked by PatSeer's 360° score) showing top players with the highest portfolio value index

Analysis of Patents on Deep Tomographic Imaging
We work in the medical imaging field with diverse inter-
ests but with an emphasis on computed tomography
(CT). Given the broad view presented in the preced-
ing section, in this section we analyze further deep CT
reconstruction patent literature and other related tech-
nologies. This analysis provides a unique perspective
that will help us plan future research and development
activities. In the following sub-sections, we analyze pat-
ent literature based on specific applications and select
representative patent documents for analysis. Tables 1, 2
and 3 list related patent documents and further include
brief comments.

Tomographic image reconstruction
DL has significant implications for tomographic image
reconstruction, as first described in our perspective
paper on deep imaging [1]. Our perspective paper pre-
sents three specific examples with simulation results; i.e.,
CT image super-resolution, singogram quality improve-
ment, and CT image denoising. More generally, when
a dataset is truncated, for example, in cases of limited-
angle, few-view and interior or local reconstruction, or
an image is distorted or comprised by artifacts, including
metal artifact, scatter artifact, motion artifact and beam-
hardening effect, a synergistic combination of conven-
tional tomographic methods and DL-based imaging may
enhance image quality and diagnostic performance.

An international patent application (PGPub
W02017223560A1) [13] was filed with a priority
date of June 24, 2016, describing tomographic image

reconstruction systems and methods based on DL tech-
niques. This PGPub discloses a general framework for
image reconstruction from raw data directly or from
an intermediate reconstructed image with the DL/
ML approach, suggesting a potential for deep tomo-
graphic reconstruction to surpass classic reconstruction
algorithms.

Another published international patent application
(PGPub W0O2019074879A1) [15] is directed to image
reconstruction with DL/ML. The approach involves a ML
model training process and use of the trained model for
image generation. The ML model training may use mul-
tiple images generated from a single set of tomographic
projections or images. The trained model may be used
to generate a final image from the projection data, which
is a less computationally intensive algorithm. The issued
patent US10475214B2 [16] uses ML to solve tomographic
reconstruction problems, which are usually in large scale
and are space variant while correcting various artifacts.
International PGPub W02018126396A1 [17] presents
DL-based raw data correction and estimation for tomo-
graphic reconstruction.

International PGPub W02019060843A1 [18] discloses
an image reconstruction method using a ML regular-
izer. Specifically, an iterative reconstruction technique
can incorporate a ML model as a regularization fil-
ter for the image reconstruction. International PGPub
W02018236748A1 [19] describes an image reconstruc-
tion scheme using DL/ML for tomographic imaging. The
method first produces a plurality of intermediate images
using iterative reconstruction method and furthermore
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transforms selected intermediate images using a deep-
learning based quasi-projection operator to a regularized
intermediate image.

PGPub US2018/0018757A1 [20] discloses a tech-
nique for improving projection data via DL/ML. The
method transforms projection data from low-quality
projection to higher quality, and performs image recon-
struction from the improved projection images. A DL
model is trained from matched pairs of lower-quality
(lower-dose) and corresponding higher-quality (higher-
dose) projection data and used to transform lower-
quality (lower-dose) projection data to higher-quality
(higher-dose) ones after training is finished. PGPub
US2020311878A1 [21] describes a feature-aware DL
method for image reconstruction. A neural network
model is trained to perform feature-aware recon-
struction using a target image for spatially-dependent
denoising and artifact suppression.

The last technology we comment on is virtual mon-
ochromatic CT image reconstruction. International
PGPub WO02019067524A1 [22] discloses process-
ing current-integrating data and images via ML to
produce virtual monochromatic images. The neural
network is configured to learn a nonlinear function
to map a CT image reconstructed from projection
data collected in a current-integrating X-ray detec-
tor to an image reconstructed from a virtual mono-
chromatic projection dataset at a pre-specified kVp
energy. The technique realizes monochromatic CT
imaging and overcomes the beam hardening problem.
PGPub US2020196973A1 [23] discloses an apparatus
and method for a dual-energy CT system which uses
sparse kVp-switching to collect data and a DL method

(2023) 6:3
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to reconstruct the image. The deep network is fed with
images that include artifacts and is trained to output
images with little or no artifacts. Another deep net-
work model can be trained to perform material decom-
position from the artifact-free images.

Artifact reduction

Metal artifact reduction is one of the remaining problems
in the CT field. European PGPub EP3743889A1 [24] dis-
closes using DL to reduce metal artifacts. The neural net-
work model is trained to generate a metal artifact image
and generate a new image by subtracting the estimated
metal artifacts from the input image. A relatively high
number of patent documents target the same problem.
Figure 7 lists some of them, ordered according to the
number of forward citations.

The German PGPub DE102017219307B4 and Chinese
PGPub CN109727203B [25, 26] describe a system and
method for compensating motion artifacts via ML. The
technology relates to an automatic compensation method
for motion artifacts in a medical image. The technology
further relates to a method of automatically identify-
ing motion artifacts, and includes a compensation unit,
a learning device, and a controlling device for medical
imaging. A number of patent documents address this
problem, as shown in Fig. 8, ranked according to the
number of forward citations.

The Japanese PGPub (JP2020534929A) [27] presents
a DL-based scattering correction for X-ray imaging. A
neural network is trained with a Mone Carlo simulated
imaging data. This simulation includes at least the X-ray
photon scattering mechanism that contaminates CT data
with scattering noise. The neural network model learns

Cited by patent count

WO 20207033355 A1 [

US2021/0012543 A1 I

CN 110675461 A I

CN 110335666 A I

CN 108596861 A | —

Us2020/0311878 A1 | —

CN 109472754 A | —

0 0.5 1

1.5 2 2.5 3 3.5

Fig. 7 Most often cited patent documents related to CT metal artifact reduction, ranked by the number of forward citations
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Fig. 8 Most cited patent documents on CT motion artifact reduction, ranked by the number of forward citations

to remove the scattering noise in the CT data. After CT
data are corrected by removing scatters in the projection
space, the image reconstruction is performed to gener-
ate a scattering-corrected CT image. Scatter correction is
also important for positron emission tomography (PET)
imaging. A number of patent documents exist related
to DL-based scatter correction for either CT or PET, as
shown in Fig. 9.

Image analysis, radiomics and rawdiomics

International PGPub WO2018232388A1 [28] uses
neural networks to integrate tomographic image
reconstruction and radiomic analysis. CT screening,

diagnosis or image analysis tasks are often performed
with separate neural networks and algorithms. Inte-
grating these elements into an end-to-end workflow
may streamline the whole process and optimize the
task-specific performance. As we know, while deep
reconstruction is for image formation from raw data,
image analysis or radiomics is for image analysis. Thus,
the claimed integration of image reconstruction and
image analysis is referred to as ‘rawdiomics, where
‘rawd’ means raw data, and ‘i’ indicates images or infor-
matics. International PGPub W0O2018/220089A1 [29]
applies DL/ML to raw medical imaging data analysis for
clinical decision support. The techniques are intended

Cited by patent count

CN 110221421 A -
CN 110660111 A ==
CN 108872091 A
CN 110197516 A
CN 109765192 A
WO 2019/103354 A1
WO 2019/063760 Al
US 2018/0330233 Al
US2019/0066268 Al
CN 107516330 A

o

2
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Fig. 9 Most cited patent documents on CT/PET scattering correction, ranked by the number of forward citations
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for medical diagnosis from raw imaging data generated
by a medical imaging machine with or without conven-
tional image reconstruction.

Discussion and conclusions

First of all, we underline that although PatSeer ProX has
provided useful information, we are still on the learning
curve. We are not familiar with all of the functions and
terminology of the PatSeer ProX tool. As a result, we
believe that hidden information in the PatSeer dataset
can be further mined. While we believe that we have
obtained valuable data in this study, omissions and
biases are unavoidable, due to the imperfect coverage
of the database, dynamic nature of the field, and our
limited capabilities. We apologize if we have made any
misinterpretations.

Despite any problems possibly existing in this prelim-
inary patent landscape analysis, we have learned signifi-
cantly, facilitated by PatSeer ProX. Clearly, research and
development in deep tomographic imaging has a strong
momentum, engages both imaging companies and aca-
demic groups, and promises lasting impact on the fur-
ther research and development as well as market and
healthcare. Since the field of deep tomographic imaging
is relatively young, more results and data are yet to be
collected and analyzed to reveal the patent dynamics in
terms of licensing, revenue, and translated outcomes.
Also, it may be very informative to use PatSeer ProX,
or similar tools, to identify and track emerging areas of
Al-based imaging activities.

In conclusion, we have performed a preliminary land-
scape analysis on patent literature dedicated to deep
tomographic imaging. Using the PatSeer ProX tool, we
have systematically collected and analyzed relevant bib-
liometric data, and commented on representative deep
tomographic imaging patent documents. Finally, we have
discussed several issues and future work on these inter-
esting topics.

Abbreviations

Al Artificial intelligence

ML Machine learning

DL Deep learning

cQ Citation Quality

MQ Market Quality

LQ Legal Quality

DQ Document Quality

RPI Rensselaer Polytechnic Institute
GE Generic Electric Co

cT Computed tomography

2D Two-dimensional

3D Three-dimensional

FBP Filtered backprojection

SPECT Single photon emission computed tomograph

PET Positron emission tomography
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