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Abstract 

This study presents a robustness optimization method for rapid prototyping (RP) of functional artifacts based on visu-
alized computing digital twins (VCDT). A generalized multiobjective robustness optimization model for RP of scheme 
design prototype was first built, where thermal, structural, and multidisciplinary knowledge could be integrated for 
visualization. To implement visualized computing, the membership function of fuzzy decision-making was optimized 
using a genetic algorithm. Transient thermodynamic, structural statics, and flow field analyses were conducted, 
especially for glass fiber composite materials, which have the characteristics of high strength, corrosion resistance, 
temperature resistance, dimensional stability, and electrical insulation. An electrothermal experiment was performed 
by measuring the temperature and changes in temperature during RP. Infrared thermographs were obtained using 
thermal field measurements to determine the temperature distribution. A numerical analysis of a lightweight ribbed 
ergonomic artifact is presented to illustrate the VCDT. Moreover, manufacturability was verified based on a thermal-
solid coupled finite element analysis. The physical experiment and practice proved that the proposed VCDT provided 
a robust design paradigm for a layered RP between the steady balance of electrothermal regulation and manufactur-
ing efficacy under hybrid uncertainties.

Keywords  Robustness optimization design, Rapid prototyping, Functional artifacts, Fuzzy decision-making, Infrared 
thermographs, Visualized computing digital twins

Introduction
In recent years, in the field of rapid prototyping (RP), 
most composite materials have been formed layer-by-
layer via thermal energy fields without mold patterns. 
Therefore, the energy distribution of parts is very impor-
tant for fabrication performance [1, 2]. The study of tem-
perature distribution is helpful in reducing heat loss, 
improving processing efficiency, and saving energy.

The change in the RP process puts forward higher 
requirements for the applicability of materials. RP 
includes fused deposition modeling (FDM) and fused 
filament fabrication. Different processing technologies 
have diversified the requirements for processing envi-
ronments, and different printing materials have differ-
ent physical properties [3, 4]. It is necessary to consider 
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the differences in the properties of these materials when 
designing the printing parameters. In particular, in a 
thermodynamic simulation, different materials exhibit 
different responses to the control signal. Therefore, the 
rapid response to the heating signal has become a key 
factor affecting the processing efficiency and environ-
mental emissions of composite material RP [5, 6].

One of the key research points concerning the improve-
ment in the RP process performance is the realization 
of the RP heating temperature. The accurate control of 
temperature provides the basis for the reconstruction of 
biological tissue structures with activity [7]. Researchers 
[8] have studied the effect of temperature on the emission 
rate of microparticles in the printing process of FDM and 
observed that the emission rate of particles was higher at 
higher working temperatures.

Carbon fiber composites have new applications in 3D 
printing. Kuncius et al. [9] improved the FDM production 
technology for continuous carbon fiber composites. Hou 
et al. [10] proposed a 3D printing technology for continu-
ous fiber-reinforced thermoplastic composites that con-
trolled the content of printed fibers. Li et al. [11] replaced 
the traditional resistance heating method with microwave 
heating to achieve faster production of continuous carbon-
fiber-reinforced plastic. Mohammadizadeh and Fidan 
[12] studied the effects of fiber parameters on the tensile 
properties of manufactured components. Kubota et al. [13] 
conducted tensile tests on samples with different stacking 
directions and studied the influence of the printing path.

In addition to the significant influence of the materials on 
the manufacturing process, the control scheme also deter-
mines the molding effect. An optimization algorithm that 
considers robustness can make the system operate under 
the interference of uncertain factors. Recently, some stud-
ies have been conducted on robust optimization in RP. 
The 3D printing parameters play a decisive role in printing 
quality. Different materials can be used as uncertainty fac-
tors to study the robustness of printing quality [14]. Mate-
rial uncertainty is also used to evaluate the robustness of 
the optimal compliance design in additive manufacturing 
[15]. Naserifar et al. [16] studied the impact of 3D printing 
of stretchable aggregates on the robustness of wearable skin 
devices. Robustness is also an important factor considered 
in complex multiobjective optimization problems. Ehrgott 
et  al. [17] applied robust optimization of multiobjective 
uncertainty to a practical field and studied the impact of 
weather on agricultural harvest. Gaspar-Cunha and Covas 
[18] used a multiobjective evolutionary algorithm to evalu-
ate the robustness of research issues. Kotireddy et al. [19] 
used a genetic algorithm (GA) to improve the computa-
tional efficiency of multiobjective optimization consider-
ing uncertainty. The robustness of the design is guaranteed, 
and the calculation cost is reduced.

An increasing number of visualization technologies 
have been developed and applied for the visual presenta-
tion of digital twins (DTs), by which a physical object can 
be mapped into the real world and digitized in the form 
of software modeling. In particular, the development of 
DT technology makes real-time prediction, interaction, 
and visualization possible. Saiz et  al. [20] optimized the 
robustness of visual defect segmentation using a genera-
tive adversarial network. Burch et al. [21] considered user 
interactions when implementing dynamic visualization of 
graphs. Fahd and Venkatraman [22] attempted to model 
unstructured data using visualization.

With the aim of improving printing efficiency for 
mixed-material 3D printing, by considering previous 
works [23–27]  on rapid manufacturing verification of 
product conceptual design entities, researchers continue 
to investigate an approach to robust RP. Accordingly, this 
study proposes a robustness design method for the RP of 
fiber-reinforced composites based on visualized comput-
ing digital twins (VCDTs). The main difference between 
the well-known DT and VCDT is that the latter can inte-
grate thermal, structural, and multidisciplinary knowl-
edge for computed visualization.

Methods
Experimental methods
Multiobjective robustness optimization for RP
In the process of robust optimization, the randomness of 
the genetic operators may cause the generated individu-
als to fail to meet the requirements of the control model. 
The generated parameter combination must be robustly 
optimized to eliminate individuals that do not meet 
the constraint conditions prior to calculating the fit-
ness function. Robustness optimization considering the 
uncertainty model satisfies Eq. (1).

where the X vector can have 16 control variables, and ξ 
is the uncertain parameter,  f and g are objective function 
and constraint function respectively.

In the robust optimization of RP, the uncertain factors 
are the temperatures of the printing materials and envi-
ronment. Upon applying a GA to fuzzy theory, the itera-
tive population becomes more stable and efficient after 
considering the robustness of the system.

Genetic operator and population iteration of membership 
function
In fuzzy theory, the membership function is the key fac-
tor in determining the input signal identification and 

(1)

minf (X , ξ) ∀ξ ∈ U

X = [x1, x2, . . . , xn]
T n ∈ Z+

s.t. xil ≤ xi ≤ xiu
g(X , ξ) ≤ 0
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processing of the control system. This maladaptive lim-
itation can be overcome by using a GA that can iterate 
the membership function. The problem of system insta-
bility introduced by random parameters can be solved 
by applying the theory of robust optimization to the GA. 
After the controlled parameter variables are determined, 
the appropriate fitness function is selected as the evalua-
tion index. Considering the error e of each measurement 
and relative error ec of the two adjacent measurements 
in the control process, performance index J is defined as 
shown in Eq. (2).

where T is the sampling time, and n is the number of 
sampling points corresponding to the parameter group. 
The purpose of the algorithm is to optimize the perfor-
mance index J using the genetic theory. The random-
ness of parameter selection may cause the performance 
index to have a magnitude difference; therefore, the fit-
ness function F  is more appropriate to represent the per-
formance of each group of parameters. In contrast to the 
performance index J  , the fitness function F  is positively 
correlated with the fitness of the parameter group. It is 
defined as follows:

where P is the scale coefficient, and J is the performance 
index.

After robust control is considered, the population is 
iteratively optimized. In previous research [25], the mem-
bership function was defined according to expert expe-
rience. It was defined as the membership rule of initial 
standardization. The fitness function of the response 
obtained by the control algorithm based on this rule is 
defined as a unit value, from which the value of the pro-
portional coefficient P can be determined. According to 
the calculations, when the proportional coefficient P in 
Eq.  (3) is obtained, the default fitness function value of 
the initial membership function model response can be 
obtained, and it is determined as the value of P. A popu-
lation with high volumes of individuals is randomly gen-
erated as the initial population, and the fitness of each 
individual is calculated separately. The optimal schemes 
are compared and converged through the selection, 
crossover, and mutation steps. The best individual pres-
ervation and roulette methods can be used for the selec-
tion. The two individuals with the highest fitness in each 
generation are directly selected to enter the next gen-
eration, and a number of individuals with higher fitness 
are then randomly selected to cross or mutate using this 

(2)J = T

n
∑

i=1

[e(i)2 + ec(i)
2]

1/2

(3)F =
P

1+ J

genetic operator to obtain a new population. The overall 
flow of the algorithm is illustrated in Fig. 1.

Electrothermal regulating design of multimaterial RP
Thermodynamic equilibrium for conduction of RP
Regardless of the functional artifact M, axis-aligned 
bounding boxes (AABBs) can be generated to define 
the scale of the manifold structure itself. The mechani-
cal stroke lengths xb, yb, zb of the AABBs along the x, y, z 
directions, respectively, can be calculated. Thus, any 
point Q can be represented in terms of its relative posi-
tion ratio in the AABB.

The maximum print space for a printer along the x, y, z 
directions are xp, yp, zp , respectively. In the printing coor-
dinate system, the normalized height hn of the ith layer 
can be defined as follows:

Glass fiber composite materials for functional requirements
Glass fiber (GF) is an inorganic nonmetallic material with 
excellent performance, which has the advantages of good 
insulation, strong heat resistance, good corrosion resist-
ance, and high mechanical strength. GF is usually used as 
reinforcement material, electrical insulation material, or 
thermal insulation material in composites utilized in var-
ious manufacturing fields. GF can improve the strength 
and rigidity of plastics and improve their heat resist-
ance and thermal deformation temperature. It can also 
improve their dimensional stability, reduce shrinkage, 
and reduce material deformation.

Thermal conductivity refers to the heat transferred 
through an area of 1 m2 within a certain period by a 1 m 
thick material with a temperature difference of 1  K on 
both sides of the surface under stable heat transfer con-
ditions. The thermal conductivity kx (W/(m·K)) is calcu-
lated using the following expression:

where x is defined as the heat flow direction, and qx" (W/
m2) is the heat flux in this direction. ∂T/ ∂x (K/m) denotes 
the temperature gradient in the assigned direction.

The thermal conductivity of GF is considerably low. 
The thermal conductivity of glass is 0.7–1.28 W/(m·K). 
However, after being drawn into a GF, its thermal con-
ductivity is only 0.035 W/(m·K). The main reason for this 
phenomenon is that the gap between the fibers is large, 

(4)
ratio =

(

Q −min(x, y, z)
)

/[xb, yb, zb] ratio ∈ [0, 1]

(5)hn =
zi

zb
where hn ∈ (0, 1]

(6)kx = −
q"x

(∂T/∂x)
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the density is small, and the thermal conductivity of the 
air in the middle is low, which reduces the thermal con-
ductivity of the entire material. The smaller the thermal 
conductivity, the better the thermal insulation perfor-
mance. However, when the GF is damped, the thermal 
conductivity increases and the thermal insulation perfor-
mance decreases.

The dielectric constant is a physical parameter that char-
acterizes the dielectric or polarization properties of a die-
lectric material. It is a property of the material itself and 
measures the ability of a material to store charge. Relative 
permittivity is often used to characterize the dielectric 
properties of a material. Relative permittivity εr is calculated 
by measuring the capacitance of a thin plate material using 
the following expression:

where εr is the relative dielectric coefficient of the mate-
rial, C(F) is the measured capacitance, d (nm) is the 

(7)εr = (C × d)/(ε0 × S)

sample thickness, and S (m2) is the sample area. ε0 is the 
vacuum dielectric constant (8.854 × 10–12 F/m).

The tensile strength σb (MPa) represents the resist-
ance of the material to the maximum uniform plastic 
deformation and is the maximum stress that the mate-
rial bears before breaking. Its value can be calculated 
using the following expression:

where Fb (N) is the maximum force applied when the 
specimen is broken, and So (mm2) is the original cross-
sectional area of the specimen.

The tensile strength of GF is significantly higher than 
that of glass with the same composition. For example, 
the tensile strength of alkali glass is only 40–100 MPa, 
whereas that of the GF drawn from it can reach 
2000  MPa, which is 20-50 times higher. The tensile 
strength of GF can be even higher than that of high-
strength alloy steel with the same diameter.

(8)σb = Fb/So

Fig. 1  Flowchart of the membership function of fuzzy decision-making optimized by a GA
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Temperature fuzzy decision‑making and experimental 
control
GA of proportion integration differentiation fuzzy 
decision‑making
The improved proportion integration differentiation 
(PID) algorithm based on fuzzy theory can more accu-
rately control the temperature of the system. However, 
the membership function defined by experience has 
limitations, particularly for different control models. As 
an excellent global search algorithm, the GA can find a 
global optimal solution with high efficiency. The basis of 
the GA optimization of fuzzy decision-making is to select 
appropriate parameters as genes for combination.

Several parameters were selected for variable control to 
simplify the genetic model. As shown in Eqs. (9) and (10), 
11 key nodes in the domain of the membership function 
were selected as variable parameters along with input 
coefficients (error e and relative error ec for each signal 
acquisition) and output coefficients (adjustment coeffi-
cients Kp0, Ki0, Kd0 for the three factors in PID control).

(9)

f =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

NB(Negative Big) ∶
1

2

�
1 + cos

��
𝜋

P7+6

�
∙ (x + 6)

��
− 6 ≤ x < P7

NM(Negative Medium) ∶
x+6

P1+6
− 6 ≤ x < P1;

x−P8

P1−P8
P1 ≤ x < P8

NS(Negative Small) ∶
x−P6

P2−P6
P6 ≤ x < P2;

x−P9

P2−P9
P2 ≤ x < P9

Z(ZERO) ∶
x−P7

P3−P7
P7 ≤ x < P3;

x−P10

P3−P10
P3 ≤ x < P10

PS(Positive Small) ∶
x−P8

P4−P8
P8 ≤ x < P4 ;

x−P11
P4−P11

P4 ≤ x < P11

PM(Positive Medium) ∶
x−P9

P5−P9
P9 ≤ x < P5;

x−6

P5−6
P5 ≤ x < 6

PB(Positive Big) ∶
1

2

�
1 + cos

��
𝜋

P10−6

�
∙ (x − 6)

��
P10 ≤ x < 6

where the range of the independent variable x of the 
membership function is [-6, 6].

Sixteen parameters were used as gene sequences in 
the GA. Figure 2 shows the output response of the step 
input and corresponding membership function when 
the parameters have different values.

Figure 3 shows the distribution of the intermediate-
generation population. Individuals whose fitness func-
tion value is higher than the initial base level in the 
figure are selected for crossover and mutation to enter 
the next-generation population. The fitness values of 
the two individuals with the highest fitness function 
are 2.112 and 1.6706, respectively, which directly enter 
the next-generation population. New individuals are 
then generated by random coding until the number of 
individuals in the population reaches 400, and the fit-
ness of the next generation is calculated and updated. 
After a limited number of iterations, the best individ-
ual fitness value is 2.112. This implies that the perfor-
mance index J under the optimized membership rule 
is 41.1% of the initial value, significantly reducing the 
error and accelerating the temperature response.

(10)



















e = P12 • error
ec = P13 • (relative error)
Kp = Kp0 + P14 • {e, ec}
Ki = Ki0 + P15 • {e, ec}
Kd = Kd0 + P16 • {e, ec}

Fig. 2  Comparison of the response curve before and after genotype change, where using membership function f1 and f2, the stable value is 0.9861 
and 0.98, rise time is 108 and 55, peak time is 300 and 270 alongwith peak value 0.9861 and 0.9805, overshoot is nearly zero and 0.05%, settle time is 
175 and 125
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Physical experiment of electrothermal regulating using 
programmable power
An actual heating experiment was conducted to fur-
ther verify the effectiveness of the algorithm. The 
physical experiment was powered using a multichan-
nel programmable DC linear power supply. This 
power supply unit can convert an input AC voltage 
of 220 V ± 10% at 50 Hz into DC linear power in each 

channel, which can be programmatically controlled 
independently under the mode of constant voltage, 
constant current, and constant resistance. Its voltage 
output range is 12-24 V.

To verify the effectiveness of the temperature control 
strategy on the heating process of the GF PLA (poly-
lactic acid) materials (PLA-GF), temperature control 
experiments with variable loads were performed. The 

Fig. 3  Fitness function F of a generation of population for fuzzy decision-making

Fig. 4  Load test of GF material electrothermal fuzzy heating
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experimental setup is illustrated in Fig.  4. Double-tube 
heating has the unique advantages of a heating block and 
good thermal regulation.

Figure 5 shows the experimental results of the heating 
temperature control of the PLA-GF material. Figures 5a 
and c show the experimental data of the two repeated 
tests. Each group includes curves before and after using 
the optimization algorithm under the same heating con-
ditions. The PLA-GF material was heated to the melt-
ing temperature (230  °C) using a temperature control 
algorithm before and after improvement. The improved 
temperature-control algorithm exhibited faster heat-
ing and better stability under the same experimental 
conditions.

Figures 5b and d show the curves of heating the PLA-
GF material to the unmelted temperature to demon-
strate the change in the output voltage duty cycle (the 
proportion of high level in one pulse cycle) in fuzzy 
decision-making, which is realized by pulse width 

modulation (PWM) of the voltage. They correspond to 
the optimized heating curves in Figs.  5a and c respec-
tively. From the experimental results, it can be observed 
that the PWM of the output voltage is large when the 
difference between the collected data of the sensor and 
target temperature (180  °C) is large. The PWM of the 
output voltage begins to decrease when the temperature 
gradually increases, thus avoiding a control overshoot. 
When approaching the target temperature, the PWM 
fluctuates significantly with the temperature difference 
and its change value. When the temperature is stable, 
the PWM also tends to be stable and fluctuates within 
a small range when heating is required. The experimen-
tal outcomes were in accordance with the optimization 
objective of fuzzy decision-making.

Infrared thermographs of thermal field measurements 
obtained using fuzzy logic are shown in Fig. 6. A higher 
surface temperature indicates remarkable characteristics 
of the composite material.

Fig. 5  Heating curve of GF PLA of two repeated tests (a, b) and (c, d), where the left column is response curve whereas the right is their real-time 
curve of PWM during thermal regulation
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Results and discussion
Results
D functional artifact to be fabricated
The proposed VCDT was implemented on a platform 
coded in Python 3.7, and all the numerical tests were per-
formed on a PC operating on Windows 10 64-bit.

A slender, thin-walled functional half handle (Fig.  7) 
was used as a calculation example to verify the previously 
stated theoretical method. By default, the length unit 
hereinafter is millimeter (mm).

The overall dimension ( xb, yb, zb ) of the AABB is 
equal to (150.9527, 148.9764, 46.5349) with a ratio 
of 3.2439:3.2014:1. The percentages of the AABB 
to the center of gravity are (50.4337%, 58.1379%, 
42.8853%). The minimum bounding sphere was placed 

at (148.9994, -33.0316, 8.5189) with a spherical radius 
of 102.4477. The total surface area Sobject is 46497.5272, 
the total volume of the enclosed manifold Vobject is 
77661.2048, and the specific surface area is 0.7838. The 
net mass was calculated as 81.5133 g when Acrylonitrile 
Butadiene Styrene(ABS) was used.

Figure  8 shows the layered surface and volume along 
with the specific surface area. Table 1 lists the values of 
the important parameters of the specific surface area and 
slope corresponding to Figs. 8b and d.

Virtual printing via layered orthogonal projection areas 
using visual computing digital twins
Figure 9 presents the comparison of the layered orthogo-
nal projection areas of various supports using stacked 

Fig. 6  Focused infrared thermographs during the thermoplastic process of a GF composite. The maximum temperatures are 107.8℃, 126.2℃, 
145.5℃, 151.0℃, respectively, within almost sealed, high-temperature chamber, in (a, b, c, d)  upon using fuzzy logic
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bars rather than a grouped style. Table  2 lists the cor-
responding calculation outcomes under different 
conditions.

Figure  10 indicates that visualized virtual 3D printing 
can be utilized to evaluate the thermoplastic adhesion 
process.

Finite element analysis via transient thermal structure 
coupling
Finite element analysis was conducted based on tran-
sient thermal structure coupling theories using a quasi-
linear solution with 8-node 3D thermal solid element. 
The structural analysis was implemented using the mesh 
domain decomposition method. Table  3 lists the com-
mon physical and chemical properties of ABS and the 
carbon fiber and GF mixed materials. These parameters 
were used for the finite element analysis.

The simulation results of the temperature distribution, 
total deformation, and directional deformation are shown 
in Fig. 11. The detailed data are presented in Table 4.

The convergence outcomes of the cumulative iteration 
calculations are shown in Fig. 12. The elements were sliced 
into 52 layers according to their height, and the heat load 
was applied when the elements of a new layer were active.

Experimental test of VCDT
The stereolithography equipment was an extrusion-
based 3D printer operated at an ambient temperature of 
25  °C and 55% relative humidity, as depicted in Fig.  13. 
Digital twinning here  can be further divided into visual 

twinning, functional twinning and mechanism twinning. 
The layer thickness can be varied from 0.02  mm to 
0.3  mm. The resolution precision size in the X/Y direc-
tion was 0.1 mm. The fabricated heavy-duty half handles 
are shown in Fig. 14.

Conclusions
(1) A robustness optimization method for RP of functional 
artifacts based on VCDT was proposed
A generalized multiobjective robustness optimization 
for RP was first built, where thermal, structural, and 
multidisciplinary knowledge can be integrated for visu-
alization. The well-known DT was extended to VCDT 
with a more intuitive computing visualization ability 
owing to the integration of intelligent multidisciplinary 
algorithms. This provides a robust design paradigm for 
a layered RP between the steady balance of electro-
thermal regulation and manufacturing efficacy under 
hybrid uncertainties.

(2) A GA was employed to improve the fuzzy 
decision‑making scheme, which was fed back 
to the visualization process to obtain a better strategy
A fuzzy decision-making model of RP was established, 
and the optimal membership function rules were 
obtained through a GA iteration, which realized a more 
accurate control scheme. Therefore, the fuzzy decision-
making model can be adapted to different material and 
form requirements and can be customized according to 
diverse application scenarios.

Fig. 7  Heavy-duty functional ergonomic half (Part A) handle: a main/front view and b back view
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Table 1  Specific surface area and slope of functional artifact

Computed parameter Original manifold
(Fig. 8b)

External support
(Fig. 8d)

Specific surface area S/V (mm-1) Maximum 2.2705 (at 3.3333%) 2.2705 (at 3.3333%)

Sum 6.6490 6.6490

Mean 0.2216 0.2216

Standard deviation 0.4194 0.4194

Variance 0.1759 0.1759

Slope of curve Maximum -0.0039 (at 14.0000) 8.5350 (at 3.0000)

Minimum -7.7724 (at 1.0000) -10.2791 (at 5.0000)

Mean -0.7017 (inclination angle 144.9441°) -0.4665 (inclination 
angle 154.9920°)

Fig. 8  Layered surface and volume along with specific surface area of the functional half handle: a and b represent the original manifold, whereas c 
and d represent the external support
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Fig. 9  Layered orthogonal projection areas of two typical supports where a represents the original manifold and b represents the external support 
manifold of tree type; c represents the original manifold and d represents the external support manifold of linear type

Table 2  Orthogonal projection area of different manifolds of tree type and linear type

Computed RP parameter Tree type Linear type

Original manifold External support Original manifold External support

Projection area SV in vertical 
plane (mm2)

Maximum 242.0932 225.2717 242.1065 257.5087

hn 17.2414% 10.3448% 17.2414% 20.6897%

Sum 4094.8282 3144.0046 4092.5510 4299.3489

Mean 141.2010 108.4140 141.1224 148.2534

Standard deviation 93.4070 66.5183 93.3993 93.6787

Variance 8724.8710 4424.6831 8723.4231 8775.7021

Projection area SW in wall 
plane (mm2)

Maximum 239.0490 225.2443 239.0490 253.6364

hn 17.2414% 3.4483% 17.2414% 6.8966%

Sum 4475.4144 3807.3829 4472.5832 5022.1253

Mean 154.3246 131.2891 154.2270 173.1767

Standard deviation 79.4550 66.8469 79.4790 73.6694

Variance 6313.1020 4468.5063 6316.9064 5427.1736
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Fig. 10  Visualized virtual printing of fiber-reinforced composites using visual computing digital twins, from the front view, where a denotes 20 
layers without support, b denotes 30 layers without support, c denotes 20 layers with tree support, and d denotes 30 layers with tree support
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Table 3  Polymer materials and mixed materials of carbon fiber and GF

Material parameter ABS ABS carbon fiber PAGF

Density ρ (g/cm3) 1.05 1.0972 2.4-2.76

Relative dielectric coefficient εr 2.9-3.5 3.2 4-6

Thermal conductivity (W/ (m·K)) 0.02-0.046 5.2-6.0 0.7-1.28

Tensile break strength σt (MPa) 28.1 37.7 98

Tensile elongation at break et (%) 1.5 2.70 3-4

Elastic modulus Ee (GPa) 2.4 3.342 5.7

Flexural break strength σf (MPa) No Break 69 90

Flexural modulus Ef (GPa) 2.22 3.76 5.2

Distortion temperature (°C) 98 101 157

Specific stiffness Ssti (N·m/kg) 2.29 3.05 3.0-3.6

Specific strength Sstr (N·m/kg) 26-76 34.36 12.6-19.7

Table 4  Detailed outcomes of FEA

FEM outcomes Value Relative position ratio

Material temperature (℃) (Fig. 11a) Maximum 79.496 (0.860, 0.556, 0)

Minimum 33.831 (0, 0.444, 0.645)

Average 60.851 /

Total deformation (mm) (Fig. 11b) Maximum 1.965 (0, 1, 0.484)

Minimum 0 (0.78, 0.303, 0)

Average 0.245 /

Directional deformation along X directions, positive, negative and average (mm) (Fig. 11c) Maximum +  1.066 (0, 0.485, 0.613)

Maximum – 0.859 (0.960, 0.949, 0.258)

Average 0.035 /

Directional deformation along Y directions, positive, negative and average (mm) (Fig. 11d) Maximum +  1.063 (0, 0.444, 0.613)

Maximum – 1.778 (0, 1, 0.484)

Average -0.028 /

Directional deformation along Z directions, positive, negative and average (mm) (Fig. 11e) Maximum +  0.745 (0.960, 0.960, 0.097)

Maximum – 0.440 (0.330, 0.859, 0.161)

Average -0.060 /

Maximum Principal Stress (MPa) (Fig. 11f ) Maximum +  361.510 (0, 0.980, 0.097)

Maximum – -24.642 (0.050, 0.939, 0.677)

Average 61.754 /

(3) A physical experiment regarding layered RP 
and infrared thermographs was conducted
Infrared thermographs were obtained using thermal field 
measurements to determine the temperature distribu-
tion, which was highly consistent with the DT outcomes. 
The physical experiment and practice proved that the 
proposed VCDT provided a robust design paradigm for a 

layered RP between the steady balance of electrothermal 
regulation and manufacturing efficacy under complex 
RP uncertainties.

Future work involves the application of VCDT to more 
asymmetric artifacts with composite materials via fuzzy 
heating systems to enhance the universality of the theory 
in RP for product conceptual design.
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Fig. 11  Outcomes of FEA where a is the temperature distribution; b is the total deformation; and c, d, and e show the directional deformations 
along the X, Y, and Z axes, respectively; f shows the maximum principal stress result
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Fig. 12  a and b are displacement and force convergence curves of the FEA simulation process. The magenta lines denote the convergence 
outcomes of each cumulative iteration step. The red lines represent the criterion values. The blue vertical dotted lines indicate the converged load 
steps
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Fig. 13  VCDT of RP where a and b depict the digitally fabricated functional artifacts and c and d display the physical extrusion-based equipment 
and functional artifacts

Fig. 14  Fabricated ergonomic heavy-duty half handles where a, b, c, and d illustrate distinct parallel orthographic views
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