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Abstract 

Gears play an important role in virtual manufacturing systems for digital twins; however, the image of gear tooth 
defects is difficult to acquire owing to its non-convex shape. In this study, a deep learning network is proposed to 
detect gear defects based on their point cloud representation. This approach mainly consists of three steps: (1) Various 
types of gear defects are classified into four cases (fracture, pitting, glue, and wear); A 3D gear dataset was constructed 
with 10000 instances following the aforementioned classification. (2) Gear-PCNet+ + introduces a novel Combina-
tional Convolution Block, proposed based on the gear dataset for gear defect detection to effectively extract the local 
gear information and identify its complex topology; (3) Compared with other methods, experiments show that this 
method can achieve better recognition results for gear defects with higher efficiency and practicability.
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Introduction
Virtual manufacturing is a simulation-based technology 
for defining, simulating, and visualizing the manufac-
turing process in the design stage. During manufactur-
ing, product defect detection is closely related to quality 
assurance. The detection of 3D objects has been widely 
studied [1–4]. Mechanical gears are widely used in the 
power transmission of various industrial machinery, 
including turbines, motor vehicles, and aircraft [5]. Gear 
defect detection is crucial in virtual manufacturing to 
detect faults incurred during the manufacturing simu-
lation. However, gear defects are inevitable in an actual 
industrial environment with almost 80% of the faults in 
mechanical transmission systems caused by gear defects 
[6], resulting in manufacturing and financial losses, in 

addition to personal safety issues. Thus, defect detection 
is necessary in mechanical systems.

Traditionally, researchers artificially collected the char-
acteristics of vibration and acoustic emission signals to 
monitor the condition of rotating machinery [7]. Signal-
based methods [1–3] are also effective for gears, but they 
often require accurate physical models and signal pro-
cessing experience [8, 9], which are insufficient to satisfy 
the modern industry requirements of intelligence. Sensor 
data were the basis for detection. Li et al. [10] collected 
information from different sensors to analyze defect fea-
tures. However, the defect vibration signals were acquired 
by running the gear and the defects may be submerged in 
strong meshing harmonics of various rotary components.

Deep learning has great advantages in image classifi-
cation [11–13] and target detection [14, 15] owing to its 
feature extraction and nonlinear approximation abili-
ties. Furthermore, intelligent data-driven fault diagnosis 
technology has been receiving more attention. Li et  al. 
[16] proposed a separation-fusion-based deep learn-
ing approach to analyze multi-modal features of gear-
box vibration measurements and obtained the results of 
diagnosis. For traditional methods, modulated signals of 
gears are impractical in extracting features and detecting 
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defects. On the other hand, image-based computer vision 
can be used in defect detection [17]. Researchers tried 
to use 2D images of gears to recognize gear defects [18] 
besides the gray image transformed by vibration sig-
nals [19, 20]. Nonetheless, it is difficult to recognize the 
defects of gears, especially on the tooth surface owing to 
its complex concave structure. In addition, the textures of 
oil stains or rust on gear surfaces  with the results from 
images and cause confusion in defect detection [21].

Compared with the image-based methods, 3D point 
cloud models with depth data can avoid the misrecog-
nition of gear defects from image texture or oil marks. 
Charles et  al. [22] first proposed a network of point 
clouds: PointNet. Then, various point cloud-based deep 
learning networks were successfully used in 3D shape 
classification, object detection, tracking, and 3D segmen-
tation [23, 24]. Massive, labeled data with defect informa-
tion is the key to ensuring good detection performance 
of neural networks. Nevertheless, it is difficult to collect 
adequate data for the machines, which is a limiting fac-
tor for intelligent fault diagnosis. Researchers tackled the 
issue of lack of labeled data by transfer learning [25, 26] 
and semi-supervised/unsupervised learning [27] meth-
ods. However, a noise-free point cloud can be obtained 
from the computer aided design (CAD) model of a gear 
through virtual manufacturing. This makes it significant 
in checking the defect detection results using point cloud 
data. Besides, gear model with defects has complex local 
structures that can be fully represented by point clouds. 
Therefore, in this study, a new artificial neural network, 
Gear-PCNet++, is presented based on point clouds 
extracted from CAD models. In this network, a novel 
Combinational Convolution Block (CCB) is proposed to 

replace the convolution layer in Multi-Layer Perception 
(MLP) networks to extract more gear defect details.

The main contributions of this study are: (1) construc-
tion of a data set of 3D gear models, which has 4 typi-
cal gear defects: fracture, pitting, glue, and wear; (2) CCB 
combining multi-level features of gears, which improves 
the precision rate of defect detection; (3) development of 
a new network, Gear-PCNet++, based on CCB, enabling 
gear defects of various types to be recognized with high 
accuracy.

Methods
Construction of 3D gear sample sets
The data of point clouds can be obtained from 3D scan-
ning, but it is difficult to accurately label the categories 
for scanned raw point clouds. Based on the geometric 
properties of gears, an approach for 3D gear data genera-
tion is proposed.

In this study, gear defects are classified into four typi-
cal types: wear, pitting, glue, and fracture [5]. The gear 

Fig. 1 Four typical gear defects

Table 1 Parameters of basic gears

Substrate 
symbol

Tooth 
number

Modulus
(mm)

Tooth width
(mm)

The diameter 
of center hole 
(mm)

1 18 4.00 15.00 20.00

2 22 2.00 8.00 15.00

3 26 3.00 13.00 25.00

4 30 2.50 16.00 40.00

5 36 2.00 17.00 20.00
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defects can be represented as a combination of the four 
typical defects, as illustrated in Fig. 1.

Five basic gears were constructed with different param-
eters: modulus, tooth number, tooth width, and diameter 
of center hole (Table 1).

Let W, P, G, and B represent wear, pitting, glue, 
and fracture, respectively, and S denote normal gear 
(basic gear). The gear models with defects are gener-
ated by combining defects and the basic gear using 
Eq. 1.

Fig. 2 Gear data set with defects. The light gray, orange, blue, red, green, and purple spheres represent points of baselines, basic gear, fracture, glue, 
pitting, and wear, respectively

Fig. 3 CCB. Channel represents the number of channels of input feature vector. Isbn represents whether to add batch normalization to each 
convolution layer
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Where Grdef,i is the i-th generated gear with defects, 
Grbas,j is the j-th basic gear, and Defi is the defects of the 
i-th generated gear.

The CAD model is transferred into a point cloud 
model. Though the CAD model of the gear has a large 
number of surface elements, effective surfaces are ran-
domly used to discretize points. Finally, a point cloud 
data set with 10000 gear samples is constructed; some of 
which are shown in Fig. 2.

CCB
The location of gear defects occurred on the tooth sur-
face is frequently similar. Hence, it is difficult to identify 
gear defects from the local features of point clouds. The 
boundary information is more critical than other details 
for gears [22, 28]. The CCB module is proposed (Fig. 3) 
to improve the ability to identify gear features, especially 
the boundary lines.

A convolution layer significantly improves the effi-
ciency of parameters by sharing weights and is widely 
used in artificial neural networks. Wu et al. [29] proposed 
PointConv using Monte Carlo approximation. This archi-
tecture is a convolution operation suitable for unstruc-
tured point cloud data. It has also been verified that 
dilated convolution and down sampling were effective 

(1)Grdef ,i = Grbas,j + Defi = {Base,W ,P,B}, ways to expand receptive fields [30]. Dilated Point Con-
volutions uses K·D nearest neighbors to replace the origi-
nal k-nearest neighbor partition [31], and extracts the 
features of each d-th point. With the same parameter, it 
increases the receptive field of PointConv. This is similar 
to dilated convolution, but it may lead to loss of details 
with local features. PointNet++ uses neighborhood-
based feature extraction to replace the independent 
learning of each point [32], notably overcoming the limi-
tations of PointNet [22]. Inspired by Deformable CNN 
[33], the Deformable KPconv in ref. [34] assigns different 
convolution kernels to each local geometry.

The receptive fields play an important role in semantic 
segmentation. Essentially, the size of receptive fields is 
related to the number of convolution layers and the size 
of convolution kernels. For deeper networks, larger ker-
nel size corresponds to larger receptive fields but large 
convolution kernels may cause performance degradation. 
The sizes of convolution kernels typically used in struc-
tured data images are 3× 3 , 5× 5 , or 7× 7 . For unstruc-
tured point cloud models, a large convolution kernel 
will extract a lot of useless inter-point or point-domain 
information, which may be trivial to the improvement 
of performance. Multi-scale analysis is another strategy 
to improve the effect in image semantic segmentation 
[35–37], which can also enrich feature information. In 
addition, feature pyramid networks [38] is the most com-
monly used framework. Based on the above multi-scale 

Fig. 4 Ordered/unorganized point cloud and the receptive field corresponding to different convolution kernel sizes. a The ordered point 
cloud extracted from the gear discretization; b Result of dispersing pitting defects and wear defects into point clouds; c The point cloud, result 
of dispersing pitting defects and wear defects, input into the neural network after random shuffle; d Representation of the receptive field 
corresponding to different convolution kernel sizes in the network. In the circular region d, the orange dot represents the convolution of kernel size 
1, the green line represents the convolution of kernel size 2, and the red triangle represents the convolution of kernel size 3
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or multi-level information interaction, this multi-scale 
synthesis strategy is applied to the convolution and uses 
a relatively small convolution kernel to obtain feature-
rich information. Specifically, convolution kernels with 
different sizes are used to extract features under differ-
ent receptive fields, and are then connected to the result 
of this module. The convolution of 1× 1 has been widely 
used in ResNet, GoogLeNet [39], and other architec-
tures. In the aforementioned module, 1× 1 convolution 
is also used to achieve dimensional transformation to 
reduce the number of parameters. Moreover, the selec-
tion of convolution kernel size is based on the ideas dis-
cussed further.

Points, lines, and faces are the basic geometrical ele-
ments of gears. Two and three points can determine the 
corresponding line and plane, respectively; the point 
cloud is sparse relative to the original 3D model. It is 
assumed that a surface contains at least three points, 
of which two form a boundary line in a point cloud of 
gears. Then, the relevant geometric element information 
is extracted using kernel sizes 1, 2, and 3, and the corre-
sponding features can be identified as projection points, 

pseudo lines, and pseudo surfaces, respectively, to a cer-
tain extent.

The point clouds in the input network are usually dis-
ordered. As shown in Fig.  4, there are pitting and wear 
defects in a gear, which are represented by green and 
blue cuboids, respectively. Ppit-j, Pwear-i, and Pwear-k are the 
points in pitting and wear, respectively. As for the point 
Pwear-i, the large convolution kernel can easily extract the 
feature that makes little contribution to the point.

To ensure the effectiveness of the extracted feature, 
defining the neighborhood of a point based on distance 
is a general strategy, which has been applied in many net-
works such as PointNet++, SpiderCNN [40], and Edge-
Conv [41]. Because of the difference between the study 
herein and the above methods a distance-based optimi-
zation strategy (Fig. 5) is proposed to assign correspond-
ing weights to the features extracted by convolution 
kernels of different sizes.

The input point cloud is set as {p0,p1, · · · pn} . Taking pi 
as an example, the extracted feature is related to three 
points: pi,pi+1,pi+2 whose three-dimensional geometric 
center is pi0 = (pi + pi+1 + pi+2)/3..

Fig. 5 Feature weights optimization based on distance. Convi is the convolution with kernel size i. Wi,j is the weight of the i-th point and j  
represents the size of kernel

Fig. 6 Structure of Gear-PCNet where the number is output channel of the layer
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Fig. 7 Structure of Gear-PCNet+ + 

Fig. 8 Feature extraction module in Gear-PCNet/Gear-PCNet+ +. a Feature extraction architecture in Gear-PCNet; b Feature extraction architecture 
in Gear-PCNet+ + 
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Wi,j represents the weight of the i-th point whose con-
volution kernel size is j . When the convolution kernel is 
2, the distance between the two points is directly related 
to the kernel. Thus, Wi,2 = k2 e

−|pipi+1|d  can represent 
the corresponding weight. Similarly, when the convolu-
tion kernel is 3, the weight can be evaluated by a girth-
related function:Wi,3 = k3 e

−(|pipi+1|d+|pipi+2|d+|pipi+2|d |)/3.
From the above definition, it is obvious that the pro-

portion of inter point features will decrease with the 
discretization of points. Therefore, a compensation 
coefficient k is added to each weight to extract more 
local information. Furthermore, an eccentricity coef-
ficient ( Wi,1 = k1 · e

−|pipio|d ) is added when the convo-
lution kernel is 1. The distance between pi and pio will 
decrease the proportion of the projection features of the 
point.

Through this multi-scale information synthesis, the 
proposed module can extract richer local features, 
and the latest extracted feature can be expressed using 
Eq. 2.

Where Fi,com_block is the output feature of the module; 
Convi is the dimension transformation; Fi,ori is the input 
feature; Fi,k and Wi,k are the extracted feature and cor-
responding weight coefficient, respectively, when the 
convolution kernel is k. No additional weight calcula-
tion operation is required if the neighborhood is defined 
based on the distance.

Network architecture
First, a gear defect recognition network based on 1D con-
volution operation is proposed: Gear-PCNet (Fig. 6). The 
network is composed of feature extraction (CCB-MLP) 

(2)Fi,com_block = Fi,1 + Convi

(

Fi,ori ,Wi,1 ⋅ Fi,1,Wi,2 ⋅ Fi,2,Wi,3 ⋅ Fi,3

)

and final classification modules. Gear-PCNet can learn 
the representation of gear defects and output their 
results.

Table 2 Parameters in Gear-PCNet

Layer Input channels Kernel size Stride Output channels Number of parameters

Com1_Conv1(+ BN1) N × 3 1 1 N × 64 256 (+ 256)

Com1_Conv2(+ BN2) N × 3 2 1 N × 64 448 (+ 256)

Com1_Conv3(+ BN3) N × 3 3 1 N × 64 640 (+ 256)

Com1_Conv4(+ BN1) N × 195 1 1 N × 64 12544 (+ 256)

Com2_Conv1(+ BN1) N × 64 1 1 N × 128 8320 (+ 512)

Com2_Conv2(+ BN2) N × 64 2 1 N × 128 16512 (+ 512)

Com2_Conv3(+ BN3) N × 64 3 1 N × 128 24704 (+ 512)

Com2_Conv4(+ BN1) N × 448 1 1 N × 128 57472 (+ 512)

Dense1 N × 579 - - N × 128 74240

Dense2 N × 128 - - N × 64 8256

Dense3 N × 64 - - N × 5 325

Total (trainable + non-trainable) 205253 + 1536

Fig. 9 Single convolution group for replacing CCB

Table 3 Classification results of gear data set

Method Accuracy (%)

PointNet (vanilla) 55.37

PointNet 67.31

Gear-PCNet-single-1 77.58

Gear-PCNet-single-2 78.43

Gear-PCNet-single-3 78.21

Gear-PCNet-4 80.93

Gear-PCNet 83.42
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CCB can output features containing both single and inter-
point information. The point cloud is the rotation and trans-
lation invariance. Projecting the point cloud data into 2D 
images or expressing it as voxels may lead to information 
loss. In PointNet, Charles et al. [22] dealt with the above two 
issues using the maximum value (Eq.  3). In Gear-PCNet, 

both the maximum and average functions are used (Eq. 4) to 
extract the features of point clouds and concatenate them.

(3)Fmax = Max(x1, x2, ... , xn)

Fig. 10 Multi convolution with single size kernel for replacing CCB

Fig. 11 Accuracy in training and validation. a Accuracy of training set; b Accuracy of validation set. In both a and b, a marker represents the 
accuracy of the network at the current epoch of training or validation. Specifically, gray represents PointNet, green represents PointNet+ + , blue 
represents PointCNN, red represents KPconv and yellow represents Gear-PCNet++ 

Table 4 Segmentation results of gear data set

Method mAcc(%) mIoU(%)

PointNet [22] 67.31 54.66

PointNet++ [32] 99.29 98.50

PointCNN [42] 99.43 98.76

KPConv [34] 99.64 97.50

Gear-PCNet++ 99.53 98.97

Table 5 Recognition accuracy of points in each model

Point 
prediction 
accuracy

 < 85% 85%-90% 90%-95% 95%-99% 99%-100%

Proportion 0.10% 0.20% 1.80% 7.30% 90.60%

Total 2.10% 97.90%
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After pooling and lateral linking the comprehensive 
features obtained by CCB-MLP, the classification of 

(4)Favg =
x1 + x2 + ...+ xn

n

detected point cloud data can be completed through a 
fully connected network with three layers.

As verified above, the hierarchical feature learning 
framework is further applied to Gear-PCNet and Gear-
PCNet++ is built based on the 2D convolution opera-
tion; the structure of Gear-PCNet++ is shown in Fig. 7. 
By constructing local region sets, the data set is relatively 
more concentrated, allowing the radius of local regions to 
be set small.

Unlike PointNet and PointNet++, Gear-PCNet was 
replaced with CCB to extract feature in Gear-PCNet++ 
(Fig. 8).

By using multi-resolution grouping, the two grouped 
features were propagated to the original points. Then, the 
two features were concatenated and regarded as the basis 
for point set segmentation.

Results and Discussion
This approach was evaluated on a set of 10000 samples 
(gears with defects); their features can be grouped into 
5 types: basic gear, fracture, pitting, glue, and wear. The 
10000 samples were divided into training, validation, and 
testing sets in a 8:1:1 ratio, and experiments were run on 
a PC with a “NVIDIA GeForce RTX 3070” GPU and an 
“Intel Core i5-10400F @ 2.90GHz” CPU.

Fig. 12 Confusion matrix of defect classification. Each row represents 
the distribution of predicted labels of points corresponding to each 
actual label. The depth of the color in the graph represents the 
predicted percentage

Table 6 Few recognition results and their original CAD models (point clouds)

Original model Extracted points Predicted points Defect recognition

Right example Real defects: [F, P, W]
Predicted defects: [F, P, W]

Predicted accuracy of point: 100.00%

Wrong example Real defects: [F, G, W]
Predicted defects:[F, G, P, W]

Predicted accuracy of point: 96.48%

Fig. 13 Gear models with intersecting defects. a Intersection result of pitting holes; b Intersection result of broken tooth and wear
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Experiment results
The CCB is applied to Gear-PCNet to synthesize the fea-
tures extracted under different convolution kernels. The 
number of parameters in Gear-PCNet is given in Table 2.

PointNet is a classic point cloud classification and seg-
mentation network. The number of parameters in Gear-
PCNet ( 7.89× 105 ) is less than that of PointNet (vanilla) 
( 2.05× 106 ). The effectiveness of Gear-PCNet was evalu-
ated based on the classification performance of the three 
networks on gear data set. In addition, the combined 
CCB in Gear-PCNet was replaced with the structure 
shown in Fig. 9 to verify the superiority of comprehensive 
feature information over single feature information.

The replaced three networks were denoted: Gear-
PCNet-single-1, Gear-PCNet-single-2, and Gear-PCNet-
single-3. The addition of a convolution layer of kernel size 
4 to the CCB in the Gear-PCNet (Gear-PCNet-4) to vali-
date the effect of bigger kernel size on network perfor-
mance was tested. The training and testing results of the 
above structures are presented in Table 3.

Table  3 shows that Gear-PCNet has the best conver-
gence and generalization ability, and can classify and 
recognize each defect point of a gear with high accuracy. 
The results of the network with only a single convolu-
tion kernel size are inferior to Gear-PCNet verifying that 
the synthetic feature can more comprehensively express 
the information of points than a single feature. In Gear-
PCNet-4, a lot of information that does not belong to the 
original point is extracted, and the architecture does not 
work well.

CCB was replaced with the block (Fig. 10) to verify that 
the better performance of the network was not due to the 
addition of the number of convolution layers. The testing 
accuracy was 78.29%, which shows the effectiveness of 
the CCB.

The CCB had good results by extracting richer fea-
tures. Gear-PCNet++ and several classical networks 
were tested on the gear data set. Figure 11 presents the 
prediction accuracy of the training and validation sets in 
the training process. It is seen that Gear-PCNet++ and 
PointNet++ converge faster.mAcc (mean Accuracy) and 
mIoU (mean Intersection-Over-Union) are the evalua-
tion metrics; the results are listed in Table. 4. KPConv 
is more accurate in points classification and Gear-
PCNet++ is better at object segmentation. Each archi-
tecture performs well in gear defect recognition.

Discussion of defect recognition
In Experiment results section, the classification and pre-
diction of Gear-PCNet and Gear-PCNet++ is presented, 
but the types and numbers of defects in different gear 
models are different. In this section, the identification of 
defects and points in different models is analyzed based 

on the performance of Gear-PCNet++ on test samples 
(1000 gear models). Table  5 presents the recognition 
results of points in each model in the testing set. The rec-
ognition accuracy of 97.90% models is above 95.00%.

The judgment of defect types was considered correct 
if the recognition was successful, that is, if there were 
3 defects in a model, if and only if the 3 defects were 
detected, the defect detection is considered correct. A 
defect existed only if there were more than 10 points 
labeled with the defect. Under the above settings, 99.90% 
models were judged correctly. This shows that the recog-
nition results are highly reliable.

Meanwhile, Fig.  12 gives a recognition confusion 
matrix of each defect type in the testing set. In Fig.  12, 
the confusion matrix was approximated as a diagonal 
matrix, which also shows that the approach herein is 
accurate and effective.

Few recognition results of the network in this study 
(containing the CAD models of gears and point cloud 
data) given in Table 6 have the same defect color repre-
sentation as Fig. 2 and defects representation as Eq. 1.

Gears also have intersecting defects making it difficult 
to recognize point category. They can be divided into 
self-intersection of the same defect features and inter-
section of different defect features. Figures. 13a and b 
show the intersection result of pitting holes and the inter-
section result of broken tooth and wear, respectively. 
In Gear-PCNet, these kind of intersection result may 
require many relevant samples to assist the training of 
the network; but can be satisfied in Gear-PCNet++.

Conclusions
Gear defect recognition plays an important role in 
mechanical fault diagnosis. In this study, deep learn-
ing was used to extract the gear features and determine 
the gear defects. First, a data set of gear CAD models 
containing 10000 basic gears with 4 typical defects, was 
constructed. Second, by setting few strategies a point 
cloud-based gear set was generated from the gear mod-
els. Then, by giving a new CCB with three (1, 2, 3) sizes 
of convolution kernels, a new network: Gear-PCNet++ 
which can extract gear features more effectively was 
proposed. Finally, experimental results showed that the 
proposed network achieved high recognition accuracy 
compared to other methods for all types of gear defects.

Abbreviations
CAD  Computer aided design
CCB  Combinational Convolution Block
MLP  Multi-Layer Perception
mAcc  Mean Accuracy
mIoU  Mean Intersection-Over-Union
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