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Abstract 

In recent years, deep learning techniques have been used to estimate gaze—a significant task in computer vision 
and human-computer interaction. Previous studies have made significant achievements in predicting 2D or 3D gazes 
from monocular face images. This study presents a deep neural network for 2D gaze estimation on mobile devices. 
It achieves state-of-the-art 2D gaze point regression error, while significantly improving gaze classification error on 
quadrant divisions of the display. To this end, an efficient attention-based module that correlates and fuses the left 
and right eye contextual features is first proposed to improve gaze point regression performance. Subsequently, 
through a unified perspective for gaze estimation, metric learning for gaze classification on quadrant divisions is 
incorporated as additional supervision. Consequently, both gaze point regression and quadrant classification perfor-
mances are improved. The experiments demonstrate that the proposed method outperforms existing gaze-estima-
tion methods on the GazeCapture and MPIIFaceGaze datasets.
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Introduction
Human gaze contains the information of interest, inten-
tion, mental state, and concentration level of a person. It 
is critical to estimate gaze using computational models. 
Over the past decades, various gaze-estimation methods, 
which can be categorized into model- and appearance-
based, have been proposed. Model-based methods typi-
cally require specific devices to build an eye model and 
track the gaze. Stable and accurate gaze can be tracked 
once person-specific calibration results are provided. 
However, owing to the requirement of specific devices 
such as infrared lights, their scalability on commodity 
mobile devices are limited. With the increasing use of 
mobile phones and tablets, gaze estimation from monoc-
ular face images have attracted more attention in the 

fields of computer vision and human–computer interac-
tion. Appearance-based methods simply use monocular 
images as inputs, which facilitates the application of gaze 
estimation in daily life.

The introduction of deep neural networks into gaze 
estimation [1] has improved appearance-based methods. 
Krafka et  al. [2] proposed taking the face image along 
with cropped eye images as network inputs and con-
structed a large dataset of face images and correspond-
ing gazes, collected via daily mobile devices. Although 
recent studies [3] have significantly progressed in gaze 
estimation on mobile devices with multiple calibrations, 
Bao et al. [4] improved the gaze-estimation performance 
on the calibration-free setting, which is more suitable for 
devices with high real-time requirements. There remains 
a gap between estimation results and practical applica-
tions, which is primarily caused by the relatively large 
estimation error (approximately 1.6 cm) over the mobile 
device screen size (e.g., 7.57 cm of iPhone 11). For exam-
ple, in determining whether a user is looking at a quad-
rant division of the mobile phone screen, gaze point 
regression errors can cause up to 43% wrong predictions.
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In this study, a neural network that uses gaze classifica-
tion on quadrant screen divisions as additional supervi-
sion for mobile gaze regression is proposed. This study 
first explores mutual connections between eye features 
using context correlation blocks  (CCBs), and fuse eye 
and facial features using light-weight channel-mixing lay-
ers. Moreover, metric learning is incorporated into the 
regression task for classification and the effectiveness is 
demonstrated through gaze regression and classification 
results. Figure 1 shows a high-level overview of the pro-
posed method. The main contributions of this study are 
as follows.

• A novel CCB that correlates contexts between eyes 
for deep gaze-feature extraction.

• A metric learning strategy based on gaze classifica-
tion on quadrants for gaze feature-embedding opti-
mization.

• A neural network EM-Gaze that achieves state-of-
the-art performances on unconstrained gaze-estima-
tion datasets.

Gaze estimation
With the rapid development of mobile devices, recon-
structing 3D human faces in a simple, accurate, and 
practical manner has become a critical task for com-
puter vision and human–machine interaction. Gaze esti-
mation is essentially related to facial expression [5] and 
face reconstruction [6], however, it could be more inde-
pendent owing to the needs of specific data acquisition. 
A recent survey [7] has carefully discussed this field. 
Over the past decades, several gaze-estimation methods, 
which can be categorized into model- and appearance-
based, have been proposed [8, 9]. Orthogonal to the 

model- and appearance-based methods from facial or eye 
images, gaze estimation from observed scenes [10, 11] is 
also a crucial research direction, especially in virtual real-
ity scenarios. This study briefly reviews some representa-
tive model- and appearance-based methods.

Model-based methods rely on hand-crafted feature 
extraction to construct a geometric eye model and obtain 
robust gaze-estimation results [12]. Eye features are 
obtained by near-infrared corneal reflections [13], pupil 
center [14], and iris contours [15, 16]. Although most 
model-based methods have stable performances [17], 
they require additional apparatus, such as infrared lights 
or stereo cameras, in restricted environments.

Appearance-based methods formulate gaze estima-
tion as a regression problem that takes eye or face images 
as inputs and predicts the 3D gaze direction or 2D gaze 
point from the images. These methods only require a 
monocular camera to capture the user’s facial images, 
thus it can be easily applied to mobile phones. To learn 
a general regression function for gaze estimation, meth-
ods such as adaptive linear regression [18], Gaussian pro-
cess regression [19], and dimension reduction technique 
[20] have been proposed. However, such methods fail 
to fit high-dimensional non-linear mapping functions. 
Recently, the deep neural network has made significant 
achievements in various computer-vision tasks and has 
demonstrated its value in gaze estimation. Zhang et  al. 
[1] proposed a convolutional neural network to estimate 
3D gaze direction from eye images based on LeNet [21]. 
Yu et al. [22] proposed to estimate eye gaze and face land-
marks simultaneously. Fischer et al. [23] used a VGG-16 
network [24] to extract deep eye features. Cheng et  al. 
[25] explored the asymmetry between left and right eyes 
for gaze estimation. Park et  al. [26] proposed a novel 
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Fig. 1 Overview of the proposed method. The goal is to estimate 2D gaze from an input face image. CCBs are proposed to efficiently correlate eye 
features, and employ metric learning to optimize gaze-feature embedding
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encoder-decoder-based framework with meta-learning 
for the few-shot gaze-estimation task. Recent methods 
[27, 28] have achieved good performances on 3D gaze 
estimation. Krafka et  al. [2] for the first time employed 
the convolutional neural network to estimate 2D gazes 
and proposed a large-scale 2D gaze dataset called Gaze-
Capture. He et  al. [3] used light-weight networks to 
achieve similar accuracy with higher efficiency on mobile 
phones. Lemley et al. [29] further improved the efficiency 
of gaze estimation with the simplified convolutional neu-
ral network on low-quality devices. EyeNeRF provides an 
efficient method for generating large eye datasets, which 
may benefit gaze estimation [30]. Recently, a novel adap-
tive feature fusion network AFF-Net was proposed [4]. It 
achieves state-of-the-art gaze point estimation results on 
the GazeCapture [2] and MPIIFaceGaze [31] datasets.

Softmax‑based metric learning
Metric learning has demonstrated its advantages in face 
recognition [32] and person re-identification [33] tasks. 
Deep metric learning can better discover the intrinsic 
relationships between features through feature-distance 
mapping, which can significantly improve classification 
performance in vision tasks. Softmax-based methods aim 
to apply different embedding distances on the calculation 
of logits for discriminating high variance samples in the 
face recognition task, which is similar to the gaze point 
classification task. For instance, Liu et al. [34] proposed 
a large margin softmax  (L-Softmax) loss by adding angu-
lar constraints, which was later improved with a weight 
normalization scheme [35]. Wang et al. [36] defined the 
decision margin in the cosine space that achieved state-
of-the-art performance based on a survey of metric 
learning [37]. Softmax-based metric learning for gaze 
point classification on quadrant regions can further opti-
mize gaze-feature embedding and facilitate the discrimi-
nation of different gazes.

Attention mechanism in vision tasks
Attention mechanisms have been widely used in natu-
ral language-processing tasks, and numerous works 
are also devoted to adapting the attention mechanism 
to computer-vision tasks. SENet [38], a representative 
attention-based architecture, explores the attention and 
gating mechanisms between deep local features. With 
the proposal of Transformer [39], attention has been 
proven to perform better than convolutional neural net-
works in certain vision tasks because Transformer has 
a better global perception of the entire image. ViT [40] 
completely adopts the Transformer structure into vision 
pipeline and achieves better performance. Li et  al. [41] 
proposed a unified building block by introducing 3 × 3 

convolution into attention to obtain fine-grained atten-
tion maps. Whereas the above methods primarily focus 
on self-attention of a single image, certain studies per-
formed feature correlation between images. Recently, 
Chen et  al. [42] combined cross-attention with Trans-
former to further improve the classification perfor-
mance. Attention mechanism has also been widely used 
for several tasks, such as behavior recognition [43] and 
segmentation [44]. This study introduces contextual 
attention into the cross-attention paradigm and pro-
poses CCBs in the EM-Gaze network.

Methods
In this section, the technical details of the EM-Gaze net-
work that explicitly considers the correlations between 
eye contextual features and leverages metric learning for 
quadrant division-aware supervision are elaborated.

Overview
Given a face image x ∈  RH×W ×3 (H and W are the height 
and width of the image), the goal of 2D gaze estima-
tion is to predict a 2D gaze vector y ∈  R2 that indicates 
the physical position on the screen, measured from the 
top-left corner in centimeters. In the proposed method, 
as a side-product, the corresponding quadrant division 
label q ∈ {1, 2, 3, 4} of the screen within which the gaze 
is located is predicted. A two-stream collaborative archi-
tecture for computing context correlated features for left 
and right eyes is proposed under the guidance of facial 
features. The network is supervised by normally used 
gaze-regression loss and the proposed gaze-classification 
loss on quadrant divisions.

The proposed method first extracts facial features 
from the input image to guide left and right eye feature 
extraction individually. Subsequently, contextual features 
are iteratively computed and correlated for the left and 
right eyes through CCBs, which adaptively assign shared 
attention weights to the eye features. Facial and corre-
lated eye features are then concatenated and processed 
by channel-mixing layers for long-distance feature chan-
nel fusion. From the mixing layer, the 2D gaze point is 
predicted using a fully connected layer, supervised by a 
regression loss. Additionally, the network is supervised 
by incorporating metric learning for gaze classification 
on quadrant divisions.

Two‑stream collaborative architecture
In appearance-based approaches, eye features are com-
puted from an input image to regress the gaze point. 
Krafka et  al. [2] and Zhang et  al. [31] observed that 
facial features, such as relative eye positions on the face 
and head pose, can provide additional cues for gaze 
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estimation. Previous studies have used eye features in dif-
ferent ways. Cheng et al. [25] demonstrated that the two 
eyes have different confidence of accuracy and proposed 
the ARE-Net that adaptively adjusts the weights for eyes. 
CA-Net uses both eyes and the face to model multi-scale 
eye representation with a coarse-to-fine strategy for gaze 
estimation [45]. Bao et al. [4] introduced adaptive group 
normalization (AdaGN) to re-calibrate eye features based 
on facial features and used SELayers to adaptively fuse 
concatenated eye features and facial features. Mutual 
information between the left and right eyes’ connection 
is not fully exploited. Existing attention models weight 
eye features by either cooperating facial information or 
calculating self-attention using single eye image. How-
ever, this study enhances the mutual connection between 
eyes with iterative correlations between eye contexts 
using a two-stream collaborative architecture.

The network
EM-Gaze contains three closely related sub-networks: 
Label-Net, Face-Net, and Eye-Net (Fig.  2). Label-Net 
takes detected face and eye bounding box labels as input, 
and uses fully connected layers to generate a 64-dimen-
sional feature vector for face and eye position represen-
tations. Face-Net uses a convolutional network stacked 
with several SELayers to convert an input face image into 
a 64-dimensional feature vector. The two 64-dimensional 
features are concatenated as facial feature guidance for 
gaze estimation. Eye-Net takes the left and right eye 
images as inputs for the two-stream collaborative archi-
tecture, and processes the images using the proposed 
CCBs under the guidance of facial features and channel-
mixing layers to learn a 128-dimensional feature repre-
sentation. Gaze point regression and classification results 
are predicted from the feature representation using fully 
connected layers.

CCB
Existing self-attention models for gaze estimation pri-
marily rely on the fusion of the eye features through 
assigning channel-wise attention weights based on 
facial features to each eye. However, in the gaze-esti-
mation task, one may need both eyes to provide col-
laborative attention. Therefore, the CCB is proposed 
and iteratively applied to correlate eye contexts at dif-
ferent depths.

Particularly, following the concepts in self-attention, for 
the left and right eye features  X{l,r} ∈  Rh×w×c at the same 
depth-level of the network, queries are defined as  Q{l,r} = 
 X{l,r}, keys as  K{l,r} =  X{l,r}, and values as  V{l,r} =  X{l,r}Wv, 
where  Wv is the embedding matrix shared between eyes, 
implemented as 1 × 1 convolution. CCB first computes 
the contextual representation K ∗

l/r ∈  Rh×w×c for each eye 
with 3 × 3 group convolutions over all the neighboring 
keys within a 3 × 3 grid. Subsequently, the query and con-
textual representation for each eye are concatenated and 
two 1 × 1 convolutions,  Wα and  Wβ, that share weights 
between left and right eyes are used to learn correspond-
ing correlated attention matrix:

All values are then aggregated to compute the corre-
lated representation for each eye as K ′

l/r
= V

∗

l/r
 ⊛ Al/r  , 

where ⊛ denotes the non-local operator originally inves-
tigated by [46]. The final output feature for each eye is a 
fusion of the correlated and contextual representations, 
K

′

l/r  and K ∗

l/r , respectively, using selective kernels [47]. 
Figure 3 shows the structure of the CCB.

Channel‑mixing layers
Although some gaze-estimation methods, such as 
iTracker [2] and SAGE [3], directly concatenate facial and 
eye features and feed them into several fully connected 
layers, such a simple multi-layer perception (MLP) over 

(1)Al/r = K∗

l/r, Ql/r WαWβ
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Fig. 2 Structure of the proposed EM-Gaze network. Given an input face image, facial features are extracted by Label-Net and Face-Net. Eye-Net 
takes the left eye image and flips right eye image as inputs, extracts eye features under the guidance of facial features, and iteratively correlates 
two-eye features using the proposed CCBs. Concatenated eye and facial features are fed into channel-mixing layers to obtain the gaze feature. 
Finally, fully-connected layers are employed to estimate 2D gaze position and quadrant division-based classification
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concatenated features may lose long-distance com-
munications between feature channels. To address this 
problem, MLP-Mixer [48] investigates a pure MLP archi-
tecture for vision tasks, which achieves similar or even 
better performance than Transformer. The core of MLP-
Mixer is the patch-based feature transformation using a 
mixing operator:

where X and Y denote the input and output features, c 
denotes a feature channel, σ denotes an activation func-
tion, and  W1 and  W2 are weights. This mixing opera-
tor can capture long-distance channel communications. 
Inspired by this, this study uses four channel-mixing lay-
ers before the final fully connected layer, to fuse the eye 
and facial features and compute feature embedding.

Loss function
According to ref. [49], from a maximum likelihood esti-
mation perspective, a neural network can be simul-
taneously optimized by mean square error loss and 
cross-entropy loss along a coherent direction. Inspired 
by this, this study incorporates the gaze-classification 
task as additional supervision for gaze estimation, where 
quadrant divisions of a screen are adapted, particularly 
for common gaze datasets. Thus, the proposed method is 
robust and can be extended to any division. Specifically, 
given a set of training images X = {xi}N

i=1, and corre-
sponding ground truth gaze labels Z = {yi,  qi }N

i=1, where 
N is the number of training images, this study aims to 
learn a mapping function modeled by a neural network 

(2)Yc = Xc +W2 · σ(W1 · LayerNorm(Xc))

by minimizing the regression spatial offset between the 
predicted 2D gaze point yˆi and ground truth  yi. Further-
more, the classification error typically formulated as a 
softmax loss should be minimized:

where C is the class number, f j indicates that the input 
feature is compressed for a label j through a fully con-
nected layer with weights  Wj as f j =  Wjxi.

In the proposed method, the large margin cosine loss 
[36]—a state-of-the-art metric learning model—is used 
to supervise the classification. It is derived from a nor-
malized version of softmax loss, by fixing ||Wj|| = 1 using 
 L2 normalization and ||x|| = s such that:

where s = 64 is a constant, θ j,i is the angle between  Wj 
and  xi. For two classes  Ci (i = 1, 2), conditions cos θ1 > 
cos θ2 for  C1 and cos θ1 < cos θ2 for  C2 are guaranteed for 
correct classification. A fixed margin m is introduced to 
improve the discrimination between features by ensuring 
cos θ1 −m > cos θ2 for  C1, and vice versa. With this tech-
nique, large margins in the cosine space are encouraged 
for feature-embedding optimization. For more details, 
please refer to ref. [36].

From EM-Gaze, a 128-dimensional gaze-feature 
embedding is optimized using a large margin cosine loss, 
 Llmc, which is associated with the four-quadrant division-
based classification, defined as:

(3)Ls =
1

N

N
∑

i=1

−log
efqi
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where m = 0.4 is the fixed large margin in cosine space.
EM-Gaze outputs a 2D vector yˆi using a fully con-

nected layer, supervised by a smooth  L1 regression loss:

The overall loss function is defined as: L =  Llmc + λ  Lreg, 
where λ = 150 is a constant parameter that balances the 
loss terms.

Implementation details
The inputs to EM-Gaze are a face image (224 × 224 × 3), 
two eye images (112 × 112 × 3) with the right eye image 
flipped, and 12-dimensional eye and face bounding box 
corners.

Label-Net stacks four fully connected layers whose 
output channels are 64, 96, 128, and 64, respectively. 
Face-Net consists of six convolutional layers; the num-
bers of convolutional kernels are 48, 96, 128, 192, 128, 
and 64; the kernel sizes of the first three layers are 5 and 
the remainder are 3, and the strides are 2, 1, 1, 1, 2, and 
2, respectively. Each convolutional layer is followed by 
group normalization and ReLU activation function, and 
a 3 × 3 max pooling layer is applied after the second and 
third convolutional layers. SELayers are added after the 
second, fourth, and last convolutional layers. Two fully 
connected layers follow the convolutional layer to further 
compress the face feature to a 64-dimensional vector.

Eye-Net has five convolutional layers, the numbers of 
convolutional kernels are 24, 48, 64, 128, and 64; the ker-
nel sizes of the first three layers are 5 and the remainder 
are 3, and the strides are 2, 1, 1, 1, 2, and 2. Group nor-
malization, activation, max pooling, and SELayers have 
the same settings as that of Face-Net. The last four con-
volutional layers are fused with facial features by AdaGN 
and correlated by the proposed CCB. A fully connected 
layer then converts the two-eye features to a 128-dimen-
sional vector. The eye and facial features are concate-
nated and fed into two fully connected layers to produce 
a 128-dimensional vector. The vector is then fed into the 
following four channel-mixing layers to output the same 
dimensional gaze feature. Finally, one fully connected 
layer follows to convert the feature to a two-dimensional 
vector for 2D gaze point regression and the other con-
verts it to a four-dimensional vector for gaze point clas-
sification on quadrant divisions.

The learning rate for training EM-Gaze is set to 0.001 
and half-reduced after every eight epochs. The batch 

(5)

Llmc =
1

N

∑N

i=1
−log

es
(

cos
(

θqi ,i
)

−m
)

es
(

cos
(

θqi ,i
)

−m
)

+

∑

j �=qi
escos(θj,i)

(6)Lreg =

{

0.5
(

ŷi − yi
)2
,
∣

∣ŷi − yi
∣

∣ ≤ 1
∣

∣ŷi − yi
∣

∣− 0.5, otherwise

size is set to 256. The proposed network is trained in 50 
epochs and its weights are initialized using default Xavier 
initialization [50]. Similar to AFF-Net [4], face and eye 
bounding boxes are made to randomly move less than 30 
pixels to improve model robustness during training. EM-
Gaze is implemented using PyTorch [51], and the weights 
of all layers are initialized using the default initialization.

Results and discussion
This section presents experimental results, including 
comparisons with state-of-the-art deep learning-based 
gaze-estimation methods, an ablation study of the pro-
posed techniques, and additional analysis of public 
datasets.

Datasets and evaluation metrics
The experiments are conducted using two popular gaze-
estimation datasets: GazeCapture dataset [2] and MPII-
FaceGaze [31]. The GazeCapture dataset is the largest 
unconstrained gaze dataset captured by mobile devices. 
It collects face images and corresponding 2D gaze data 
through crowdsourcing with 2445504 images from 1474 
subjects. The dataset is captured by the front-facing cam-
era of mobile phones or tablets, by asking the subjects to 
look at randomly generated points on the screen while 
recording the coordinates and full-face images. Addition-
ally, the GazeCapture dataset provides the meta-data of 
display size and camera position, such that the quadrant 
division label can be computed for a gaze point. This 
study follows the same train and tests data split as  ref. 
[2] by taking 150 subjects for testing and the remainder 
for training. The MPIIFaceGaze dataset is the largest 
gaze-estimation dataset for 3D gaze and serves as a com-
mon benchmark for appearance-based methods. It con-
tains over 200000 images from 15 subjects and provides 
a standard evaluation tool. The methods are tested on 
the standard evaluation set, which contains 3000 testing 
images from each subject.

Data processing
Regarding the GazeCapture dataset, face and eye images 
are cropped based on corresponding bounding boxes 
detected through an open-sourced python face-recog-
nition library. Face and eye images are resized to 224 × 
224 × 3 and 112 × 112 × 3, respectively. Additionally, the 
right eye image is flipped as AFF-Net [4] does, which was 
proven to be effective in improving accuracy. Regarding 
the MPIIFaceGaze dataset, the data-processing instruc-
tion by  ref. [9] is followed to obtain the face and eye 
bounding boxes. The image is cropped and resized using 
the same settings as that used for the GazeCapture data-
set. The bounding boxes are represented by bottom-left 
and top-right corner values, normalized with respect to 



Page 7 of 12Zhou et al. Visual Computing for Industry, Biomedicine, and Art             (2023) 6:8  

the image sizes. Finally, to simulate the calibration-free 
settings, the leave-one-person-out test is performed and 
the results are averaged from all subjects as the final per-
formance for a method on the MPIIFaceGaze dataset.

Evaluation metrics
Regarding gaze point prediction, the Euclidean distance 
error between the ground truth and estimated gaze point 
on the screen in physical distance is reported. Regarding 
quadrant division-based classification, the Top-1 accu-
racy on the four labels, which denote the four quadrants 
divided by the center point, is reported. For fair compari-
sons, only statistical results of calibration-free methods 
are reported.

Comparison with appearance‑based methods
The proposed method is compared with other appear-
ance-based methods on both the GazeCapture and MPII-
FaceGaze datasets.

On the GazeCapture dataset, the proposed method is 
evaluated against four representative methods, which 
are iTracker [2], SAGE [3], TAT [52], and AFF-Net [4]. 
The open-source code released by the authors is used to 
test iTracker and AFF-Net. Considering that SAGE and 
TAT can be improved by introducing multiple calibra-
tion images, only the results from SAGE and TAT with-
out extra calibration are shown for fair comparison, and 
the gaze point regression values based on the papers 
are reported. Table  1 displays the gaze point regression 
and classification performances for phones and tab-
lets, respectively. Regarding performances on phones, 
iTracker has the largest regression error of 2.06 cm. 
SAGE and TAT have similar performances of approxi-
mately 1.77 cm. AFF-Net improves the result to 1.62 
cm, and the proposed method achieves an error of 1.57 
cm. On tablet devices, the regression errors for iTracker, 

SAGE, TAT, and AFF-Net are 3.22, 2.72 2.66, and 2.30 
cm respectively. The proposed method outperforms the 
other methods and achieves a 2.21 cm regression error. 
For the classification metric, EM-Gaze achieves 12.1% 
and 15% improvements over the second-best methods on 
phones and tablets respectively.

More experiments are conducted on the MPIIFaceGaze 
dataset. Considering that the MPIIFaceGaze dataset is 
a commonly used 3D gaze-estimation dataset, both the 
Euclidean distance and converted 3D angle errors based 
on provided camera-screen calibration matrix are shown. 
Note that the MPIIFaceGaze dataset is collected from a 
laptop without access to the physical center point of the 
display; thus, only regression errors are reported and 
classification and metric learning are not used as supervi-
sion for the EM-Gaze method. iTracker, Spatial weights 
CNN [31], RT-GENE [23], and AFF-Net were selected as 
the competitive methods. As shown in Table 2, the pro-
posed method exhibits state-of-the-art performances 
over the other methods on the MPIIFaceGaze dataset, 
with a 3.60 cm Euclidean distance error and a 4.10 cm 
angular error.

Comparisons with representative appearance-based 
methods on the GazeCapture and MPIIFaceGaze data-
sets demonstrate a clear advantage of EM-Gaze over the 
other methods.

Ablation study
To demonstrate the effectiveness of the CCB, channel-
mixing layer, and metric-learning strategy, an ablation 
study is performed on the GazeCapture dataset.

Ablation study about components
The effectiveness of the CCB and channel-mixing 
layer is demonstrated. As aforementioned, CCB cor-
relates two eye features during feature extraction, 
and the channel-mixing layer fuses eye and facial fea-
tures to generate feature embedding. Table  3 presents 
the experimental results without and with CCB or 

Table 1 Gaze regression and classification results on the 
GazeCapture dataset. For SAGE [3] and TAT [52] methods, 
classification results are unavailable from publicly accessible 
contents. EM-Gaze outperforms the alternative methods under 
gaze-regression error and Top-1 classification accuracy metrics

Method Phone Tablet

Error 
↓ (cm)

Accuracy 
↑ (%)

Error ↓ 
(cm)

Accuracy 
↑ (%)

iTracker [2] 2.06 51.9 3.22 65.8

SAGE [3] 1.78 - 2.72 -

TAT [52] 1.77 - 2.66 -

AFF-Net [4] 1.62 57.1 2.30 70.1

EM‑Gaze (ours) 1.57 69.2 2.21 85.1

Table 2 Gaze regression results on the MPIIFaceGaze dataset. 
The angular error for 3D gaze is converted from 2D gaze through 
post-processing

Method 2D Gaze ↓ (cm) 3D Gaze 
↓ (deg)

iTracker [2] 5.46 6.20

Spatial weights CNN [31] 4.20 4.80

RT-GENE [23] 4.20 4.80

AFF-Net [4] 3.90 4.40

EM‑Gaze (ours) 3.60 4.10
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channel-mixing layer modules on the GazeCapture 
dataset under the Euclidean distance metric; metric-
learning strategy is disabled. The proposed network 
with CCB and channel-mixing layer modules achieves 
average errors of 1.59 and 2.22 cm on phones and tab-
lets, respectively. Without the channel-mixing layer, the 

results degenerate to 1.60 and 2.27 cm on phones and 
tablets, respectively; without CCB, the results further 
degenerate to 1.61 and 2.29 cm on phones and tablets, 
respectively. The original network without CCB or the 
channel-mixing layer performed worst.

Ablation study about strategy
The effectiveness of the metric-learning strategy for 
gaze classification on quadrant divisions is further 
evaluated. Figure  4 shows t-SNE [53] visualizations 
of embedded features from face images of the same 
user without and with the metric-learning strategy 
for phones and tablets, respectively. The results reveal 
a significant difference before and after using metric 
learning. With metric learning, gaze features belonging 
to the same quadrant division are grouped more closely, 
and the gaps between different clusters are increased. 
The performances without and with  Llmc for iTracker, 

Table 3 Ablation study of CCB and channel-mixing layer on the 
GazeCapture dataset. Gaze regression performances are reported

CCB Channel‑mixing 
layer

GazeCapture

Phone (cm) Tablet (cm)

- - 1.62 2.30

- ✓ 1.61 2.29

✓ - 1.60 2.27

✓ ✓ 1.59 2.22

Fig. 4 t-SNE visualizations of gaze-feature embedding without and with metric learning. Top: feature embedding for a user on a phone; bottom: 
feature embedding for a user on a tablet. Each dot represents an embedded feature from an input face image; the color of the dot represents its 
ground truth class label
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AFF-Net, and EM-Gaze methods are reported. Table 4 
presents the results. With the metric-learning strategy, 
all methods achieve improved regression and classifi-
cation performances except for AFF-Net, from which 
a degenerated regression performance is observed. 
EM-Gaze with metric learning exhibits the best perfor-
mance among all the methods.

Additional analysis
Figure  5 shows the representative visual results of face 
images and corresponding gaze point predictions from EM-
Gaze. The proposed method performs well under various 
lighting (Fig. 5a, c, e) and head pose (Fig. 5b, d, f) conditions.

Inference run-time performance of EM-Gaze and 
state-of-the-art methods are reported on a single RTX 
2080Ti GPU. The inference speed of EM-Gaze is 136 FPS, 
significantly faster than iTracker. RT-GENE and AFF-
Net run slightly faster than EM-Gaze. Regarding model 
size, EM-Gaze has 2.7M parameters, which is slightly 
more than that of AFF-Net, and is twice smaller than 
that of iTracker and significantly smaller than that of RT-
GENE. Table 5 lists corresponding statistics. In summary, 

Table 4 Ablation study of the proposed metric-learning strategy 
on the GazeCapture dataset

Method Phone Tablet

Error 
↓ (cm)

Accuracy 
↑ (%)

Error 
↓ (cm)

Accuracy 
↑ (%)

iTracker w/o  Llmc 2.11 51.9 3.41 65.8

iTracker w/  Llmc 2.08 63.4 3.30 79.0

AFF-Net w/o  Llmc 1.63 57.1 2.35 70.1

AFF-Net w/  Llmc 1.65 68.4 2.46 83.2

EM‑Gaze (ours) w/o  Llmc 1.59 57.9 2.22 71.0
EM‑Gaze (ours) w/  Llmc 1.57 69.2 2.21 85.1

Fig. 5 Representative face images and corresponding gaze-estimation results from the GazeCapture dataset. Red and blue dots indicate the 
estimated and ground truth gaze points, respectively

Table 5 Run-time performance and model size statistics

Method FPS ↑ Params (M) ↓

iTracker 28 6.3

RT-GENE 170 31.7

AFF-Net 156 1.9

EM-Gaze (ours) 136 2.7
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EM-Gaze has a good balance of model size and efficiency 
to estimate accurate gaze on mobile devices.

Conclusions
This study proposed EM-Gaze for mobile gaze estimation, 
including gaze point regression and classification on quad-
rant division of the display. EM-Gaze efficiently correlated 
eye contexts, fused channels for long-distance communi-
cations, and used metric learning to optimize gaze-feature 
embedding. The experimental results indicated that EM-
Gaze achieves state-of-the-art gaze-estimation perfor-
mance on the GazeCapture and MPI-IFaceGaze datasets.

EM-Gaze could fail to predict correct gazes for chal-
lenging inputs. First, when the head pose is overly tilted, 
EM-Gaze may fail because of the strong impact imposed 
by the head pose. Second, inconsistent lighting on the 
face can disturb the prediction. Third, motion blurs 
existed in the testing data, which made the prediction 
fail. Figure 6 shows representative failure cases.

In the future, disentangled representation of the face, 
including geometry, appearance, and illumination, will be 
studied to alleviate the distraction caused by inconsistent 
lighting, motion blur, etc. Furthermore, introducing few-
shot calibration into the proposed architecture is a prom-
ising research direction.

Abbreviations
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AdaGN  Adaptive group normalization
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