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Abstract 

More diverse data on animal ecology are now available. This “data deluge” presents challenges for both biologists 
and computer scientists; however, it also creates opportunities to improve analysis and answer more holistic research 
questions. We aim to increase awareness of the current opportunity for interdisciplinary research between animal 
ecology researchers and computer scientists. Immersive analytics (IA) is an emerging research field in which investiga-
tions are performed into how immersive technologies, such as large display walls and virtual reality and augmented 
reality devices, can be used to improve data analysis, outcomes, and communication. These investigations have the 
potential to reduce the analysis effort and widen the range of questions that can be addressed. We propose that 
biologists and computer scientists combine their efforts to lay the foundation for IA in animal ecology research. We 
discuss the potential and the challenges and outline a path toward a structured approach. We imagine that a joint 
effort would combine the strengths and expertise of both communities, leading to a well-defined research agenda 
and design space, practical guidelines, robust and reusable software frameworks, reduced analysis effort, and better 
comparability of results.
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Introduction
Rapidly emerging technologies, such as lightweight sen-
sor tags and advanced satellite imagery, provide unprec-
edented access to large and quickly increasing amounts 
of data on animal movement and behavior, as well as the 
corresponding environmental conditions. The sheer vol-
ume, scale, and complexity of the data and the associated 
uncertainty create challenges for analysis and inter-
pretation. These challenges include questions regard-
ing computer-based handling, such as pre-processing, 
integration, automated analysis and representation, and 

human interaction with and interpretation of the data. 
The wealth of data also creates an opportunity by facili-
tating the investigation of more holistic research ques-
tions, considering several aspects of animal behavior 
simultaneously with environmental conditions. Exam-
ples include supporting machine learning  [1–6], enrich-
ing models of behavior with facets that were previously 
unresolvable [7–9], and providing a broader base for the 
interpretation and detection of patterns or traits on a 
more fine-grained spatial and temporal level [10, 11]. This 
opportunity is particularly welcome at a time when rapid 
environmental changes, owing to climate change and 
human impact, and corresponding changes in behavioral 
patterns might require adaptive approaches and a revisi-
tation of established models and views  [12–14]. Conse-
quently, an increasing number of tools are available that 
integrate data on animal movement and behavior, as well 
as information on the movement environment, with ana-
lytical methods to create interactive interfaces (Fig. 1).
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Meanwhile, we have new technologies that can facili-
tate data analysis. The development of IT technologies, 
such as virtual  reality (VR) and augmented reality (AR) 
environments, large high-resolution monitor walls and 
touch surfaces, holographic displays, and interactive 3D 
visualizations, have the potential to greatly improve the 
scope and efficiency of animal ecology analysis. Sud-
denly, we can superimpose data visualizations on maps 

on the fly using mobile devices [16] (Fig. 2), “fly with the 
flock” [17] (Fig. 3, right), or recreate virtual environments 
for the study of animal behavior in a controlled set-
ting [18, 19].

In the endeavor to take advantage of the resulting 
opportunities, biologists and computer scientists face 
common challenges. Both seek ways to create scalable 
and robust solutions  [21, 22] for faithful and reliable 

Fig. 1 Visual analysis in the TeamWise animal movement analysis tool [15], showing a behavior classification visualization along a movement 
trajectory on top of satellite imagery. The timeline bar at the bottom shows behavior categories along the time axis, and the behavior annotations 
are embedded in the 3D view. 2D charts show visualizations of additional abstract data

Fig. 2 Superimposed visualization concept example for movement data analysis on a map, e.g., using AR visualization aligned with a tablet (taken 
from ref. [16])
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human interpretation  [14, 23]. Similarly, both investi-
gate approaches that exploit new technologies for this 
purpose.

However, how to best exploit these technologies and 
integrate them into a human-centered approach has not 
yet been well defined [18, 21, 24–26]. A joint community 
effort across both communities could save resources, pro-
vide joint software platforms, and significantly improve 
the quality and acceptance of the proposed standards and 
results.

Immersive analytics  (IA)  [20, 27] is an emerging 
research field in computer science that investigates 
the potential for immersive technologies to be used to 
improve data analysis and communication, highlighting 
the potential to reduce analysis effort, widen the range 
of questions that can be tackled, and improve outcomes. 
We propose that biologists and computer scientists com-
bine their efforts to lay the foundation for IAs in animal 
ecology research. We discuss the potential challenges and 
outline a path toward a structured approach.

Joint research should define guidelines and standards, 
highlight best practices, characterize the design space for 
solutions, and address important challenges and research 
questions. In addition, reusable software frameworks that 
reduce implementation effort and facilitate reproducible 
analysis workflows are a major aim.

IA for animal ecology
IA
IA aims to create more engaging and immersive experi-
ences and seamless workflows for data analysis applica-
tions  [28] by exploiting the affordances of devices and 
immersive environments (IE), such as user movement 
tracking, stereoscopic 3D  (S3D)  [29, 30], multimodal 
interaction  [31, 32], and data physicalization  [33]. It is 
ready to facilitate the analysis of the growing amount and 
complexity of data in animal ecology research and can 
provide more efficient and powerful animal ecology anal-
ysis tools and environments.

However, to this day, IA is mainly concerned with 
fundamental research questions rather than practical 
applications. Consequently, overarching research ques-
tions for IA [20, 34, 35] are as follows:

• Use of S3D – how can it be best exploited, which 
representations are best suited, how does it com-
pare to standard 2D, how to overcome challenges of 
scale, location, perspective, and depth, and how to 
integrate classical 2D representations [30, 36]?

• Use of multimodal representation – how can sen-
sory channels be further employed to go beyond the 
capabilities of visual representation, e.g., through 
the use of sonification, haptics, or data physicaliza-
tion [33]?

• Interaction with data representations and the user 
interface for analysis – how to create efficient and 
intuitive interfaces, e.g., using multi-modal interac-
tion [37, 38] and transitional interfaces [39, 40]?

• Navigation – what are good navigation metaphors 
to allow the user to traverse large data sets while 
maintaining orientation and supporting the genera-
tion of a mental map, i.e., the internal representa-
tion of knowledge concerned with the data and 
its connection to external representation in the 
IE [41]?

• Scalability – how to cope with huge data sets, 
regarding the computational requirements and 
responsiveness of automated analysis but also 
aggregation and abstraction for human interpreta-
tion?

• Collaboration – how can collaboration for analysis 
be explicitly supported, e.g., given the large physical 
immersive spaces provided by IE [42]?

• Analysis and presentation environments and audi-
ence – how to tailor an approach for the constraints 
of an environment, e.g., lab vs in the field, or a group 
of users, e.g., experts performing exploratory analysis 
vs decision makers using communication of results?

Fig. 3 Examples of using immersive technology. Left: Molecular representation on a glass-free 3D Looking Glass device, as a 3D-printed 
physicalization that can be used for interaction and haptic feedback, positioned next to a standard 2D monitor representation; Center: Interaction 
with a network visualization in VR; Right: VR view of a flock of storks soaring from a stork’s perspective (taken from ref. [20])
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Nevertheless, IA has been commended for use in a vari-
ety of areas  [43–49], (Fig.  3). However, efficient and 
user-friendly approaches must be tailored to the specific 
questions and requirements of an application.

The combination of data visualization, multi-modal 
data representation, multi-modal interaction, integration 
of analysis methods, and device and environment char-
acteristics constitutes a large design space. Thus, suitable 
solutions within this space must be designed and evalu-
ated for use in animal ecology research with a focus on 
specific tasks, users, and data to fully benefit from the 
capabilities of IE compared to those of classical desktop 
environments. To this end, proper use has to be made 
of the differences in environment characteristics, e.g., 
regarding the physical immersion of the user, S3D, field 
of view/regard, user movement tracking, gesture recogni-
tion, and interaction using hand-held controllers.

A combination of more intuitive interaction with the 
data, 3D representations for abstract and spatial data [30], 
and integrated interfaces for automated analysis methods 
has the potential to greatly improve the analysis cycle, 
enhancing user experience and efficiency. Possible exam-
ples of how this might work for animal ecology research 
include observing the environment from an animal per-
spective, walking through a scene of interacting animals 
while being able to steer an analysis interactively, and 
combining these scenes with classical abstract data visu-
alizations (Fig. 4). These examples can also be extended 
by adding support for collaboration, by providing several 
analysts with the same data representation and allowing 
shared annotations and analyses, for example. In addition 
to software frameworks and in cases such as VR HMDs, 
full software eco-systems, have been developed around 
immersive hardware technology, significantly reducing 

the threshold to prototype and develop immersive visual-
izations as well as integrate automated analysis solutions. 
Thus, the current situation provides an ideal foundation 
for investigating the potential of such environments for 
animal ecology data exploration and analysis.

Challenges from animal ecology
The relationship between animals and their environ-
ment is complex, and animal activity area characteristics 
depend on the location of suitable living conditions, that 
is, based on the specific features of an area  [52]. Mean-
while, animal behavior can also heavily affect the envi-
ronment in a variety of ways, such as through pollination, 
grazing, and the arrival of invasive species. Therefore, 
current research in animal ecology is also concerned with 
the identification of features and stimuli that inform ani-
mal decisions, trigger actions, influence behavior, and 
facilitate orientation and navigation. Many analyses, such 
as those of habitat and corridor configuration, foraging 
quantity and quality, and migration paths, involve the 
application of environmental feature data.

The important research questions are often interrelated:

• Investigation of movement and movement patterns 
on different levels of scale [53–55] and individual or 
collective movement  [24], such as home-range, ter-
ritorial behavior, and swarm movement

• Interaction between individuals or groups [56, 57], e.g., 
in movement, predation, and decision making [58]

• Impact of environmental conditions, e.g., on decision 
making, social dynamics, or survival [18, 19, 59, 60]

• Differences in species and groups, e.g., based on 
phenotypic variation [61] or related to evolutionary 
relation

Fig. 4 Use of AR technology: Further analysis results and annotations, such as those regarding environmental conditions, can be calculated 
or interactively retrieved from databases. They can be used as a visual overlay or integrated into the scene. Creating such spatially situated 
visualizations, i.e., visualizations integrated with a real-world referent such as physical spaces or entities, is a core challenge of IA [50, 51]
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• Cognitive processes underlying behavioral patterns, 
e.g., foraging or mate choice [62]

• Prediction and modeling of behavior [13, 63]

The available information on animal behavior and move-
ment is usually collected by sensors, imaging, and subse-
quent processing of the results. Analysis methods need 
to exhibit a certain level of robustness toward incomplete 
and noisy data and be capable of coping with the uncer-
tainty associated with it. Representations of the results 
must convey the corresponding restrictions and limits of 
confidence to analysts.

Further, behavior information usually needs to be 
embedded into the environment in which it occurs to 
allow proper interpretation [53, 64]. This combination is 
often challenging because of the sparsity and quality of 
the data available for both the animals under investiga-
tion and the corresponding environment  [65]. The data 
only represent a part of the animal environment, and 
which type of information extracted from the data best 
facilitates modeling of the interrelations between an 
animal and its surroundings and what confidence level 
can be reached need to be investigated [66–68]. For the 
design of an analytical concept, methods for the extrac-
tion and visual representation of the necessary infor-
mation need to be conceived. Thus, to analyze animal 
behavior properly, environmental features must be 
extracted from the available information, integrated with 
the automated analysis, and presented in tuitively for 
interactive exploration by the analyst. Hence, which fea-
tures can be collected and how they can be provided and 
integrated into approaches and tools for animal ecology 
researchers need to be examined.

Given the 3D nature of the animal environment, a rep-
resentation in S3D is appropriate, and there are indicators 
that S3D representations have advantages over 2D rep-
resentations for a variety of tasks  [29, 30, 69]. However, 
such a representation comes with a number of caveats. 
While the investigation can benefit from the depiction of 
the natural environment, for example, to create hypoth-
eses for landmarks used for decision-making, the neces-
sary fidelity of the representation is a parameter for IE 
design. How can the environment be reconstructed for 
human analysis, particularly when no first-hand experi-
ence of local conditions is available? To this end, the inte-
gration of imaging methods and subsequent processing 
for the identification of features is required, and models 
must be employed to represent and simulate the envi-
ronment and its features in an IE. Furthermore, whereas 
interaction with representations in 3D can be designed 
in a more intuitive manner than in a desktop setup [32], 
adding interfaces for analysis methods in this setting 
is a challenge. This includes interfaces for settings and 

selection, as well as for a well-interpretable representa-
tion of intermediate results.

Whereas big data approaches can foster the under-
standing of the ecology of animal movement and behav-
ior  [57, 70], they also provide use cases with specific 
challenges and requirements for analysis approaches. 
These include the ability to monitor and analyze large-
scale data and to derive patterns and unusual behavior at 
different levels of scale. One example of such a challenge 
is the recently introduced concept of “Internet on Ani-
mals,” which proposes fine-scale biologging through the 
combination of WiFi and multi-sensor devices. The pro-
posed architecture supports big data biologging, particu-
larly the collection of movement and locomotion data, 
over extended periods  of time. Thus, the analysis envi-
ronments for such data must be able to handle the scale 
of the incoming data. Applications might require real-
time monitoring as well as aggregation and abstraction 
of long-term data for trend and pattern detection, along 
with comparison, for example, between animals or time 
periods. Important features of the data required for the 
analysis must be preserved in the aggregation process and 
made available to the analyst, either in an overview or on 
demand  [70, 71]. The ability to integrate different levels 
of scale, for example, from different data collection tech-
nologies and sampling strategies  [70, 72], poses another 
challenge. This requires proper handling, representation, 
and navigation techniques. An example would be smooth 
transitions between different levels of temporal or spa-
tial scales. Further challenges include surveillance for the 
monitoring and prediction of environmental changes or 
events. Interesting use cases include the monitoring of 
the impact of human land use and climate change and the 
attempt to predict natural disasters by detecting unusual 
animal behavior [73].

Potential for synergies and research
IEs have applications in animal ecology education  [38], 
outreach, decision making, and the investigation of 
behavior. In a holistic approach, the enriched recreation 
of the environment and information on animal behavior 
can be combined with access to analysis methods and 
pipelines, supporting an immersive interactive experi-
ence and analysis. For example, Harel et  al.  [59] dis-
cussed the representation of arboreal animal movements 
and decision making in VR. They mapped the 2.5D set-
ting of canopy environments into a S3D environment 
for detailed analysis. As the ability to precisely measure 
movement and position is improving, more fine-grained 
options for representation are becoming available, which 
may support a better understanding of animal decision-
making, for example, regarding the trade-off between 
risk and reward  [59]. However, as Harel et  al. mention, 
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current technologies used to collect data, such as sensor 
collars or drones, may still have an impact on the avail-
able decision options of the animal and the decisions 
taken.

IEs can provide further advantages for the analysis of 
such environments by supporting spatial sound represen-
tations of collected or simulated data that foster further 
insight into environmental characteristics, decision driv-
ers, and variations across taxa  [74, 75]. Klein et  al.  [17] 
performed a benchmark study to assess the suitabil-
ity of different IEs for animal movement visualization 
from both the developer and analyst perspectives. They 
concluded that suitability is strongly dependent on the 
specific environment and design in relation to the task. 
Examples include analysis in the field or the lab, collabo-
rative analysis, and decision-making and engagement of 
the general public.

The use of IEs is not restricted to the representation 
and analysis of data but can also be used to create envi-
ronments for controlled studies. Design guidelines and 
experimental evidence from IA may help to improve 
environmental design. Sawyer and Gleeson  [76] sum-
marized the use of VR for animal behavior investigations 
in biological laboratories. Their summary includes neu-
rological studies that involved the placement of animals 
in a VR environment for controlled behavior studies, as 
well as studies that promoted the investigation of vir-
tual animal models to replace traditional animal models 
in biological laboratories. Corresponding results might 
also inform studies on human-animal interactions, for 
example, a review on human-dog interactions in VR and 
AR presented  by Oxley et  al.  [77]. Computer-mediated 
visual stimulation of animals for behavioral research has 
been employed for many years, and VR was successfully 
adopted several years ago. For instance, see the survey 
on VR systems for rodents presented  by Thurley and 
Ayaz [78]. In this study, they advocate for the transfer of 
concepts tackling research questions of spatial cognition 
and navigation from human to animal behavior research. 
However, Thurley and Ayay also discussed the issue of 
the trade-off between stimulus control and restraint, 
which is greater for animals as they cannot be instructed 
before a study. Restraints, such as movement fixation, 
might restrict movement options, limit necessary sen-
sory input, or even lead to unintended deviations from 
real-world experiences, including conflicting sensory 
information, which might be a confounding factor in the 
investigation. Taube et al.  [79] discussed the problem of 
using results from virtual setups to interpret spatial ori-
entation and navigation, as these setups do not factor the 
activation of motor, vestibular, and proprioceptive sys-
tems. To overcome these restrictions, Stowers et al. [80] 
presented a VR system for freely moving animals. Naik 

et al. [18] presented a review of animal behavior experi-
ments conducted in virtual environments and argued 
that while virtual environments have become a widely 
used tool for animal behavior research, more interdisci-
plinary research is required.

Open research questions in IA for animal ecol-
ogy include how to integrate data on animals and the 
environment into automated analysis, which IE is best 
suited for a specific analysis task, how to best repre-
sent data and analysis results within the IE, and how 
to support the exploration of the data through intui-
tive interaction and navigation approaches (see Toward 
a structured approach for animal ecology  IA section). 
Only initial investigations from the computer science 
field have targeted aspects of animal ecology, particu-
larly regarding geo-visualizations. Examples include the 
use of globes and maps  [81] and differences in IEs for 
bird movement analysis [17].

Given the opportunities of IEs, including not only 
the larger visualization space and up to six degrees of 
freedom for the analyst’s movement in the data repre-
sentation, but also more intuitive interaction, several 
advantages for animal ecology are envisioned. First, the 
3D visualization space can be used to better show ani-
mal behavior in the environment in which it occurred 
(Fig. 4a). Next, the analyst can be immersed in the scene 
if necessary, exploring different perspectives, for exam-
ple, from an animal’s viewpoint. In addition, interaction 
with the scene can be more direct; an example would 
be selecting animal representations by hand for further 
analysis. Finally, the integration of automated analysis 
into scene depiction makes the switch between result 
representation, data exploration, and interaction with 
analysis methods unnecessary.

However, the value of such solutions depends on how 
they support the complex analysis of animal behavior 
and the interplay with the environment, how they can be 
integrated into everyday analysis work, and how they can 
intuitively be used by domain experts. Analysis aspects, 
such as interactions between animals, movement pat-
terns, influential environment characteristics, and drivers 
of animal decisions, must be integrated in the analy-
sis and properly represented for human reasoning. We 
assume that different use cases will benefit quite differ-
ently from affordances of IEs and, thus, will need specific 
design solutions.

The main categories that distinguish the use cases 
include the spatio-temporal and environment con-
ditions of the observation and analysis (Fig.  5). The 
observation can be

• direct, i.e., an analyst observes the animal through 
the senses and also perceives the context of the sur-
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rounding environment, or indirect, in which sensors 
are used to observe a selected set of certain features 
and parameters of animal behavior and environment;

• in real-time, for instance, when an observer is in the 
field simultaneously with the animals under observa-
tion, or asynchronously, i.e., with a delay between the 
animals’ action and the observation of its results or 
remainders (e.g., tree marking or nest construction);

• in the field or in a controlled environment, for exam-
ple, with a specific experimental setup in a confined 
lab space to test a hypothesis.

In particular, for direct observations in real time, the 
observer might also be the analyst or prepare informa-
tion for later use by an analyst.

The analysis can be

• collocated, i.e., in the same space as the animals, or 
remote, for example, in the analyst’s office or data 
theater,

• in real-time, i.e., while observing animals, or asyn-
chronously, for example, by using a replay of the 
behavior or investigating collected data at a later 
point in time,

• in a purely physical environment, or computer-
mediated environment, for example, fully computer-

mediated VR representations of animal behavior in 
an environment, AR superimposed visualizations, 
or a hybrid setting, e.g., by projecting an overlay of 
the environment in which the behavior occurs on an 
office desk (Fig. 4a),

• in the field or in a controlled environment similar to 
that of the observation.

To foster the active development of corresponding solu-
tions, a requirement analysis and an exploration of con-
cepts, methods, and designs are required. These steps 
should be performed in a joint effort by biologists and 
computer scientists. Thus, research could greatly ben-
efit from focused collaboration between both groups to 
define a design space for solutions.

To properly assess possible designs for IE, we can first 
analyze the use case at hand and its requirements regard-
ing the above categories, resulting in a combination of 
features such as direct and real-time observation in a 
controlled environment with asynchronous analysis in a 
VR environment. Afterwards, fitting designs and tech-
nology options can be chosen to support the analysis, 
as well as the observation, for example, by a data overlay 
through AR in the field.

Some of the resulting possible combinations are more 
promising than others, and for some, the potential 

Fig. 5 The aspects that distinguish use-cases for application of IA in animal ecology cover several major categories related to location, time, and 
environment
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benefits are unclear. For example, the use of VR in a 
direct observation setting seems artificial because the use 
of VR hinders direct observation. However, in a col-
laborative setting with multiple analysts, of which only 
one uses VR, the case might still be justified. However, 
in general, we assume that an AR setting is more suitable 
for direct observation and collocated analysis. Note that 
mixed scenarios of these categories are also possible, for 
example, in such a collaborative setting in which roles in 
a team are distributed.

Another important question for IA research and sys-
tem development is how to measure success, considering 
the often complex workflows and long-term cyclic pro-
cesses that are targeted.

Interdisciplinary collaboration
While there are already ongoing and successful collabo-
rations between computer scientists and animal ecolo-
gists, the current state of research offers the opportunity 
to shape the research direction of IA for animal ecology 
by laying the foundation for a community effort. In this 
effort, the communities can work together to identify the 
main challenges and coordinate work on common stand-
ards and platforms, fostering better exchange, reuse, and 
comparison of approaches. There are large differences 
in methodology, vocabulary, and approaches between 
the domains of biology and computer science that need 
to be bridged  [82]. Computer scientists are concerned 
with research questions regarding the methodology and 
concepts of computational approaches to create effec-
tive and efficient methods for data analysis. A large part 
of today’s work in animal ecology, particularly regarding 
data processing and analysis, involves computer technol-
ogy, and many animal ecologists are also early adopters of 
new technology  [21]. While often proficient in practical 
programming, they need to use such methods to tackle 
their research questions and improve reproducibility and 
replicability of studies [83]. However, they often have to 
deviate from their research focus on computer science, 
and large efforts have contributed to ad-hoc solutions 
that are often not reused. Rather than having ecologists 
spend a considerable portion of their time learning and 
re-implementing advanced computer science concepts, 
we suggest developing a unifying framework that targets 
typical use cases and provides guidance, and establishing 
implementations of best practice approaches. Therefore, 
we advocate a structured approach to lay the founda-
tion for developments that exploit the skills and exper-
tise of both sides. Initial steps in this direction have been 
taken [21, 55, 65].

Instead of selecting existing standard tools, with all 
their restrictions, animal ecologists and computer sci-
entists together can develop tools and software tailored 

toward the specific requirements of animal ecology. Such 
an interdisciplinary collaboration would also allow large-
scale efforts to be targeted, such as a common platform 
for animal ecology IA, which decreases the implemen-
tation effort for biologists, speeds up the development 
process, leads to better-designed analysis environments 
and well-characterized analysis workflows, and increases 
analysis efficiency and reproducibility. Interactive inter-
faces that support the creation and execution of indi-
vidual analysis workflows in a programming-free manner 
could decrease analyst effort and improve analysis design, 
as shown by MoveApps  [84] or the Orange  [85] data-
mining platform.

Success stories for structured interdisciplinary 
approaches to data analysis exist in other areas, where 
large interdisciplinary teams define ontologies and stand-
ards and frameworks and software libraries provide well-
designed analysis tools. Examples include the COMBINE 
initiative  [86, 87], which coordinates the development 
of community standards and formats for computational 
models in systems biology, and the Bioconductor frame-
work [88], which provides tools for the analysis of high-
throughput genomic data, showing how coordinated 
long-term efforts can provide interoperable standards, 
foster exchange, avoid duplicate work, improve the qual-
ity of available software and results, and facilitate high-
quality communication of said results.

Toward a structured approach for animal ecology IA
To initiate a larger initiative, a community effort should 
be undertaken to perform a requirement analysis that 
characterizes the available and expected data, analysis 
operations, and workflows in a structured manner. We 
suggest the formulation of guidelines and creation of 
frameworks for the collection, storage, and processing of 
high-quality data to improve the data analysis. Existing 
concepts from animal ecology research can be extended 
and improved with the results of computer science 
research, such as computational modeling, visual repre-
sentation, and computational efficiency. For example, the 
variety of pipeline and workflow models can be extended 
by aspects that have great potential to improve reasoning 
and decision-making, such as the way analysts interact 
with the data, encoding used for data representation, and 
environment within which the analysis is performed.

Conversely, computer science methods should be 
extended to address semantics in animal ecology. 
Many concepts for data modeling, analysis, and rep-
resentation that have been developed in computer sci-
ence might be used as the starting point for solutions 
tailored towards animal behavior research, for exam-
ple, by integrating semantics and classifications. Thus, 
standard pipelines and workflows (Fig.  6) should be 
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reinvestigated, enriched, and refined to focus on the 
specifics of animal ecology. The sensemaking loop 
model for intelligence analysts  [89] is a great example 
of a refined model that considers the concepts and ter-
minology of the application area. Moreover, it mod-
els the process in terms of several cyclic processes, in 
contrast to basic pipeline models, which often miss the 
cyclic aspect of data analysis. Motivated by such exam-
ples, we propose to characterize the specifics of animal 
ecology to provide a design space for practical solutions 
tailored toward IA for animal ecology.

Important aspects that should be considered are data 
pre-processing, provenance, analysis of spatial-tempo-
ral data, collaboration, rendering of a 3D environment, 
human-computer interaction, environment, encoding, 
notations, and standards for representation, reporting, 
and exchange [90]. Whereas such aspects are common 
in computer science, their combination in the context 
of decision-making and living organisms is unique.

In the following, we discuss the selected aspects that 
should be tailored for analysis in animal ecology.

• Data integration and pre-processing: The amount 
and complexity of incoming raw data is a challenge 
for analysts and established methods [14, 72, 91]. Dif-
ferent types of data such as data on movement, ani-
mal physiology, and the surrounding environment 
are collected as time series, images, videos, scalar 

fields, and point clouds. Combinations of such data 
are required for efficient and effective automated and 
human analysis  [92], and well-specified procedures 
for the handling of missing data, outliers, inconsist-
encies, and uncertainty need to be performed. To 
improve both types of analysis, current approaches 
need to be adjusted with measures to test/support 
the data quality, such as automated preprocessing, 
storage requirements in databases, annotations on 
the applied processing, mapping of data from dif-
ferent sources, aggregation, specified formats, and 
standards and ontologies to structure the data. While 
this challenge has already been tackled for standard 
environments, some IEs exhibit different limits of 
scalability and technical restrictions regarding the 
integration of data pipelines. Moreover, when data 
representations are designed, information on the 
preprocessing steps might be required for the analyst 
to avoid misinterpretation, and robust approaches 
are required that can cope with quality issues in the 
data [71]. The integration of data from multiple lev-
els of organization can be used to improve the accu-
racy of the subsequent analysis [72]; however, careful 
design is needed, not just for the integration, but also 
for the corresponding user interface.

• Automated analysis: Given the rich set of already 
available analysis tools, for instance, provided as R 
packages, python packages, and machine learning-

Fig. 6 Flow chart of data processing and interactive analysis for animal ecology
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based methods, solutions for IEs should take advan-
tage of those tools, and concepts are required to 
provide interfaces that allow seamless integration. 
This includes not only providing computational 
access but also considering how a user interface 
needs to be designed to support a smooth workflow, 
for example, allowing parameterization of methods. 
Furthermore, how should the established ways of 
representing results, such as traditional 2D charts 
and plots, be transferred into IEs needs to be inves-
tigated. As a side effect, such an integration would 
ease the load when analysts switch between different 
environments, for instance, in transitional user inter-
faces  [40] where different types of mixed-reality are 
available to the analyst.

• Cyclic analysis workflows and provenance: The anal-
ysis process might be based on an already pre-pro-
cessed and well-defined set of data that is used for 
a series of different research questions. For each of 
these questions, a researcher might revisit the data to 
explore different aspects. Thus, solutions that make 
the history of previous investigations available and 
allow the storage of annotations and partial results 
are required. In practice, often a cyclic approach 
is taken  [89, 93], in which previous analysis results 
and additional data can be fed into the investigation. 
Knowledge generation models focused on animal 
ecology might help shape workflow design.

• Visual data representation: Available data and tech-
nologies facilitate new visual metaphors that might 
improve the quality and efficiency of the data anal-
ysis  [94]. However, the potential for animal ecol-
ogy has not yet been well investigated. For example, 
whereas publications advocate for the representation 
of animal movement in the context of the environ-
ment in which it takes place  [17, 90, 91], the actual 
impact and optimal ways to do this are not yet clear. 
For instance, does 3D help or rather distract from 
the task at hand? Is environment imagery helpful if it 
does not reflect the situation at the exact observation 
timepoint? The use of graphical notations to facili-
tate interpretation and improved comparability is 
established in many research areas, such as software 
engineering (unified modeling language) or systems 
biology (systems biology graphical notation)  [94]. 
Similar efforts could be undertaken in animal ecol-
ogy to improve analysis and communication and sup-
port replicable and well-defined results. With more 
data sources and dimensions available, proper use 
of visual variables for data mapping in different IEs, 
as well as the extension to multi-modal representa-

tion, for example, the inclusion of haptics or sound, 
should be investigated. The visualization of data qual-
ity, regarding missing data or uncertainty in meas-
urements, is a further aspect that needs to be con-
sidered. When data representations are optimized for 
IEs, for instance, the use of S3D that allows the user 
to walk in the representation, the questions of how 
to share such representations and how to communi-
cate the findings arise. While established charts could 
simply be printed or shared as images, this might dif-
fer greatly for 3D representations.

• IEs: As we have discussed in  IA  for animal ecol-
ogy section, the selection of fitting IE designs would 
strongly depend on data characteristics, research and 
analysis workflow, and the specific research ques-
tion under investigation. Which technologies to use 
and how to employ them needs to be investigated 
for specific settings in animal ecology. For exam-
ple, the different classes of animals, available data 
sources, nature of the investigation, e.g., explora-
tion or hypothesis testing, and the specific task, e.g., 
investigation of use of resources or group interac-
tion, should be considered. Consequently, we would 
expect guidelines on what design is better suited for 
which type of analysis, going beyond the few results 
for specific classes of animals and environments [17, 
81].

• Interaction: We believe that new technologies 
allow the creation of more engaging interfaces but 
also require further efforts to design interaction 
metaphors that support more intuitive, effective, 
and efficient data analysis and reasoning by animal 
ecologists. One example is to show the data in a 
representation of its environment, for instance, in a 
table-top or room-sized representation, with navi-
gation by movement or gesture, or adaptive repre-
sentations, facilitating the manipulation of data 
representations and interface elements in a more 
natural way. However, the efficiency of interactions 
and the required amount of user guidance needs to 
be investigated.

• Collaboration: Collaboration should be specifi-
cally integrated in practical approach for animal 
ecology  [95]. This includes data annotation (clas-
sifications, personal comments), recording and 
reproduction of processing steps (provenance) for 
synchronous and asynchronous collaboration, and 
methods to support collaborative analysis in real or 
virtual spaces, for example, through the representa-
tion of collaborators to facilitate communication and 
exchange.
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Action items
The following steps foster a better mutual understand-
ing and collaboration between the animal and computer 
sciences. While they constitute research in their own 
right, they can serve as a preparation for further research 
on both foundational and practical solutions for animal 
ecology research.

To exploit the potential of new immersive develop-
ments in animal ecology research and lay the foundation 
for unified handling and reproducible results we propose 
the following:

• Conduct a requirement analysis that covers a broad 
range of use cases, discussing characteristics of data, 
tasks, workflows, user roles, research questions, 
and potential analysis environments. The different 
aspects of such an analysis are summarized in Fig. 7.

• Evolve existing guidelines and pipelines for data pro-
cessing and interactive representation or create new 
ones that fit better the requirements of practitioners 
in animal ecology research regarding the above listed 
characteristics.

• Have a close collaboration of biologists and computer 
scientists to drive the exploration of the design space 
in the right direction—developments have to be 
informed by the experience and needs of the practi-
tioners. Thus, common venues should be organized 
to foster exchange and plan the path ahead.

• Create software support by developing a unified 
framework that allows for easier implementations, 
better reproducibility, and comparison of results, as 
well as a unified user experience. Design considera-
tions based on the requirement analysis can inform 
a framework architecture in line with analysis work-
flows.

• Motivate the development and use of notations and 
standards for storage, exchange, automated analysis, 
and visual representation.

Conclusions
We see large potential for the use of IA approaches for 
animal ecology research as well as in the application 
of concepts such as standardized notations. However, 
we think that possible avenues are underexplored and 
research could greatly profit from a structured collabo-
ration between the animal ecology and computer science 
fields in the topic of IA. This would allow the enrichment 
of models and concepts from computer science with the 
requirements of animal behavior research and shape 
reusable and durable solutions, such as a unified frame-
work, to exploit the new immersive technologies for data 
analysis. The first steps could include workshops to foster 
the exchange and define the challenges and a roadmap, 
followed by specifications of guidelines and standards, for 
which interfaces and software platforms can be created.

Fig. 7 Main aspects of the requirement analysis, including dependencies on data, user, task, and environment, as well as existing approaches and 
workflows of practitioners
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