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Abstract 

Three-dimensional (3D) reconstruction of human organs has gained attention in recent years due to advances 
in the Internet and graphics processing units. In the coming years, most patient care will shift toward this new para-
digm. However, development of fast and accurate 3D models from medical images or a set of medical scans remains 
a daunting task due to the number of pre-processing steps involved, most of which are dependent on human exper-
tise. In this review, a survey of pre-processing steps was conducted, and reconstruction techniques for several organs 
in medical diagnosis were studied. Various methods and principles related to 3D reconstruction were highlighted. The 
usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted.
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Introduction
Three-dimensional (3D) reconstruction is used to create 
a 3D model of an object or scene from a series of two-
dimensional (2D) images (Fig. 1). This process has gained 
significant attention in recent years owing to its wide 
range of applications in fields including medicine, enter-
tainment, archaeology, and robotics. 3D reconstruction 
produces a digital representation of a real-world object. 
Use of 3D reconstruction in the medical sciences began 
with the invention of a computed tomography (CT) scan-
ner by Godfrey Hounsfield [1], useful for training, vir-
tual surgery [2], and gaining insight into the behavior of 
organs in  vivo. 3D reconstruction can help in planning 
and monitoring pre-operative and post-operative medi-
cal conditions of patients. Werner et  al. [3] constructed 

a 3D model of the respiratory behavior of the lungs at the 
inhale and exhale stages. Werner et al. [4] constructed a 
3D model to diagnose cervical tumors from ultrasound 
images using virtual bronchoscopy. 2D medical image 
formats such as magnetic resonance imaging (MRI), CT, 
positron emission tomography (PET), x-rays, ultrasound, 
and microscopy have been used for 3D reconstruction. 
Of these, ultrasound is noninvasive and harmless. The 
choice of data acquisition method is a determining fac-
tor in the effectiveness of 3D reconstruction algorithms 
[5]. Hardie et al. [6] used a laser scanning confocal micro-
scope for data acquisition; Zollhöfer et  al. [7] used an 
RGB camera. Østergaard et  al. [8] assessed abnormali-
ties in rheumatoid arthritis using radiography, MRI, and 
ultrasonography in a comparative study.

Radiography is performed only from the posterior-
anterior and lateral (LAT) angles; 3D reconstruction 
based on x-rays [9–14] is challenging because there 
are only one or two initial images. Reconstruction pro-
cesses require more images to develop an organ in 3D. 
Thus, x-ray-based modeling requires a different meth-
odology. Digitally reconstructed radiographs (DRRs) 
[15] have been used to overcome this limitation. A DRR 
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is generated from multiple CT or MRI scans. The tech-
niques used for 3D reconstruction from 2D x-ray images 
are discussed in Miscellaneous section.

Methods have been developed to generate a DRR 
based on statistical shape models (SSMs) [16–19]. 
These models are constructed from a collection of 
image data; their shapes and sizes can be heavily 
altered. SSMs create a mean model from several volu-
metric reference models. The accuracy of the mean 
model depends on the number of reference mod-
els. With a small number of reference models, the 3D 
reconstruction model is inaccurate. Methods based 
on an active contour model (ACM) [20] can be used 
to reform a poorly constructed SSM [21]. ACM tech-
niques reform the model boundary according to a 
specified target model using a threshold limit or error 
metric such as the minimum contour-to-mesh dis-
tance. In some cases, an articulated shape model [22] 
is used, in which the reference shape is a concatenation 
of shapes that are movable at fixed joints, such as at the 
point of concatenation (knee, jaw, or hip). To reduce 
the complexity of handling large-point data, the dimen-
sions of the region of interest (ROI) are reduced using 
principal component analysis (PCA) [23].

The 3D model can be stored in different formats includ-
ing WaveFront object, polygon file format, point cloud 
data, and stereo lithography [9]. Jiang et  al. [24] used a 
point cloud as the input to produce a polygon surface as 
the output in the structure-from-motion problem [25]. 
In 3D reconstruction from medical images, generating a 
point cloud is the first step to reconstruction. All medi-
cal imaging-based 3D reconstructions are modeled using 
a point set [26]; the surface is represented as a mesh of 
triangles [27] or an octree [28]. In an octree, a point set 
within a voxel is grouped under a parent node, which is 
referred to by another parent node within a larger voxel.

Surface reconstruction can be categorized into para-
metric, implicit, and spatial subdivision methods. In 

parametric methods [29], the surface is a function of 
two parameters along the x and y axes. The surface 
under reconstruction is updated such that its param-
eters align with the set of target parameters. However, 
this technique is not suitable for models with no known 
topological relationships. Another method is implicit 
reconstruction. The goal of the implicit method [30] 
is to define a zero set of roots of a function that best 
fits the target surface, similar to the contour-matching 
method. The measurements involve a distance function 
to approximate the closeness of the points. Reconstruc-
tion methods based on spatial subdivision techniques 
[31] were derived from Delaunay triangulation [32] 
and Voronoi graphs [33]. The point distribution is ini-
tially covered by an approximate surface. With further 
iterations, new points are added by dividing the initial 
coarse assignment into consecutive finer and smoother 
surfaces.

Methods
Reconstruction based on traditional approach
The reconstruction process comprises three stages: seg-
mentation, registration, and surface reconstruction.

Segmentation
Image segmentation and segmentation mask predic-
tion are two common problems in image pre-pro-
cessing and 3D reconstruction. Thresholding-based 
methods [34] use a threshold to filter the noise. The 
output is a binary image with pixels that are either 
black or white. These methods are suitable for inten-
sity-based region discovery. Region growing (RG) 
methods [35] start with a seed pixel as a node and 
join neighboring pixels with similar intensity. Region-
merging and splitting [36] intake an entire image and 
segment it into four sub-images in iterative steps 
based on a similarity measure between inter-segment 
metrics until no further segmentation is possible. 

Fig. 1  a Point cloud from CT of lungs; b Point cloud reconstructed from CT scans of rib cage (gray) and lungs (black); c Coarse liver reconstructed 
from 28 CT scans and triangulated using marching cubes algorithm; d Smooth liver surface triangulation of key points extracted from 56 CT scans
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Clustering-based methods [37] use a distance meas-
ure for the intensity values to segment into multi-
ple clusters. A limitation in clustering is that smooth 
edges and gradual intensity transitions are not easily 
grouped into non-intersecting clusters. Edge-detection 
methods [38] use layers of Gaussian filters, changing 
their sigma values for edge detection. These methods 
segment the image without understanding the under-
lying shape information or region semantics.

3D reconstruction methods require a ROI and addi-
tional features such as landmark points, curvature values, 
and angular variation in pairs of edges. Mumford and 
Shah [39] used a variational model to measure changes 
within a set of points. It applied a piecewise smooth rep-
resentation to the image boundary. Getreuer [40] devel-
oped an ACM defined over level sets.

These methods are based on minimizing the energy func-
tional F(u,C) (Eq.  1), where u is the set of image points, 
and C is the image contour or boundary. µ and ν are posi-
tive constants; Ω bounds a 2D area, and curve C ⊂ Ω.

Several studies have used level sets [41] (Eq.  2), in 
which the image is segmented into an inside region uI 
and an outside region uII.

uI and uII are functions used to approximate the image 
uO inside and outside the curve, respectively. The images 
obtained for 3D medical reconstruction were mostly 2D 
CT slices. The images were stacked on top of one another 
[42]. Figure 2 shows a CT slice segmented for the contour 
boundary using the snake method after providing an ini-
tial seed curve. Figure 2 shows the segmentation process 
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using active contours that change shape based on the 
gradient.

The drawback of the described segmentation tech-
niques is that the region boundary is not sensitive to the 
neighborhood. Thus, region-aware algorithms [43, 44] 
such as linear spectral clustering and simple linear itera-
tive clustering have been proposed. The basic concept 
behind a superpixel is that adjacent pixels in an image 
that are continuous and contain similar color intensity 
and brightness are clustered into a single superpixel, 
and the region is marked by a boundary. Figure 3 shows 
superpixel segmentation.

Registration
Registration or mapping of a point (x, y) to another point 
(u, v) can be performed using B-splines [45]. Formulated 
as an approximation problem in a Frennet frame [46] of 
the target spline, two points under correspondence are 
made to have the same normal direction. The B-spline 
surface approximation is formulated as (Eq. 3). Fs is the 
smoothing term; pk is the data point, and x (uk,vk) are the 
approximating surface points.

In Eq.  4, Bi(uk , vk) is a basic B-spline function that is 
a piecewise smooth polynomial. The B-spline shape can 
be altered in any direction [47] such that the curve passes 
through a specific control point P. The spline passes through 
P by inserting a knot u in U, where U is the existing set of 
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Fig. 2  a Brain CT; b Segmented white matter and gray matter; c Reconstructed model
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knots (Eq.  5). Figure  4 shows a set of points in 3D space 
auto-corrected to a given prior for registration. Figure  4 
shows the movement of the curve toward the defined target, 
and was used for correct registration of images.

Reconstruction
The SSM [19] (Fig.  5) is used to establish the corre-
spondence between different 3D shapes of the same 
organ. The SSM is presented as a linear model in the 
form shown in Eq. 6.

(5)P = αQj−1(u)+ (1− α)Qj(u),α ∈ [0, 1]

V  is the mean shape vector, and P = pk is the matrix 
of the eigenvectors of the covariance matrix. The rigid 
transformation is expressed as (Eq. 7):

x1k and xjk are the coordinates of the two shape vec-
tors. x́jk is the new vertex location. Then, the final shape 
xjk = Tj,min x´jk is the optimum shape with minimum devi-
ation from a reference. In ref. [18], a detailed survey of 
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Fig. 3  a Brain CT; b Segmented white matter and gray matter

Fig. 4  Trajectory curve (dotted) shown as Frennet frame auto-correcting to centerline (solid) for accurate registration
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the use of SSMs was presented; sometimes, the points 
were closely registered using an elastic registration 
approach [48] known as the active shape model [49, 50]. 
Figure  5 shows the mean model of the statistical shape 
technique.

The marching cubes [51] algorithm (Fig.  6b) is con-
sidered the best for reconstruction of a volumetric 
model because its algorithm is specifically designed for 
medical images. In volumetric modeling, details of the 
texture and layers present under the top surface of the 
object are required. For surface reconstruction, the ball 
pivoting algorithm (BPA) [52] (Fig. 6a) is more suitable; 
only one layer of the surface is required as the output. 
A limitation in the BPA is that for complete surface 
reconstruction, the algorithm must be re-iterated with 
different values of ball radius ρ. Another limitation is 
that the normals of the vertices must be known. How-
ever, this is not the case for 2D medical scans. The nor-
mal can be estimated using algorithms such as total 

least squares [53]. Figure  6 shows the conversion of 
points into connected lines, surfaces, and volumes.

Reconstruction based on deep learning approach
The traditional approaches (TAs) in Reconstruction 
based on TA section involve a seed boundary and initiali-
zation parameters. This limitation requires a new para-
digm for segmentation and reconstruction of medical 
images. A convolution neural network (CNN), as shown 
in Fig.  7, is an artificial neural network that accepts a 
color image with a height of 224 pixels and a width of 224 
pixels, beyond which there are convolution layers and 
other layers including pooling, fully connected, and Soft-
Max. In a CNN, the number of filters varies in each layer; 
the filter size can also vary. The filters are modified using 
a backpropagation algorithm. The weights of the filters 
are learned and stored for future epochs until the net-
work is properly trained. Pooling layers reduce the fea-
ture size by averaging or selecting the maximum within 

Fig. 5  Mean liver model (a) and group of reference models (b)

Fig. 6  a BPA algorithm connecting random points in 3D space; b Marching cubes basic building blocks; c Output of marching cubes algorithm 
showing coarse and rough surfaces



Page 6 of 19Sarmah et al. Visual Computing for Industry, Biomedicine, and Art            (2023) 6:15 

a 2 × 2 neighborhood matrix. Some diagrams indicate the 
input size and number of filter channels as dimensions 
at the top of the convolution layers. The fully connected 
layer flattens the network toward the end and is activated 
using the SoftMax function. The SoftMax outputs are 
rendered as classification labels.

Deep learning (DL) methods are state-of-the-art for 
image-related tasks such as segmentation and registra-
tion. The underlying structure of segmentation-based DL 
models is a CNN. DL methods are modified on top of the 
CNN such that the features of a set of images are auto-
matically determined by the DL system through experi-
ence and training on thousands of samples. Handcrafted 
features tend to be more time-consuming and inferior 
in terms of performance compared to DL-supervised 
methods.

Related work
Several versions of CNNs have been proposed to improve 
model performance. Krizhevsky et  al. [54] presented a 
deep convolution neural network (DCNN) model with 
eight learned layers: five convolutional layers and three 
fully connected layers. AlexNet comprises five convolu-
tional layers and three fully connected layers. The imple-
mentation is distributed over two graphics processing 
units. Local response normalization [55] was used as a 
form of LAT inhibition for competition-based learning. 
Simonyan and Zisserman [56] presented the visual geom-
etry group networks VGGNet-16 and VGGNet-19. In the 
VGGNet class of networks, 3 × 3 convolution filters were 

used with three consecutive fully connected layers with 
4096, 4096, and 1000 filters. In VGGNet, there are prob-
lems with errors and overfitting. Deeper layers in deep 
neural networks (DNNs) can incur huge computational 
costs; in deeper layers, the weights are nearly zero and 
incur computational loss. Google designed GoogLeNet 
[57] based on the Hebbian principle. GoogLeNet clus-
ters neurons based on correlation statistics from input 
images. The previous layers are analyzed for their corre-
lation values and highly correlated neurons are clustered 
in the next layer. GoogLeNet is more computationally 
efficient than AlexNet.

To further reduce the computational cost, 3 × 3 and 
5 × 5 convolutions were preceded by 1 × 1 convolutions in 
GoogLeNet V2 and V3. As in a shallow CNN, the num-
ber of layers is less than in a DCNN; thus, the network 
should produce fewer errors as it goes deeper into the 
network. The network is a copy of a shallow CNN with 
identity mapping. He et al. [58] proposed ResNet, which 
skips connections that feed the activation from one layer 
to another. Google developers further proposed Incep-
tion-ResNet [59], in which batch normalization was used 
only on top of the traditional inception layers to reduce 
memory consumption; 35 × 35, 17 × 17, and 8 × 8 grids 
were used for the inception A, inception B, and inception 
C layers, respectively. Ronneberger et  al. [60] proposed 
U-Net (Fig.  8) as the standard model for biomedical 
image segmentation. U-Net is trained with fewer exam-
ples to achieve high accuracy. U-Net presents symmet-
ric encoding and decoding along with skip connections. 
Çiçek et  al. [61] proposed a modified version of the 3D 

Fig. 7  Basic CNN
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U-Net for segmentation of 3D volumetric data, in which 
three planar segments of the ROI in each iteration care-
fully segmented an anisotropic body.

U‑Net‑based segmentation and other techniques  U-Net 
[60], as shown in Fig. 8, has been used for medical image 

segmentation since the early days of DL, originating from 
the electron microscopy (EM) segmentation challenge. 
As shown in Table  1, U-Net is ranked higher based on 
the warping error metric. Istituto Dalle Molle di Studi 
sull’Intelligenza Artificiale (IDSIA) members used a ver-
sion of the CNN extending up to 10 layers. The basic idea 
was to label every pixel and build a classifier that can do 
this efficiently. The algorithm was submitted to the 2012 
IEEE International Symposium on Biomedical Imaging 
EM challenge, and was the best-performing algorithm.

In Medical image segmentation before U-Net and 
Machine learning (ML)-based medical image segmenta-
tion sections, earlier automated medical image segmen-
tation techniques are discussed.

Medical image segmentation before U‑Net  Sharma and 
Aggarwal [63] classified segmentation techniques based 
on amplitude, edge, and region. These methods are cat-
egorized as gray-level-dependent techniques. Edge-
based techniques include edge relaxation [64], the border 
detection method [65], and the Hough transform [66, 67]. 
Other unsupervised methods are based on k-means [68], 
hard C-means, and fuzzy C-means (FCM). A review of 
FCM segmentation was presented in ref. [69]. In ref. [70], 
medical image segmentation was performed by detecting 
image features using a feature extraction method based 
on stacked independent subspace analysis [71] combined 
with PCA to match small patches using feature match-
ing steps such as the histogram of gradient. In ref. [72], 
use of RG algorithms was proposed as a segmentation 
technique and for feature extraction, including Zernike 
moments [73] with a CNN.

ML‑based medical image segmentation  Cascaded net-
works [74, 75] are expensive for evaluating regions within 
and outside the target object. One layer of the cascaded 
network roughly estimates the ROI after rejection of 
redundant information. As the name suggests, region 
evaluations are based on the inputs received from preced-
ing cascaded networks. The current layer reevaluates the 
ROI and rejects the outside boundary before forwarding 
it to the next network. To improve on cascaded networks, 
Li et al. [76] presented a lightweight regression network. 
Their method was improved; their main architecture was 
inspired by U-Net. Torbati et al. [77] used a moving-aver-
age self-organizing map. Weight vectors moved toward 
the filtered outputs after the trace matrix was updated, 
depending on the winning neuron and neighboring func-
tions. Ultimately, clustered neurons corresponding to the 
topographical nodes were segmented. Al-Ayyoub et  al. 

Fig. 8  U-Net architecture

Table 1  Performance of U-Net in the EM challenge (March 6th, 
2015) [60]

Rank Group name Warping error Rand error Pixel error

1 U-Net 0.000353 0.0382 0.0611

2 DIVE-SCI 0.000355 0.0305 0.0584

3 IDSIA [62] 0.000420 0.0504 0.0613

4 DIVE 0.000430 0.0545 0.0582
.
.
.

10 IDSIA-SCI 0.000653 0.0189 0.1027
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[78] demonstrated accelerated lung CT segmentation 
using brFCM [79] over the earlier FCM. A Markov ran-
dom field (MRF) [80] was used for brain-image segmen-
tation. The MRF is a powerful tool for representing an 
image as a stochastic model based on color intensity val-
ues. Deng and Clausi [81] proposed a new unsupervised 
image segmentation model built from a simple MRF; in 
the expectation-maximization algorithm, the parameter 
α was allowed to update, eliminating region-labeling and 
feature-labeling modeling confusion. Monaco and Mad-
abhushi [82] introduced class-specific weights to the 
maximum a posteriori and maximum posterior marginal 
estimation criteria.

Neural network frameworks  In this study, basic bare DNN 
models were tested on simple image classification tasks 
using the Kaggle Cifar-10 dataset. The results are shown in 
Fig. 9. Application of these DL methods to 3D reconstruc-
tion of 2D medical images is presented in Table 2.

Modern neural network-based learning is based on appli-
cation of a CNN. Mask R-CNN [92] is a framework for 
object instance segmentation. This method extends the 
faster R-CNN. The boundary-preserving Mask R-CNN 
[93] contains a boundary-preserving mask head, in which 
the object boundary and mask are mutually learned via 
feature fusion blocks. A mesh R-CNN [94] is built on top 
of Mask R-CNN with a mesh prediction branch that out-
puts meshes with varying topological structures through 
coarse voxelization; they are converted to meshes and 
refined using a graph convolution neural network 
(GCNN) [95]. Vox2Mesh [96] converts an occupancy 
grid into a mesh. Because a voxel grid lacks fine geomet-
ric details, the selected grid is converted into a triangu-
lar mesh. Pixel2Mesh [97] is a DL architecture that pro-
duces a 3D shape in a triangular mesh from a single-color 
image, and is implemented on top of a GCNN.

Point‑cloud‑based reconstruction applications  Some 
methods [98, 99] use point clouds for fully automatic sur-
face reconstruction [23]. The problem of reconstruction is 

Fig. 9  Validation loss in classifying Cifar-10 dataset

Table 2  DL methods for 3D reconstruction

Reference Contribution

DeepOrganNet [83] Multiple meshes from a single view medical image

AlexNet [84] Use of PReLU activation function

Jeyaraj and Nadar [85] DCNN to improve medical image reconstruction and identify complex morphological regions

Shakarami et al. [86] Improved AlexNet-SVM for feature extraction and classification

Xie et al. [87] GoogLeNet based post processing steps to remove artifacts in sparse-view CT reconstruction

Islam et al. [88] Using DCNN to classify 3D organ that is rotation and translation invariant

Ke et al. [89] VGGNet trained model on Epileptic EEG classifier

Seol et al. [90] ResNet50 based network for bone fracture diagnosis

Li and Shen [91] 3D Unet based Neuron reconstruction
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formulated as a point-cloud completion problem, as in a 
point completion network [100]. The objective is to recon-
struct a noisy or partially missing point distribution.

In Eq. 8, Lcoarse is the point cloud from the points on the 
contour boundary. Ldense enforces smoothness at the local 
and global levels. α is the weight factor and acts as the 
controlling term [101]. Figure  10 shows the completion 
of the points in the final mesh.

Overview of recent developments in organ‑specific 
3D reconstruction in medical diagnosis
Lungs
Sun et al. [49] used CUBIC and 3D imaging of solvent-
cleared organs over CT scans or MRI to avoid inhaled 
hydrogen atoms administered to image 3D mouse lungs 
and used Nissl-staining [102] for rendering 3D lung 
structures. Bruno and Anathy [103] found that more 
attention was required for 3D reconstruction of ER-
mitochondrial interactions during the initial phase of 
lung disease. Durhan et  al. [104] stressed the impor-
tance of contrast-enhanced CT for 3D reconstruction. 
Filho et al. [105] proposed an adaptive crisp ACM 2D to 
diagnose pulmonary disease by lung segmentation, and 
used the Open GL API for visualization. Li et  al. [106] 
proposed the use of a geometric active contour model to 
segment lungs in a single algorithm using a supervised 
segmentation method. This approach yielded faster seg-
mentation than the coarse-to-fine method. Le Moal et al. 
[107] reported that medical diagnosis was performed 
after uploading patient CT scans to the Visual Patient™ 
server and downloading the 3D model. This approach 
is costlier; its impact on surgical efficiency is currently 
under investigation. González Izard et  al. [108] pro-
posed development of the NextMed platform to con-
vert DICOM images into 3D models and visualizations, 
including segmentation, a tedious manual task. Joemai 

(8)Ltotal = Lcoarse + α ∗ Ldense

et al. [109] reported that CT reconstruction devices over 
filtered back propagation produced less similarity with 
ground truth images than the forward-projected model-
based Iterative Reconstruction Solution and Adaptive 
Iteration Dose Reduction in three dimensions. Pereira 
et  al. [110] addressed lung issues using MRI imaging 
technology based on 3D-ultra-short echo time to obtain 
morphological and functional images of the lungs over 
traditional 2D image registration techniques. Wang et al. 
[97] proposed an automatic 3D classification frame-
work built on top of an R-CNN to predict pre-invasive 
or invasive lung cancer to facilitate selection of proper 
treatment. Jin et  al. [111] proposed a generative adver-
sarial network (GAN)-based synthetic lung nodule gen-
eration for improved CT datasets by introducing a novel 
multitask reconstruction loss term to generate more 
realistic and natural nodules. Furumoto et al. [112] pro-
posed using fluorodeoxyglucose-PET/CT combined 
with high-resolution CT on the solid part of a tumor for 
better prediction than using only CT to identify clini-
cal stage IA adenocarcinoma. Grothausmann et al. [113] 
generated a 3D reconstruction of the alveolar capillary 
network in the lungs using 2D histological serial slices. 
Morales-Navarrete et  al. [114] proposed use of fluores-
cent markers in high-resolution microscopic images to 
digitally reconstruct 3D representations of cells in tis-
sues and their critical subcellular parts.

Knee
Kasten et  al. [115] proposed 3D reconstruction of knee 
bones using a CNN from two biplanar x-ray images. Cili-
berti et  al. [116] proposed 3D reconstruction of knee 
joints to assess the relationship between bone mineral 
density and cartilage status. Hess et al. [117] performed 
3D reconstruction of knee joints to assess the align-
ment of the femur and tibia in osteoarthritis ailments 
using KNEE-PLAN® software. Wu and Mahfouz [118] 
proposed 3D representation of the knee using a single 

Fig. 10  a Point cloud; b Rough surface; c Final mesh
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fluoroscopic x-ray based on a nonlinear SSM to design 
a patient-specific instrument for total joint replace-
ment. Bao et  al. [119] used MIMICS 10.01 software on 
a 64-slice spiral CT scan to determine the postoperative 
range of motion. Marzorati et  al. [120] used DCNN-
based segmentation of the femur and tibia, and evaluated 
the impact of segmentation uncertainty on surgical plan-
ning for personalized surgical instruments.

Kidney
Puelles et  al. [121] used confocal microscopy for 3D 
imaging of kidneys up to a depth of 50-80 µm, with new 
advances in clearing methods to remove lower-order 
lipids and pigments in tissue to render it as transparent. 
Guliev et  al. [122] proposed simple 3D reconstruction 
of the kidney pelvicalyceal system (PCS) through semi-
autonomous PCS segmentation. Mercader et  al. [123] 
used a 3D-printed model and CT scan images for better 
surgical planning for a horseshoe kidney. Chaussy et  al. 
[124] used 3D-slicer software to semi-automatically seg-
ment 14 scans from 12 patients with Wilms’ tumors. The 
mean segmentation was 8.6  h. Les et  al. [125] proposed 
use of parametric coefficients to determine the location of 
the kidney in a CT image.

Liver
Chen et al. [84] proposed a serial encoder-decoder (SED) 
DL approach. Two SEDs were used: the first to segment 
the ROI, and the second to further segment the results 
obtained from the first network. The SED was designed 
using a U-Net architecture. Yeo et al. [126] proposed use 
of 3D reconstruction of 2D CT and MRI images as a tool 
for training medical students in liver tumor resection. 
Fang et al. [127] validated 3D reconstruction of the liver 
in the pre-operative stage; intra-operative and post-opera-
tive stage scores were assigned based on whether 3D visu-
alizations were helpful; the 3D visualizations produced a 
high score for each phase. Tatamov et al. [128] reported 
that use of 3D visualization in liver laparoscopic herpetol-
ogy reduced the risk of intra-operative complications due 
to bile and paralytic cysts. In a study by Fang et al. [129], 
eye observations were used for intra-operative lesion 
identification. 3D visualization, as an intelligent imaging 
tool and diagnostic medium, helped solve problems using 
traditional methods in intra-operative stages.

Brain
Bjerke et al. [130] proposed developing a reference atlas 
for the rodent brain as part of the Human Brain Project 
and built reference atlases for the human brain as part 
of the BigBrain Project. Ebner et al. [131] compared the 

localization and segmentation of the fetal brain to man-
ual segmentation considering the constant motion of the 
fetus in the prenatal stage between fast 2D scan slices. Du 
et al. [132] proposed a dilated encoder-decoder network 
to improve the MRI 2D image resolution using 3D dilated 
convolution.

Miscellaneous
For medical diagnosis, exposure to harmful CT rays dur-
ing intra-operative stages is not desirable, and it is not 
possible to monitor organ status through CT scans in 
patients undergoing operative procedures. Thus, x-ray-
ing the area of interest and projecting instantaneous 3D 
reconstructions is most desirable. Use of a single x-ray 
image is more desirable; however, training a CNN with a 
single image requires a different approach. As described 
in ref. [12], a GAN [133] was used to reconstruct 3D bone 
structures using DRR. Using oral x-rays for 3D recon-
struction, panoramic x-ray [134] imaging providing a lin-
ear view of the oral cavity to observe artifacts can be used 
to restore the mandible; 3D alignment was performed 
with the dental arc using the contour extraction method 
on the original dental structure. Such deformable shapes 
from two dimensional x-ray imaging are a key achieve-
ment, as described in ref. [135]; an image-to-graph con-
volution network (IGCN) using deformation mapping by 
point-to-point correspondence was proposed. The IGCN 
was designed as an organ-independent network.

From angiogram CT scans of older patients, 2D DRRs 
were generated to simulate real-world x-rays, instead of 
patients switching between the two devices. In ref. [115], 
a biplanar x-ray imaging approach was described for 3D 
reconstruction using supervised cross-entropy weight 
loss. The first loss was measured as the distance between 
each voxel and the surface tissue (ground truth); the sec-
ond loss was the unsupervised reconstruction loss. In ref. 
[136], a neural network was trained using a triplet loss 
function to identify normal and deformed bones to relate 
the most closely predicted bone shape to a predefined set 
of bone shapes.

Performance comparison of state‑of‑the‑art models
A detailed survey was reported in ref. [137], from which 
some networks were selected; their performances are 
compared in Table  3. The chosen networks and models 
indicate the most relevant recent work. The modality of 
the image input was not a selection criterion; irrespec-
tive of whether the data source was single- or multi-slice, 
some of the models were retained. Some of the models 
were based on supervised learning [138–144]; others 
were unsupervised [145–147].
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Performance was measured using DICE [148] 
(Eq. 9) for the segmentation quality, where TP is the 
percentage of pixels labeled as true positives (posi-
tive in test results and positive in ground truth); TN 
is the percentage of pixels labeled as true negatives 
(marked as outliers or noise in both test results and 
ground truth); FP is the percentage of pixels labeled 
as false positives (marked as positive in test results 
and negative in ground truth); FN is the percentage 
of pixels labeled as false negatives (marked as nega-
tive in test results and positive in ground truth). 
Other metrics used included the signal-to-noise 
ratio, mean absolute error, discrimination score, and 
target representation error.

Pros and cons of DL and TA
3D reconstruction from 2D medical images is subject 
to time and data availability. Traditional methods have 
been used to obtain faster satisfactory results. How-
ever, as modern-day computation shifts toward a new 
paradigm of automation, the success of DL methods 
has been observed in other areas of 3D reconstruction. 
Thus, the DL approach has seeped into medical organ 
reconstruction and is the way of the future. Several sub-
tasks, from segmentation to registration and smooth-
ing, can also be performed using modern DL methods. 
However, these methods are sensitive to the input labels 
and are typically supervised. The final outcome of a DL 
approach is superior to that of TAs but is constrained 
by the size of the training examples. TAs require human 
intervention and are not automatic, as are some DL 
methods. Table  4 presents several strategies and their 
advantages and disadvantages in performing common 
3D reconstruction tasks.

(9)DSC =
2TP

2TP + FP + FN

Summary on current trends
Most reconstruction studies have focused on deform-
able registration and segmentation. The DL approach 
has outperformed traditional semi-autonomous meth-
ods. The most common is U-Net for segmentation and 
CNN, and its variants for registration. DRR [15] is also 
gaining popularity due to the lack of large-scale medical 
image databases for 3D reconstruction. For registration, 
large deformation diffeomorphic metric mapping [150] 
is a metric; for the final surface reconstruction, the Dice 
score and structural similarity index measure score are 
commonly used to measure the outcome. In addition, the 
mean square error and average surface distance are used 
to assess prediction accuracy. Expected future trends and 
scope are presented in Table 5.

Current trends include effective 3D mesh-compression 
techniques, 3D mesh encryption, 3D mesh generation, 
medical image segmentation, 3D mesh smoothing, and 
real-time 3D-image processing. Compression techniques 
involve compression of source images to generate a con-
cise model. However, direct compression of a 3D mesh 
can also be studied. 3D mesh encryption is important 
owing to the active role of IT-enabled services in the 
healthcare sector. Medical-image segmentation is an old 
problem; however, unsupervised segmentation using an 
untrained DNN has not yet been achieved. This appli-
cation reduces the training time, increasing real-time 
error-free reconstruction for better training and analysis. 
Vital organs such as the heart, lungs, and arteries change 
shape continuously. Fast reconstruction is the only solu-
tion for real-time visualization and virtual reality-enabled 
services.

Major challenges
The major challenge in 3D reconstruction is image pre-
processing [158]. Conventional image cleaning can omit 
many data points from an image; however, it can help 

Table 3  State-of-the-art methods, performance and objective

a Discrimination score

Model Metric Result Objective

DIRNet [138] DICE 0.80 ± 0.08 Cine MRI registration

CNN + STN [139] SNR 207.42 ± 96.73 Tolerating respiratory motion while imaging

Unet + STN [140] DICE 0.90 ± 0.60 Deformable medical image registration

RegNet [141] MAE 1.19 ± 1.17 Non rigid image registration

LungRegNet [142] TRE 1.59 ± 1.58 Unsupervised deformable image registration

SARNet [143] DICE 0.741 ± 0.08 Data independent image registration

3D Unet + SVF [144] DICE 0.6794 ± 0.04 Spatio-temporal regularizer

VoxelMorph [145] DICE 0.78 ± 0.03 Deformable medical image registration

GAN + AIRnet [146] D-scorea 0.60 Adversarial image registration

PDDNet [147] DICE 0.584 ± 0.059 Probalistic dense displacement network
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accurately depict tissues and organs. Removing unwanted 
pixels such as noise is also important. Noise can cause 
problems in selection of the proper segmentation area, 
especially in cases where the left and right lobes appear 
to constantly touch each other in some slices in small 
regions after dilation and erosion operations, whereas in 
the ground truth, they may not. Handling unstructured 
point-cloud data without the related topological informa-
tion is another challenging problem. These data points 
are scattered densely or sparsely, requiring specialized 
algorithms for processing. Another major limitation is 
the availability of 3D medical models such as ShapeNet 
[159] and ModelNet [160] for validation. One reason 
for the lack of such public datasets is that hospitals and 
patients are unable to obtain permission to make health 
records publicly available. Most datasets available for 2D 
medical images are concerned with larger organs; more 
work is required to create benchmark and gold-standard 
datasets.

Conclusion and future work
3D reconstruction is becoming more important in 
medical assistance; its application in medical science 
is promising. Many areas of concern remain as there is 
no well-defined or gold-standard dataset for 3D human 
organs. Thus, GAN-based DL models were used to recre-
ate the synthetic datasets. Although SSM-based models 
perform well and have been studied, their application is 
becoming less frequent.

3D reconstruction is expensive; with the require-
ment of higher-resolution images, use is confined to 
specially designed medical devices. The motivation 
for research in this area is to make 3D reconstruction 
affordable and less time-consuming without compro-
mising accuracy. The most common enhanced radio-
logical methods for day-to-day diagnosis are CT, MRI, 
and their variations.

In the future, 3D reconstruction is expected to become 
a more common method of reporting to patients. Further 
research will include new methods of model security, 
compression, representation formats, holographic and 
virtual reality-based representations, real-time represen-
tations in operative procedures such as endoscopy, and 
3D representations at the cellular level that allow lower-
calibrated microscopes to efficiently observe cell struc-
tures in largely magnified 3D model representations.

Abbreviations
3D	� Three-dimensional
2D	� Two-dimensional
ACM	� Active contour model
PCA	� Principal component analysis
PCS	� Pelvicalyceal system
PET	� Positron emission tomography
BPA	� Ball pivoting algorithm
RNN	� Recurrent neural network
CNN	� Convolution neural network
ROI	� Region of interest
CT	� Computed tomography
DCNN	� Deep convolution neural network
SED	� Serial encoder-decoder

Table 5  Recent trends and research gaps for further research

Objective Techniques Reference Year Limitations/research gap

3D mesh compression DCT based source image compression [151] 2022 Direct compression on a 3D model has not been 
performed

Training neural networks with signed distance func-
tion and network weights as a field

[152] 2022 The method is not lossless as mapping weights 
back to coordinates is not reversible

3D mesh generation Recurrent neural network (RNN) [153] 2022 Supervised learning and requires training labels 
for target normal. There is still a gap in unsuper-
vised polygon normal regression

Deep normal filtering neural network [149] 2020

3D mesh encryption Encryption using chaotic behavior in edge comput-
ing devices

[154] 2023 Even though vertices are encrypted the edges 
remain connected and limits model security

Using correlation between two sets of vertices 
to recover encrypted data

[155] 2022

3D mesh smoothing RNN [153] 2022 These methods either correct the vertices or cor-
rect the face normal. These methods do not out-
put a final mesh with vertices and labelled edges

Deep normal filtering neural network [149] 2020

Medical scan segmen-
tation

U-Net [63] 2015 Supervised learning and requires training labels 
for target masks. There is a huge gap in unsuper-
vised DL based segmentation

Attention U-Net [156] 2022

Real time 3D imaging 
based prediction 
and diagnosis

Spatio-temporal long short term memory [157] 2022 Real time 3D model of a moving heart is not con-
structed in this paper. Faster and efficient way 
of 3D organ modeling needs to be studied as nor-
mal heart rate is 60–100 bpm. So each model 
should not be modeled fast
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DL	� Deep learning
DNN	� Deep neural network
DRR	� Digitally reconstructed radiograph
EM	� Electron microscopy
FCM	� Fuzzy C-means
SSM	� Statistical shape model
GAN	� Generative adversarial network
HU	� Hounsfield unit
IDSIA	� Istituto Dalle Molle di Studi sull’Intelligenza Artificiale
LAT	� Lateral
MRF	� Markov random field
MRI	� Magnetic resonance imaging
GCNN	� Graph convolution neural network
IGCN	� Image-to-graph convolution network
RG	� Region growing
TA	� Traditional approach
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