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Abstract 

Prediction and diagnosis of cardiovascular diseases (CVDs) based, among other things, on medical examinations 
and patient symptoms are the biggest challenges in medicine. About 17.9 million people die from CVDs annually, 
accounting for 31% of all deaths worldwide. With a timely prognosis and thorough consideration of the patient’s 
medical history and lifestyle, it is possible to predict CVDs and take preventive measures to eliminate or control this 
life-threatening disease. In this study, we used various patient datasets from a major hospital in the United States 
as prognostic factors for CVD. The data was obtained by monitoring a total of 918 patients whose criteria for adults 
were 28-77 years old. In this study, we present a data mining modeling approach to analyze the performance, clas-
sification accuracy and number of clusters on Cardiovascular Disease Prognostic datasets in unsupervised machine 
learning (ML) using the Orange data mining software. Various techniques are then used to classify the model parame-
ters, such as k-nearest neighbors, support vector machine, random forest, artificial neural network (ANN), naïve bayes, 
logistic regression, stochastic gradient descent (SGD), and AdaBoost. To determine the number of clusters, various 
unsupervised ML clustering methods were used, such as k-means, hierarchical, and density-based spatial clustering 
of applications with noise clustering. The results showed that the best model performance analysis and classification 
accuracy were SGD and ANN, both of which had a high score of 0.900 on Cardiovascular Disease Prognostic datasets. 
Based on the results of most clustering methods, such as k-means and hierarchical clustering, Cardiovascular Dis-
ease Prognostic datasets can be divided into two clusters. The prognostic accuracy of CVD depends on the accuracy 
of the proposed model in determining the diagnostic model. The more accurate the model, the better it can predict 
which patients are at risk for CVD.

Keywords  Cardiovascular disease, Data-driven analytics, Data mining, Hyperparameter optimization, Orange data 
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Introduction
Diseases related to the circulatory system impact the 
blood vessels and coronary arteries, and are prevalent 
globally. In developed nations, they are the primary cause 

of mortality in grown-ups. It is crucial to diagnose heart 
ailments with precision and timeliness by taking into 
account a patient’s medical history and lifestyle. This 
approach enables accurate prognosis and the implemen-
tation of preventive measures to manage or eradicate 
these potentially fatal illnesses [1].

According to the 2013 Global Burden of Disease report 
by The Lancet, chronic illnesses pose the highest risk 
among all human ailments. Contributing factors com-
prise immoderate alcohol intake, hypertension, gender, 
and age. While these illnesses are widespread in affluent 
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nations like the United States, where they account for 
87% of fatalities, developing countries with lower and 
middle incomes require particular consideration due to 
the escalating incidence of chronic illnesses [2].

During the year 2020, the regions with the maximum 
age-adjusted rates of mortality caused by cardiovascular 
disease (CVD) were Eastern Europe, Central Asia, 
Oceania, North Africa, the Middle East, Central Europe, 
Sub-Saharan Africa, and South and Southeast Asia. 
Conversely, the regions with the minimum age-adjusted 
CVD mortality rates were high-income Asia-Pacific 
and North America, Latin America, Western Europe, 
and Australasia. Figure 1 indicates the age-standardized 
mortality rates per 100000 individuals affected by CVD 
across all countries [3].

The CVD fatality count in the United States declined 
from 1980 to 2010, but in recent times, it has escalated 
from 78454 in 2010 to 874613 in 2019. Figure 2 illustrates 
the patterns [3].

In 2019, coronary artery disease (41.3%) emerged as 
the primary reason for fatalities caused by CVD in the 
United States. Following this, stroke (17.2%), hyperten-
sion (11.7%), heart failure (HF, 9.9%), coronary heart dis-
ease (2.8%), and various other minor causes (17.3%) were 
observed [3].

CVDs make up 31% of the total fatalities globally, where 
75% of the deaths occur in low- and middle-income 
nations. In wealthier nations, there is a higher occurrence 

and fatality rate of CVDs among individuals belonging to 
lower socioeconomic backgrounds [4]. Smoking, alcohol 
consumption, low fruit and vegetable intake, high salt 
intake, sedentary lifestyle, obesity, air pollution, genetic 
and metabolic factors, and other medical conditions are 
risk factors for CVD [5].

Forty percent of deaths in China are caused by CVD, a 
result of the aging population and a rise in stable meta-
bolic risk factors. It’s crucial to lower the prevalence of 
CVD through primary prevention, allocate more medical 
resources for emergency and critical care, and offer reha-
bilitation and secondary prevention services to decrease 
the chances of relapse, re-hospitalization, and disability 
in CVD survivors. In China, millions of individuals are 
affected by hypertension, dyslipidemia, diabetes, and 
vascular diseases, including myocardial infarction and 
stroke, are frequently diagnosed [6].

CVD continues to be the primary reason for illness 
and death across the globe, even with regional manage-
ment measures [7]. The Morbidity and Mortality Confer-
ence has evolved into a valuable resource for surgeons to 
scrutinize complications and introduce changes to avert 
recurrence. Such insights can effectively curtail ‘prevent-
able’ adverse outcomes among both novice and seasoned 
surgeons [8].

The role of gender in health and disease is gaining 
importance, yet there is a dearth of systematic gender 
research in the field of medicine. Women are at a greater 

Fig. 1  CVD mortality rates are expected to increase significantly by 2020 [3]
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relative risk of suffering from CVD-related morbidity 
and mortality compared to men, primarily due to con-
ventional factors such as obesity, hypercholesterolemia, 
hypertension, and diabetes, along with socio-economic 
and psychosocial factors, including depression. Addi-
tionally, depression amplifies the likelihood of CVD in 
women [9].

The coronavirus disease of 2019 (COVID-19) pandemic 
has altered the customary treatment for non-hospitalized 
individuals and those with sudden cardiac conditions, 
with the suspension of non-essential surgeries and a 
decrease in the effectiveness of current emergency medi-
cal services. In response to this crisis, novel methods like 
telehealth, online platforms, mobile apps, and artificial 
intelligence (AI) are being employed [10].

The pathophysiology of inflammation, blood clotting, 
and heart muscle damage linked with Severe Acute Res-
piratory Syndrome Coronavirus 2 can be evaluated by 
utilizing circulating biomarkers. Increased levels of cTn 
and NPs detected individuals with a higher probability 
of experiencing cardiovascular events while hospitalized, 
whereas increased levels of D-dimer detected individuals 
at risk of developing blood clotting issues [11].

People who have contracted COVID-19 are more 
prone to developing CVDs, such as disorders affecting 
the blood vessels in the brain, irregular heartbeats, 
heart diseases caused by reduced blood flow to the 
heart muscle, inflammation of the sac surrounding 
the heart, inflammation of the heart muscle, HF, and 
blood clots obstructing blood vessels. These hazards 
and difficulties are noticeable even in those who are not 
admitted to the hospital during the initial stage of the 

infection and intensify as per the level of care required 
during this phase [12]. Recognize and manage persons 
who have unaddressed or undetected risk factors for 
CVD in order to avert subsequent cardiovascular 
incidents resulting from the COVID-19 outbreak [13]. 
The outbreak of COVID-19 has resulted in a decrease in 
hospital admissions for all acute cardiovascular illnesses. 
However, there has been no alteration in hospital 
mortality rates except for acute aortic dissection, which 
has seen a rise [14].

In a vast population of unscreened COVID-19 patients 
across 30 medical facilities in Italy, impaired kidney func-
tion, heightened levels of C-reactive protein, and pro-
gressed age were notable indicators of mortality during 
hospitalization. These observations imply that pre-exist-
ing conditions, underlying illnesses, and clinical metrics 
may influence the likelihood of unfavourable outcomes 
and inpatient fatality in the European region [15].

In an explanatory analysis of 1099 instances of COVID-
19, 24.9% of the individuals had concurrent ailments such 
as hypertension (15%), diabetes (7.4%), and coronary 
artery disease (2.5%). Aged patients (65  years and 
above) with concurrent ailments and acute respiratory 
distress syndrome are at an augmented peril of mortality. 
Numerous analyses have demonstrated a heightened 
vulnerability to Middle East respiratory syndrome 
(MERS)-CoV and human papillomavirus infections 
in patients with CVD, plausibly due to endothelial 
dysfunction, metabolic abnormalities, and the escalation 
of pro-inflammatory cytokines. CVD is a hazard factor 
for an unfavourable prognosis and significantly amplifies 
mortality from MERS. Various clinical analyses have 

Fig. 2  Trends in CVD mortality for men and women in United States from 1980 to 2019 [3]
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demonstrated that CVD is the most prevalent concurrent 
ailment in patients with COVID-19, and the CVD 
frequency is elevated in severe and fatal instances [16].

Cardiac insufficiency (CI) is a significant worldwide 
public health challenge, impacting 64 million individu-
als globally. The number of hospitalizations due to CI has 
increased by over three times in the last three decades 
and is linked to a high mortality rate. It places a substan-
tial financial burden on public healthcare systems and 
has a noteworthy influence on the well-being of those 
affected [17].

The latest outbreak has hastened the acceptance of 
remote medical care in heart health and stimulated the 
progress of technological innovations like the metaverse. 
CardioVerse refers to the concept of incorporating the 
metaverse in cardiac medicine, which has multiple uses 
such as boosting medical consultations, aiding in heart-
related procedures, and reforming medical learning. 
Despite the probable hindrances in different areas, the 
usage of unique tokens as safeguarding resources for 
patient information is emerging as a viable answer [18].

Timely identification of risk factors associated with 
infectious viral diseases can be crucial in preserving lives 
by efficiently allocating medical resources and prioritiz-
ing susceptible patients during national and global health 
crises [19]. Timely identification and preemptive meas-
ures against illnesses are crucial in averting their aggra-
vation [20]. Managing contagious diseases is a primary 
concern for public health, and timely identification of 
infections is crucial to avert outbreaks and global health 
crises. Scientists are constructing frameworks for timely 
detection [21].

Knowledge regarding body position, alterations in pos-
ture, as well as active and stationary labour is crucial in 
comprehending the mechanical stresses and ergonomic 
principles [22]. Ecology and environment greatly rely on 
biodiversity information; however, various fields must 
collaborate to handle, exchange, and merge data in dis-
ease investigations [23].

CVDs exert a significant weight on the healthcare 
system, especially in the older population, owing to the 
presence of various coexisting conditions [24]. Chronic 
kidney disease (CKD) is the primary reason for mortal-
ity in individuals having CKD, where CVD is the primary 
cause of fatality [25].

Exercise is a crucial non-drug treatment for preventing 
and treating heart diseases. However, the impact of the 
length of physical activity on the risk factors related 
to heart health in grown-ups is not yet clear [26]. 
The intake of coffee has been demonstrated to have 
advantageous impacts on metabolic disorders, albeit it 
could upsurge lipid levels. Additionally, it diminishes 
the possibility of coronary artery disease, HF, heart 

arrhythmias, stroke, CVD, and death from all causes. The 
regular consumption of coffee and tea can be viewed as 
a component of a salubrious lifestyle and should not be 
disallowed for patients with CVD [27].

Factors that affect health, known as social determinants 
of health (SDoH), encompass economic, societal, eco-
logical, and psychological elements. These determinants 
have a noteworthy effect on the health of individuals 
with CVD, as well as their outcomes, globally. To achieve 
health equity and tackle health disparities, SDoH involve 
determinants related to the framework, physicality, nutri-
tion, and societal environment [28]. The economic con-
dition of an individual is a factor that increases the risk 
for CVD, and a meagre family income can exacerbate the 
risk. The government should focus on reducing inequali-
ties and enhancing cardiovascular results in underprivi-
leged groups with low family incomes [29].

The demand for healthcare technology solutions has 
risen due to the increase in population and changes in 
lifestyle. Cancer prognosis can determine the likelihood 
of survival and indicate the seriousness of the illness as it 
pertains to the patient’s future [30]. The medical indus-
try is experiencing a surge in machine learning (ML) 
applications as they have the potential to accurately 
identify patterns in data. This capability can be leveraged 
to provide accurate diagnosis and prognosis of CVDs, 
leading to a reduction in misdiagnosis and improved 
patient care [31].

Forecasting and identification of cardiac ailments pose 
the greatest hurdles in the field of medicine and rely on 
facets such as medical evaluations and patient indica-
tions. ML methodologies play a pivotal and precise 
part in the prognosis of heart disease, and technologi-
cal advancements have facilitated the amalgamation of 
machine communication with vast data utilities to han-
dle unorganized and rapidly augmenting data [32]. The 
sole approach to acquiring significant insights in health-
care is through big data, and it is imperative to combine 
data from diverse origins to discover remedies [33]. The 
potential of big data to enhance healthcare services and 
financial returns is immense. Many industries, healthcare 
included, are making efforts to leverage this potential. By 
merging bio-medical and healthcare data, contemporary 
healthcare institutions can bring about a revolution in 
medical treatment and customized healthcare [34].

The extraction of valuable information from structured 
human-generated, computer-generated, and sensor data 
is known as data mining. This involves the collection, 
cleansing, processing, analysis, visualization, and inter-
pretation of data, using sophisticated learning algorithms 
to identify patterns and relationships that can be applied 
in various fields. To achieve more straightforward and 
comprehensible outcomes, statistical, mathematical, and 
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ML approaches have been employed. Data mining is 
more than just a task; it encompasses the entire process 
of gathering, cleaning, processing, analyzing, visualizing, 
and interpreting data to extract valuable insights [35].

Data analysis is a crucial factor for achievement, as it 
enables the selection of appropriate data scrutiny meth-
ods and the formulation of data-driven products. None-
theless, businesses frequently encounter a shortage of 
expertise or time to develop a comprehensive compre-
hension of data in data analysis. Familiarity with the 
attributes of the data is vital for devising data-driven 
products [36].

Unsupervised ML techniques have the potential to 
uncover risk determinants in patients with intricate clini-
cal conditions like HF, which exhibits indications and 
manifestations of excess fluid. The worldwide occurrence 
and frequency of HF have surged, leading to a global out-
break. Novel approaches need to be explored to enhance 
the management of HF patients [37].

ML algorithms have the potential to enhance the 
diagnostic and prognostic capabilities of conventional 
regression methods, however, the outcomes are reliant 
on the data analysis software utilized [38]. ML tech-
niques are employed for forecasting heart diseases, how-
ever, there exists variations in their parameters, aiding 
physicians in comprehending the information and exe-
cuting the most suitable techniques [39]. ML is a crucial 
instrument in public health for recognizing and antici-
pating communities with higher chances of experiencing 
health consequences. Thus, it should be incorporated 
into medical education to direct and decipher scientific 
investigations [40].

The extraction of significant data from vast quantities 
of unprocessed information is known as data mining. 
This technique is utilized in various domains, such as sci-
entific research. Orange employs segment-oriented visual 
programming to carry out data mining, AI, and inspec-
tion tasks. By linking pre-defined or user-provided com-
ponents known as widgets, work forms are established. 
The process of constructing a data mining model involves 
activities such as reading, processing, visualizing, collect-
ing data, and obtaining prediction models [41].

The medical industry is experiencing a transformation 
in decision-making procedures, thanks to the abundant 
digital information stored in hospitals, and the imple-
mentation of data mining and ML methods. While con-
ventional ML techniques were previously utilized to 
forecast cancer survival rates, experts are currently tran-
sitioning towards deep learning and hybrid approaches to 
obtain a better understanding of survival prediction [42].

Modern health information systems are distinguished 
by their ability to rapidly grow and adapt to identify sig-
nificant health trends and provide timely prevention 

support. ML-based systems can predict and diagnose 
heart diseases. Active learning techniques enhance clas-
sification accuracy by incorporating expert feedback 
from users with sparsely labelled data. The label-ranking 
classifier selection method employs hyperparameters 
optimized through network search and implements pre-
dictive modelling in the cardiac dataset scenario. Experi-
mental evaluations were conducted to measure accuracy 
and F-score, with and without hyperparameter optimi-
zation. The optimized setting prioritized the selection 
method with respect to the F-score [43].

This study presents a technique for creating data min-
ing models that investigates the performance, clas-
sification accuracy, and number of groupings in CVD 
predictive datasets using the Orange data mining soft-
ware in unsupervised ML. Orange is a powerful instru-
ment for analyzing and displaying data, identifying data 
trends, and improving performance. It delivers a user-
friendly interface that can be adapted to various domains 
of research.

Literature review
The medical sector produces vast quantities of intricate 
information on patients, hospital assets, sickness diag-
noses, digital health records, and medical apparatus. The 
potential of data mining applications is immense, with 
some of the most significant applications encompassing 
forecasting and identification of diseases, evaluating the 
efficacy of treatments, healthcare operations, prevention 
of fraud and abuse, customer relationship management, 
and the medical apparatus industry. An incorrect treat-
ment selection can result in unfavorable consequences, 
such as patient mortality. Data mining can aid in fore-
casting and defining diseases within the field [44].

The healthcare sector has made significant progress, 
resulting in the accumulation of extensive healthcare 
data, such as electronic health records (EHRs), wearable 
sensors, and intelligent devices. This data holds 
undisclosed insights that can aid in making informed 
decisions. Extracting valuable information requires 
a thorough search of medical records, and open-
source initiatives offer a wealth of data sources for 
diagnosing and predicting all illnesses [45]. Detecting 
abnormal sequences plays a crucial role in establishing 
and safeguarding contemporary health information 
technology (HIT) systems, ensuring a thorough account 
of the patient’s condition and occurrences. Nevertheless, 
this can result in skewed data, intricate interconnections 
among events in sequences, and diminished complexity 
[46]. HIT usage poses a challenge in Sub-Saharan Africa, 
resulting in inadequate patient data. A dependable 
hospital patient database is crucial for delivering superior 
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healthcare and facilitating seamless communication 
between healthcare professionals [47].

Valuable information about individual patients and 
populations is stored in EHRs. The most frequent sources 
of unstructured EHR data are clinical text and images. 
Statistical algorithms like natural language process-
ing, radiomics, deep learning, and ML are increasingly 
being utilized to analyze clinical texts and images. How-
ever, explaining and generalizing the outcomes of ML 
models in healthcare is a crucial and unresolved issue. 
To enhance the quality and access of unstructured data, 
developing ML methods that can produce clinically rel-
evant synthetic data and de-identify clinical texts to 
speed up further research is a potential solution. This 
is achieved by creating privacy protection technologies 
such as pseudonymization [48].

Maiga et al. [49] conducted a comparison of ML algo-
rithms for predicting CVDs using a dataset of 70000 
medical records. The random forest (RF) model demon-
strated impressive results with a classification accuracy of 
73%, specificity of 65%, and sensitivity of 80%. These find-
ings have significant implications for the medical indus-
try as they could be utilized to predict the occurrence of 
CVD.

Peng et al. [50] created an XGBH model for predicting 
the risk of CVD using significant features extracted from 
14832 CVD patients in Shanxi, China. Although it had a 
slightly lower precision and reduced efficacy in predict-
ing CVD risk, it facilitated timely intervention and eco-
nomical screening of high-risk patients.

Nouraei et al. [51] utilized three distinct unsupervised 
ML clustering methodologies on a combined data-set of 
patients affected by heart failure and preserved ejection 
fraction. The partitioning around medoids technique rec-
ognized six unique groups of patients with varying long-
term results or mortality rates, whereas the other two 
clustering algorithms were subpar.

Detecting anomalies and irregularities in heart rate 
(HR) and other attributes can aid in comprehending the 
cause of the disease. The vast quantity of information 
produced by sensors in portable gadgets has irregulari-
ties that necessitate meticulous automation procedures 
for detection. Several techniques have been suggested to 
recognize these anomalies [52]. Ripan et al. [53] utilized 
five ML classification methods to construct prognostic 
models of results, which were authenticated exploiting 
customary cardiac datasets. They eliminated abnormali-
ties and employed K-nearest neighbors (KNN), RF, sup-
port vector machine (SVM), naïve Bayes, and logistic 
regression (LR).

The utilization of ML algorithms can aid in the early 
detection and diagnosis of heart disease, leading to 
enhanced patient results. Additionally, they can assist 
patients in managing their condition and daily habits 
more effectively, ultimately increasing their likelihood 
of recuperation and survival. This is a positive indica-
tion that ML algorithms have the potential to identify 
illnesses sooner and enhance patient outcomes [54]. 
Magesh and Swarnalatha [55] proposed a method that 
utilizes Cleveland heart samples from the University of 

Fig. 3  Research flowchart
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California, Irvine repository to predict CVD. The preci-
sion of the HF classifier was improved by 89.30% through 
the application of the cluster-based decision tree (DT) 
learning approach, leading to a significant reduction in 
the HF error rate from 23.30% to 9.70%.

Shrifan et al. [56] enhanced the accuracy and centroid 
convergence of k-means clustering through modifica-
tions. The newly suggested distance metric surpassed the 
majority of the literature, leading to an enhancement in 
the overall clustering accuracy for nine standard multi-
variate datasets to 80.57%.

The World Health Organization endeavoured to create, 
assess, and explicate updated models for determining the 
risk of CVD in low- and middle-income nations. Kaptoge 
et al. [57] observed significant discrepancies in the pro-
jected 10-year risk for a specific risk factor profile among 
different regions worldwide. After examining data from 
79 countries, it was deduced that the percentage of peo-
ple aged 40-64 years with estimated risk greater than 20% 
varied greatly, ranging from under 1% in Uganda to over 
16% in Egypt.

Fig. 4  Classification techniques used to classify Cardiovascular Disease Prognostic datasets

Fig. 5  Test and score results
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Nadakinamani et al. [58] proposed an ML-based CVD 
forecasting system that is extremely precise. The system’s 
suitability was determined by assessing several metrics, 
and the random tree model produced excellent results, 
achieving a 100% accuracy rate, a 0.0011 mean absolute 
error, a 0.0231 root mean squared error, and a prediction 
time of only 0.01 s, the fastest of all models tested.

The platform is restricted to supervised ML algorithms, 
which confine the training dataset to labelled datasets. 
However, it supports unsupervised learning algorithms, 
enabling the platform to handle diverse types of train-
ing datasets. The selection parameters are set before the 
training process, which restricts the system options but 
permits users to modify them post-training to better 
align with their requirements and enhance efficiency [59]. 
Aggrawal and Pal [60] suggested a method for identify-
ing mortality in cardiac patients receiving therapy using 
a sequential feature selection algorithm. To evaluate the 
accuracy of the selected feature selection (SFS) algorithm 
against the RF classifier, various ML algorithms such as 
linear discriminant analysis, RF, gradient boosting classi-
fier (GBC), DT, SVM, and KNN were employed. Accord-
ing to the findings of the experiment, the SFS approach 
achieved an accuracy of 86.67%.

Ishaq et  al. [61] employed nine categorization tech-
niques: DT, AdaBoost, LR, stochastic gradient descent 
(SGD), RF, GBC, extra tree classifier (ETC), Gaussian 
naive bayes, and SVM. The issue of imbalanced classes 
was tackled by utilizing synthetic minority oversampling 
technique (SMOTE), and the RF was used to identify the 
most highly-ranked features to train the ML models. The 
experimental findings demonstrated that ETC outper-
formed the other models, achieving a SMOTE accuracy 
score of 0.9262 in predicting the survival of patients suf-
fering from heart disease.

Healthcare experts frequently face difficulties in pre-
cisely forecasting heart ailments because of intricate tasks 

and concealed information, which necessitate contem-
plation and understanding [62]. Li et  al. [63] suggested 
a ML technology-based system that is both efficient and 
precise in diagnosing heart ailments. The experimen-
tal findings indicate that the feature selection algorithm 
(FCMIM) proposed by Li et al., with high-level classifier 
support vectors, is suitable for creating intelligent cardiac 
detection systems. The diagnostic system (FCMIM-SVM) 
suggested by Li has demonstrated impressive accuracy in 
comparison to previously suggested methods and can be 
conveniently adopted in healthcare for the identification 
of heart diseases.

The outcomes of Oyeleye et  al. [64] experiment dem-
onstrated that by employing forward walking validation 
and linear regression, the autoregressive intregated mov-
ing average model can precisely anticipate the HR for 
all time spans, while other models are effective for time 
spans exceeding 1 min. This method of data analysis can 
be utilized to more accurately predict future HR with the 
help of accelerometers.

Mohammedqasem et  al. [65] created an optimization 
system based on deep learning to enhance patient clas-
sification by processing unbalanced datasets. The system 
employs SMOTE and a feature-removal algorithm that 
operates recursively to identify the most efficient fea-
tures. The experimental predictions demonstrated high 
consistency and appropriateness, reaching an accuracy 
level of up to 98% and 97% respectively.

The field of ML holds great potential in enhancing 
results by identifying prognostic models and categorizing 
innovative patient subpopulations. AI is permeating 
our routine activities via promotional algorithms, 
music and film preferences, and junk mail filtering, but 
its capacity to access intricate and multidimensional 
data is just as crucial in the medical domain. However, 
this has yet to be fully substantiated [66]. AI has the 
capability to recognize the ideal research specimens, 

Fig. 6  Classification accuracy matrix
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Fig. 7  Calibration plot based on classification accuracy CVD prognostic. a target = 0; b target = 1
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gather supplementary data points, assess continuous 
data from research participants, and eradicate data-
related inaccuracies in overburdened healthcare systems 
[67]. The significance of AI in healthcare is growing, 
especially in the examination or anticipatory evaluation 

of medical information. Hypertensive patients were 
researched using Spark data analysis as a platform, and 
AI techniques were employed to pre-analyze the data for 
inconsistencies, duplication, inadequacy, disturbance, 
and inaccuracy [68].

Fig. 8  F1 score matrix

Fig. 9  Precision matrix

Fig. 10  Recall matrix
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Fig. 11  Calibration plot based on F1 score CVD prognostic. a target = 0; b target = 1
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Fig. 12  Calibration plot based on precision and recall CVD prognostic. a target = 0; b target = 1
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Fig. 13  Performance curve analysis CVD prognostic. a target = 0; b target = 1
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Fig. 14  Clustering techniques are used to analyze Cardiovascular Disease Prognostic datasets

Fig. 15  K-means clustering
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Velu et  al. [69] suggested utilizing a technique based 
on ML to anticipate liver complications by analyzing 
the outcomes of liver function tests that were conducted 
during medical check-ups. The system encompasses an 
interface that medical professionals can utilize to obtain 
patient data. The patients’ liver function test outcomes 
were assessed to identify whether they had liver disease 
by examining the blood levels of enzymes and proteins 
that are specific to liver function tests.

The use of AI in electrocardiography (ECG) is a prime 
example of how AI is transforming cardiovascular 
medicine. Advanced AI techniques, including 
convolutional neural networks using deep learning, 
have made it possible to interpret ECGs quickly and 
accurately, similar to how humans would. This has 
allowed for the detection of signals and patterns that 
would have otherwise gone unnoticed by human 
interpreters. By utilizing extensive digital ECGs that 
come with comprehensive clinical data, AI models have 
been developed to identify left ventricular dysfunction, 

silent atrial fibrillation (previously undetected and 
asymptomatic), hypertrophic cardiomyopathy, and 
other phenotypes such as age, sex, and race. As mobile 
and wearable ECG technologies become increasingly 
available, the clinical and population-level implications of 
AI-based ECG phenotyping are still unfolding [70].

The gaps in this study compared to existing or previous 
research are as follows:

a.	 The use of Orange data mining software for unsuper-
vised ML clustering of CVD datasets has not been 
explored before.

b.	 The topic of achieving optimal model analysis and 
classification accuracy across all classification types 
has seldom been explored.

c.	 Investigations that strive to identify the quantity of 
clusters utilizing diverse clustering techniques within 
a single dataset are infrequent.

This research centered on utilizing data mining 
through the Orange data mining software to examine 

Fig. 16  K-means clustering silhouette scores
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Fig. 17  Scatter plot of k-means cluster analysis. a K-means clustering scatter plot correlations between cholesterol level and maximum HR 
attributes; b K-means clustering scatter plot correlations between cholesterol level and resting blood pressure attributes; c K-means clustering 
scatter plot correlations between maximum HR and resting blood pressure attributes



Page 17 of 27Saputra et al. Visual Computing for Industry, Biomedicine, and Art            (2023) 6:16 	

the precision of classification, number of clusters, and 
overall performance of CVD prognostic datasets in 
unsupervised ML, drawing from insights gleaned from 
prior scientific literature reviews.

This paper is organized as follows: Methods section 
outlines the research methodology, Results and discus-
sion section presents the results and discussion, Conclu-
sions section summarizes the research conclusions and 
provides suggestions for future studies of unsupervised 
ML in the CVD dataset.

Methods
Figure 3 presents a flowchart of the research stages.

For this research, we utilized diverse datasets on CVD 
prognosis in a case study of patient information from 
prominent hospitals in the United States. The participants 
were individuals aged between 28-77 years. We procured 
varied datasets from Kaggle, which assembles public 
information from websites, like frequent visitors, without 
compromising personal data. The data comprised 
observational findings of 918 patients from one of the 
most notable hospitals in the United States. The datasets 

had 18 characteristics, out of which 2 were categorical 
and 16 were numerical. The clinical parameters that 
were available in the dataset (18 attributes) included age, 
gender, resting blood pressure, maximum HR, old peak, 
creatine phosphokinase, ejection fraction, platelet count, 
serum creatinine, serum sodium, time, systolic and 
diastolic blood pressure, HR (bpm), cholesterol level, low 
density lipoprotein (LDL) level, high density lipoprotein 
(HDL) level, and CVD prognosis.

The initial stage of data processing employs a tool 
for imputation that calculates the average frequency 
of missing data attributes. After that, a range of clas-
sification techniques were employed to model param-
eters, including KNN, SVM, RF, artificial neural 
network (ANN), naïve Bayes, LR, SGD, and AdaBoost, 
to identify the most effective performance analysis and 
assess classification accuracy. Subsequently, we uti-
lized various unsupervised ML clustering methods, 
such as k-means, hierarchical, and density-based spa-
tial clustering of applications with noise (DBSCAN) 
clustering, to determine the number of clusters for 
CVD patients. The Orange data mining software was 
utilized for all analyses.

Results and discussion
Performance analysis and classification accuracy 
on Cardiovascular Disease Prognostic datasets
Figure 4 shows the overall layout view of the classification 
techniques on Cardiovascular Disease Prognostic 
datasets.

Based on the outcomes and evaluations presented 
in Fig.  5, it is evident that SGD and ANN are the most 
efficient techniques for categorizing CVD predictive 
information.

The accuracy of classification refers to the percentage 
of correctly classified instances, whereas the accuracy 
of words pertains to the degree of proximity between 
a group of measurements and their actual values. The 
accuracy matrix for classification can be observed in 
Fig. 6.

Figure  7 demonstrates that SGD and ANN models 
outperform alternative methods of classification with 
regards to prognostic data for CVD. The calibration 
graph charts the anticipated probabilities of the classifier 
in relation to class probabilities and can serve as a 
means of verifying if the classifier is excessively hopeful 
or despondent. Additionally, the tool can exhibit a 
calibrated model where the user can set their own 
probability threshold.

Figure  8 displays the F1 score chart which links the 
models of the attribute categorization methodology. 
This is a harmonic assessment of precision and recall, 

Fig. 18  Distances
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signifying both precision and recall in a single measure. 
The maximum attainable score was 1, indicating 
impeccable precision and recall, while the minimum was 
0.

In the fields of ML, object detection, classification, 
pattern recognition, and information retrieval, precision 
and recall serve as performance metrics for data extracted 
from a sample space, corpus, or collection. Precision, also 
referred to as positive predictive value, represents the 
ratio of retrieved instances that are relevant, as depicted 
in Fig.  9. Sensitivity, or recall, represents the ratio of 
relevant instances that are retrieved. Consequently, 

both precision and recall are founded on relevance, as 
illustrated in Fig. 10.

Figures  11 and 12 demonstrate that both SGD and 
ANN models outperform alternative classification 
techniques for prognostic data related to CVD. The 
calibration curve depicts the anticipated probabilities 
of the classifier in relation to the class probabilities, 
enabling the assessment of whether the classifier is 
overly optimistic or pessimistic. The tool also presents 
a calibrated model that allows the user to establish their 
own probability threshold.

Figure  13 demonstrates that the ANN framework 
exhibited the most optimal performance for categorizing 

Fig. 19  Hierarchical clustering. a Hierarchical clustering based on the cholesterol level attribute; b Hierarchical clustering based on the maximum 
HR attribute; c Hierarchical clustering based on the resting blood pressure attribute
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CVD prognostic data. The performance graph 
represents the ratio of accurate positive data instances 
in comparison to the classifier’s threshold, while the 
cumulative return diagram showcases the correlation 
between actual positive cases and the support. The 
greater the region between the curve and the baseline 
(dashed line), the more exceptional the model.

Determining the number of clusters on Cardiovascular 
Disease Prognostic datasets
Figure 14 shows an overall layout view of the clustering 
techniques on Cardiovascular Disease Prognostic 
datasets.

(1) K‑means clustering on Cardiovascular Disease Prognostic 
datasets
In the illustration depicted as Fig. 15, the CVD prognostic 
dataset is partitioned into two clusters using the k-means 
cluster technique, with a silhouette score of 0.175. The 
widget algorithm utilizes k-means clustering to process 
the data and generates an updated dataset that includes 
the cluster label as a meta-attribute. Additionally, the 
widget presents the silhouette points of the group 
outcomes for various k values. A higher silhouette score 
indicates superior grouping.

Figure  16 displays the k-means clustering silhouette 
outcomes for two groupings. Cluster 1 (C1) has an 

Fig. 20  Hierarchical clustering silhouette scores
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Fig. 21  Hierarchical cluster scatter diagram that illustrates the correlation between cholesterol level, maximum HR, and resting blood pressure. 
a Hierarchical clustering scatter plot correlations between cholesterol level and maximum HR attributes; b Hierarchical clustering scatter plot 
correlations between cholesterol level and resting blood pressure attributes; c Hierarchical clustering scatter plot correlations between maximum 
HR and resting blood pressure attributes



Page 21 of 27Saputra et al. Visual Computing for Industry, Biomedicine, and Art            (2023) 6:16 	

average value of -0.115 and cluster 2 (C2) has an 
average value of 0.097. The Silhouette Graph widget 
presents a pictorial representation of the uniformity of 
data groupings and enables users to visually evaluate 
the grouping quality. The silhouette value signifies how 
comparable an item is to its grouping in comparison 
to other groupings, and events with a silhouette value 
close to 1 suggest that the data point is in proximity 
to the center of the grouping, while events with a 
silhouette value close to 0 are situated at the boundary 
of the two groupings.

Figure  17 exhibits a scatter plot of k-means cluster 
analysis that depicts the correlation among cholesterol 
level, maximum HR, and resting blood pressure. The 
scatter-plot tool showcases a two-dimensional scatter, 
where information is exhibited as a set of dots with x-axis 
and y-axis attribute values. On the widget’s left-hand 
side, several chart features, including dot hue, magnitude 
and shape, axis headings, maximum dot size, and jitter, 
can be modified.

(2) Hierarchical clustering on Cardiovascular Disease 
Prognostic datasets
In the CVD prognostic dataset, Fig.  18 illustrates the 
normalized distances between rows and columns. The 
objective of normalization was to guarantee impartial 
treatment of individual attributes, and it was executed 
per column.

Figure  19 depicts the outcomes of the hierarchical 
clustering, which were segregated into two clusters. 
The distance tool computes the hierarchical clustering 
of diverse object categories from the distance array and 
exhibits the associated dendrogram.

The outcomes of the hierarchical cluster silhouette 
analysis for two clusters are presented in Fig. 20, with C1 
exhibiting an average score of 0.128 and C2 exhibiting 
an average score of -0.050. The Silhouette Plot widget 
enables users to assess the quality of the data clusters 
visually and depicts the consistency of the clusters. The 
silhouette score indicates how comparable an object is to 
its cluster in contrast to other clusters, and objects with 
a silhouette score near 1 suggest that the data point is 
located in the center of the cluster, while objects with a 
silhouette score near 0 are found at the boundary of the 
two clusters.

Figure 21 exhibits a hierarchical cluster scatter diagram 
that illustrates the correlation between cholesterol level, 
maximum HR, and resting blood pressure. The scatter-
plot gadget presents a two-dimensional scatter, where the 
data is portrayed as a set of dots with x-axis and y-axis 
characteristic values. On the widget’s left-hand side, 
different chart features, such as point hue, magnitude 
and form, axis headings, maximum point size, and jitter, 
can be modified.

Fig. 22  DBSCAN clustering
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(3) DBSCAN clustering on Cardiovascular Disease Prognostic 
datasets
Figure  22 illustrates the results obtained from the 
application of DBSCAN. The optimal number of clusters 
for the CVD prognostic datasets under DBSCAN 
was segregated into 3 clusters, where the core point 
neighbors were 1, neighborhood distance was 5.73, and 
the distance metric was Euclidean. The widget utilizes the 
DBSCAN clustering algorithm on the data, resulting in 
a fresh dataset with group identities as meta-attributes. 
Additionally, it exhibits an ordered chart depicting the 
k-th nearest neighbor distances, provided the k-values 

pertain to the core point neighbors. The chart exhibits 
the distance to the k-th nearest neighbor, ascertained 
by selecting the core point’s neighborhood. The correct 
inclusive range can be chosen by shifting the black slider 
to the left or right.

The DBSCAN cluster silhouette results for 3 clusters 
are presented in Fig.  23. C1 displays an average score 
of 0.246, while C2 and C3 both have an average score 
of 0.000. The Silhouette Plot widget offers a visual 
representation of the consistency of data clusters, 
enabling users to evaluate the quality of the clusters. 
The silhouette score indicates the similarity between an 

Fig. 23  DBSCAN clustering silhouette scores
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Fig. 24  The scatter plot of DBSCAN cluster that demonstrates the correlation among cholesterol level, maximum HR, and resting blood pressure. 
a DBSCAN clustering scatter plot correlations between cholesterol level and maximum HR attributes; b DBSCAN clustering scatter plot correlations 
between cholesterol level and resting blood pressure attributes; c DBSCAN clustering scatter plot correlations between maximum HR and resting 
blood pressure attributes
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object and its cluster in comparison to other clusters. 
Scores close to 1 suggest that the data event is positioned 
close to the center of the cluster, whereas scores close to 
0 indicate that the data event is situated at the border of 
the three clusters.

Figure 24 presents the scatter plot of DBSCAN cluster 
that demonstrates the correlation among cholesterol 
level, maximum HR, and resting blood pressure. The 
scatter-plot tool exhibits a scatter with two dimensions, 
where the data is exhibited as a group of points with 
x-axis and y-axis characteristic values. The widget’s 
left side allows the customization of different chart 
characteristics, including point color, size, and shape, 
axis headings, maximum point size, and jitter.

Table  1 indicates that the CVD predictive datasets 
can be categorized into two groups, determined by the 
outcomes of various clustering techniques, including 
k-means clustering and Hierarchical clustering.

Conclusions
This research used various datasets on CVD prognosis 
in a case study of patient information from prominent 
hospitals in the United States. The participants were 
individuals aged between 28-77  years. We procured 
varied datasets from Kaggle, which assembles pub-
lic information from websites, like frequent visitors, 
without compromising personal data. The data com-
prised observational findings of 918 patients from one 
of the most notable hospitals in the United States. The 
datasets had 18 characteristics, out of which 2 were 
categorical and 16 were numerical. The clinical param-
eters that were available in the dataset (18 attributes) 
included age, gender, resting blood pressure, maxi-
mum HR, old peak, creatine phosphokinase, ejec-
tion fraction, platelet count, serum creatinine, serum 
sodium, time, systolic and diastolic blood pressure, 
HR, cholesterol level, LDL level, HDL level, and CVD 
prognosis.

The initial stage of data processing employs a tool 
for imputation that calculates the average frequency 
of missing data attributes. After that, a range of clas-
sification techniques were employed to model param-
eters, including KNN, SVM, RF, ANN, naïve Bayes, 

LR, SGD, and AdaBoost, to identify the most effective 
performance analysis and assess classification accuracy. 
Subsequently, we utilized various unsupervised ML 
clustering methods, such as k-means, hierarchical, and 
DBSCAN clustering, to determine the number of clus-
ters for CVD patients. The Orange data mining soft-
ware was utilized for all analyses.

The results showed that the most outstanding 
performance analysis and classification accuracy for CVD 
prognosis datasets were observed with SGD and ANN. 
The CVD prognosis datasets were able to be segregated 
into two clusters through clustering techniques like 
k-means and hierarchical clustering. The precision of the 
suggested model in determining the diagnostic model is 
crucial for the accuracy of CVD prognosis. The better 
the model’s accuracy, the more reliable it becomes in 
predicting the patients who are susceptible to CVD.

Prognostic systems for CVDs are valuable in the 
upkeep and surveillance of patient populations, as well 
as in the reduction of mortality rates. These systems can 
serve as a significant tool in raising awareness about per-
sonal health and in the early detection and prevention of 
CVDs. The precision of CVDs prognostic diagnosis relies 
on the model’s precision in determining the diagnostic 
model. Therefore, the more precise the model, the more 
accurate the prediction of patients who may be at risk of 
developing CVDs.

In this context, we suggest concepts for additional 
investigation of an unsupervised ML CVDs prognosis 
dataset.

a.	 Future researchers can explore alternative distance 
measures employed in different clustering tech-
niques, like Fuzzy c-means and k-medoids clustering, 
and enhance the operational efficiency of modified 
k-means by diminishing the time complexity of Car-
diovascular Disease Prognostic Rules.

b.	 Future researchers ought to employ a 
metaheuristic-based feature selection approach 
that takes features as input and organizes the 
original dataset population based on its features. 
The goal is to determine the least number of 
features that produce the least amount of error in 

Table 1  Comparative results of k-means, hierarchical, and DBSCAN clustering in the CVD prognostic datasets

Clustering methods K-means clustering Hierarchical clustering DBSCAN clustering

The best number of clusters 2 2 3

Distance metric Euclidean Euclidean Euclidean

Silhouette scores C1 = -0.115
C2 = 0.097

C1 = 0.128
C2 = -0.050

C1 = 0.246
C2 = 0.000
C3 = 0.000
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classifying samples and forecasting CVDs patients. 
Heightening the accuracy of the input data for the 
ML method should enable the learning model to 
recognize precise patterns for the diagnosis and 
prognosis of CVDs.

c.	 Future researchers ought to employ methods like 
Ant Colony Optimization Algorithms and Particle 
Swarm Optimization to enhance model efficacy. To 
attain superior forecast accuracy, they should adopt 
hybrid and ensemble models, and explore novel 
research opportunities in this domain through the 
application of predictive data mining techniques in 
medical diagnosis.
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