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Abstract 

Obtaining a 3D feature description with high descriptiveness and robustness under complicated nuisances is a sig-
nificant and challenging task in 3D feature matching. This paper proposes a novel feature description consisting 
of a stable local reference frame (LRF) and a feature descriptor based on local spatial voxels. First, an improved LRF 
was designed by incorporating distance weights into Z- and X-axis calculations. Subsequently, based on the LRF 
and voxel segmentation, a feature descriptor based on voxel homogenization was proposed. Moreover, uniform 
segmentation of cube voxels was performed, considering the eigenvalues of each voxel and its neighboring voxels, 
thereby enhancing the stability of the description. The performance of the descriptor was strictly tested and evalu-
ated on three public datasets, which exhibited high descriptiveness, robustness, and superior performance compared 
with other current methods. Furthermore, the descriptor was applied to a 3D registration trial, and the results demon-
strated the reliability of our approach.
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Introduction
3D feature matching through descriptors is an essential 
yet challenging task in robot navigation and remote sens-
ing [1, 2], medical diagnosis [3], face recognition [4]. This 
technique is widely deployed in object classification and 
retrieval [5–8], registration, and reconstruction tasks. In 
the context of 3D surface matching, the utilization of a 
high-quality feature descriptor holds utmost importance. 
This descriptor should possess the capability to effec-
tively extract accurate and consistent information from 
3D point clouds, thereby leading to a notable improve-
ment in the overall matching performance. With the 

development of low-cost 3D scanning devices such as the 
Photoneo Phixi 3D scanner, Intel Realsence, and Micro-
soft Kinect, it is now possible to obtain surface point 
clouds or depth images of objects. However, the original 
data obtained from ordinary 3D scanners are not flawless 
and invariably suffer from challenges stemming from var-
ying resolutions of the surface, different levels of noise, 
inevitable occlusion, clutter, and overlaps in practical 
industrial applications. However, the large data scale of 
point clouds also increases the difficulty and complexity 
of building a stable, efficient, and descriptive descriptor 
[9, 10]. These practical problems pose major challenges 
to the development of 3D vision. Therefore, identify-
ing an accurate and robust 3D feature descriptor is a key 
research concern in this research.

The existing methods for 3D feature descriptors are 
classified into two main categories: global and local fea-
ture descriptors [11–14]. Global feature descriptors 
extract features from a scene or objects. However, they 
ignore the shape details of the object and are unable to 
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effectively address occlusion and clutter problems in the 
scene. Considering this limitation, the target must be 
segmented from the scene before recognition, making 
it difficult to satisfy the requirements of complex scene 
recognition. In contrast, local feature descriptors extract 
shape features by encoding the geometric and distribu-
tional information of neighboring points in histograms or 
signatures from the confirmed neighboring space. Hence, 
local feature descriptors are more suitable than global 
feature descriptors for addressing recognition tasks 
involving defective objects and complex scenes [15, 16].

Numerous local feature descriptors have been pro-
posed, such as spin image (SI) [17], 3D shape context 
(3DSC) [18], fast point feature histograms (FPFH) [19], 
triple orthogonal local depth images (TOLDI) [20], and 
local voxelized structure (LoVS) [21]. These local fea-
ture descriptors can be divided into two categories [16]: 
feature descriptors without local reference frame (LRF) 
and feature descriptor with LRF transforms. The fea-
ture descriptor method without LRF (e.g., SI, 3DSC, and 
FPFH) encodes the statistics of local geometric informa-
tion, such as normal, curvature, and included angle, of 
surface points in the feature histogram [16, 20]. However, 
this approach is inadequate for accurately describing the 
spatial distribution of the local surface and relies only on 
statistical information. Therefore, this method has limi-
tations in terms of target recognition in complex situa-
tions. In contrast, the feature description method with 
LRF transforms, including rotational projection statis-
tics (RoPS) [16], TOLDI [20], and LoVS [21], solves this 
problem to some extent. This method establishes the LRF 
and extracts the local geometric and spatial information 
in terms of the LRF. Specifically, the LRF is established 
through the distribution of local neighboring points; 
therefore, it is entirely determined by the geometric 
attributes and spatial distribution of the local surface, 
and it is independent of the world coordinate system. 
Based on the unique LRF construction, the descriptor 
invariably performs a rigid transformation and has high 
descriptiveness because it preserves abundant spatial 
information of the local surface. Compared to quantita-
tive descriptors without LRF, LRF-based descriptors are 
superior to descriptors without LRF [13, 22].

Although LRF-based descriptors offer certain advan-
tages, they also have limitations. On the one hand, the 
feature information outputs of LRF-based descrip-
tors depend strongly on their corresponding LRF [23, 
24]. Without an accurate and robust LRF, the output 
of the feature will be incorrect, and the performance of 
the descriptors will decrease significantly. In contrast, 
feature coding also influences the performance of the 
descriptors. Specifically, the accuracy and stability of the 

coding method directly determine the descriptiveness 
and robustness of the descriptors [20].

Considering the aforementioned problems, we pro-
pose a local feature descriptor based on voxel homog-
enization that includes the construction of an accurate 
and robust LRF and a feature descriptor method with 
respect to the LRF. First, the weighted covariance matrix 
was constructed according to the spatial distribution of 
the neighbors of the keypoint, and the eigenvector cor-
responding to the minimum eigenvalue of the weighted 
covariance matrix was selected for determination as the 
Z-axis. Drawing upon prior research [20], the sum of the 
projection vectors of all neighboring points was used to 
determine the X-axis of the LRF. Finally, the Y-axis of the 
LRF was calculated using the cross-product of the X- and 
Z-axes. The local surface was subsequently transformed 
with respect to the LRF, on which all extracted local fea-
tures rely. For the feature descriptor, the cubic space cir-
cumscribed to the sphere neighborhood was assumed 
and uniformly split into a set of cubic voxels. The label 
value of each voxel was based on whether it was con-
tained and the number of points in the voxel. If the voxel 
contained points, its label value was set to 1; otherwise, it 
was set to 0. To improve robustness and make compen-
sations for LRF deviation in nuisances, the label value of 
voxels contained in a larger cubic space centered on the 
voxel with a label value assigned “1” was updated accord-
ing to the number of points in the center voxel. Finally, 
the keypoint feature was generated by encoding the label 
values of all the voxels in terms of the specific spatial 
index order. To establish the LRF, we chose more appro-
priate weights to improve descriptiveness and robustness. 
For feature descriptors, the proposed method ensured 
not only abundant geometric and distribution informa-
tion of the local surface via a particular index order but 
also enhanced the robustness to noise, mesh decima-
tion, and LRF deviation caused by any nuisances through 
unique label values. To validate the performance of the 
proposed descriptor, we conducted a series of experi-
ments using three public datasets and compared the 
results with state-of-the-art datasets. The experimental 
results demonstrated excellent performance compared 
to the current methods. The registration results further 
confirmed the superiority of our descriptor. The main 
contributions of this study are summarized as follows.

1) An improved LRF construction method is proposed. 
We set appropriate weights for the determination of 
the LRF, which can achieve better descriptiveness 
and robustness in a variety of complicated disturbed 
environments, such as, noise, varying surface resolu-
tion, occlusion, and clutter.
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2) A feature descriptor based on voxel label homogeni-
zation is proposed, which achieves surpassing perfor-
mance compared to the existing methods according 
to the experiment results.

The remainder of this paper is organized as follows: 
“Related work” section presents a brief literature review 
of local feature descriptors, including the current LRF 
construction methods and feature descriptors. “Meth-
ods” section introduces the proposed descriptor method. 
“Results and discussion” section presents the experimen-
tal results for three public datasets and a brief evalua-
tion of the proposed method and other state-of-the-art 
descriptors. Finally, “Conclusions” section concludes this 
paper.

Related work
This section briefly introduces the current advanced 
descriptors, including LRF construction methods and 
feature descriptor methods. In the proposed method, 
LRF construction is performed before feature extraction 
and plays an important role in descriptor approaches. 
Therefore, we first review the methods used for LRF con-
struction. Feature descriptor reviews, including feature 
descriptors without LRF and LRF-based, are divided into 
two categories and described respectively.

Basic idea of LRF
The LRF is a coordinate system used to compute local 
feature descriptors to describe the directional and rota-
tional properties of the local region around a keypoint. 
Before computing the local feature descriptors, it is nec-
essary to determine the LRF for each key point. Once the 
orientation of the LRF is determined, the local feature 
descriptors can be computed relative to that of the refer-
ence frame.

The choice of LRF is crucial for the performance and 
robustness of local feature descriptors. An accurately 
estimated LRF can offer invariance to rotation, scale, and 
affine transformations, rendering descriptors stable and 
distinctive across different viewpoints and lighting condi-
tions. The selection and computation of a LRF may vary 
depending on the specific local feature descriptor. Differ-
ent algorithms and methods may employ different strate-
gies to estimate and represent the LRF depending on the 
application requirements and data type.

Methods of LRF construction
Building a robust, repeatable, and accurate LRF is a 
fundamental yet challenging task for feature descrip-
tors [16, 22]. Most methods determine an axis using a 
covariance or scatter matrix generated via a keypoint 
with its neighbors. Specifically, the Z-axis is usually 

defined by a normalized eigenvector corresponding 
to the minimal eigenvalue of the above matrix. Zhong 
[25] proposed an LRF whose three axes were defined by 
three eigenvectors obtained by covariance matrix anal-
ysis. However, the performance of the LRF is affected by 
sign ambiguity. Mian et al. [26] used an LRF similar to 
Zhong’s but addressed the sign ambiguity of the Z-axis. 
Moreover, Tombari et  al. [23] employed a keypoint to 
replace the centroid of neighboring points to construct 
a scatter matrix; they augmented the matrix with a 
distance weight, thereby enhancing its robustness and 
proposed a principle to disambiguate sign ambiguity. 
With the appropriate weight used in the scatter matrix 
and to address sign ambiguity, this method achieves 
strong robustness to noise, while offering sensitivity to 
varying mesh resolutions [16, 20]. Petrelli and Di Ste-
fano [15] studied the repeatability of the LRF on occlu-
sion and local surface boundaries, using the normal of 
the points at the boundary to determine the X-axis and 
robustness to the surface boundary. Furthermore, Guo 
et al. [16] proposed a novel method using the weighted 
triangles of the local surface to build a scatter matrix 
and sign disambiguation to enhance the performance 
of the LRF. This method exhibits high accuracy and 
robustness to noise; however, it is a protracted process 
owing to the computation of the triangle construc-
tion. Motivated by the literature [15], Yang et  al. [20] 
selected a small subset of neighboring points to gener-
ate a covariance matrix, and they introduced a novel 
method for calculating the X-axis using the sum of the 
weighted projected vectors. This method exhibits low 
ambiguity of the X-axis and offers robustness to occlu-
sion and boundaries owing to the choice of a subset of 
neighboring points. However, this method suffers from 
low compactness in terms of the feature description 
[27]. Ao et al. [27] adopted a Gaussian function weight 
and distance weight in a covariance matrix to enhance 
the performance of the LRF. Although their approach 
allows for high stability, the calculation complexity 
involved in this method rises significantly.

The aforementioned methods offer different advantages 
and are effective in solving the problems of ambiguity, 
noise, occlusion, and varying surface resolution. How-
ever, these methods suffer from one or more limitations, 
and it is difficult to achieve excellent overall performance.

Methods of descriptor
Numerous attempts have been made to leverage local 
feature descriptors in research fields, which are mainly 
classified into two categories, as mentioned in Introduc-
tion section. We introduce these two categories succes-
sively, as follows.
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Descriptors without LRF
Johnson and Hebert [17] proposed the SI descriptor, 
which was one of the earliest 3D local feature descrip-
tors. This descriptor defines the normal of the local sur-
face as a reference axis and spins a 2D plane around the 
axis, which is then divided into several bins. The number 
of points falling in each bin is summed as the gray value 
of a 2D image. Although SI is widely cited and time-effi-
cient approach, it is sensitive to mesh resolution and has 
limited descriptiveness [16, 20, 27]. Chen and Bhanu [28] 
proposed a local surface patch (LSP) descriptor, which 
constructs LSPs and encodes the shape index and normal 
deviations of neighbors into a feature histogram. The LSP 
descriptor is efficient but still vulnerable to noise and var-
ying mesh decimation [16, 22]. Rusu et al. [29] presented 
a point feature histograms (PFH) by using the geometric 
angle relationship of point pairs between keypoints and 
neighboring points. The PFH has a higher descriptive-
ness than the SI, but its time efficiency is relatively lower. 
To solve this problem, Rusu et al. [19] proposed the FPFH 
descriptor, which calculates the simplified point feature 
histograms (SPFH) of the k-neighboring points of the 
keypoint and encodes all weighted SPFH into the FPFH. 
Moreover, it is a time efficient and distinctive approach 
[16, 20, 22]. Flint et  al. [30] introduced the THRIFT 
descriptor, which calculates the deviation angles between 
the keypoint and the normals of neighboring points to 
generate a 1D normalized histogram. THRIFT also lacks 
robustness against noise [22]. Frome et al. [18] proposed 
a 3DSC descriptor that divides the spherical neighboring 
space according to a reference axis and then counts the 
number of weighted points that fall into each bin as the 
output feature. However, it is not rotationally invariant, 
and depends only on the reference axis.

Descriptors without LRF extract and characterize 
features using geometric relative invariants, such as 
the angle between points and normal and the distance 
between points, to generate feature histograms. Com-
pared with LRF-based descriptors, their performance is 
limited owing to the lack of spatial information.

Descriptors with LRF
For descriptors with LRF, Zhong [25] proposed an LRF 
via three eigenvectors obtained through covariance 
matrix analysis and further proposed the intrinsic shape 
signatures (ISS) descriptor to characterize the local fea-
tures by accumulating the number of weighted points in 
spherical neighborhood surface grids. The performance 
of the ISS descriptor was not remarkable owing to the 
sign ambiguity of the LRF. Tombari et al. [31] developed 
a 3DSC descriptor for the unique shape context  (USC) 
descriptor by employing a disambiguated LRF and divid-
ing the neighborhood space into grids along the azimuth, 

elevation, and radial directions. With an accurate and 
stable LRF, the USC exhibits outstanding robustness 
to noise and is sensitive to varying mesh decimations 
[22]. Subsequently, Tombari et  al. extended the USC 
descriptor to the signature of histograms of orientations 
(SHOT) via deploying deviation angles between the nor-
mal of a keypoint and its neighboring points [16, 20, 22]. 
Although it is robust to noise and time efficiency, the 
SHOT descriptor is limited by mesh resolution variation. 
Guo et al. [16] proposed a RoPS descriptor for local char-
acterization and object recognition. The RoPS descriptor 
extracts feature information by calculating the density 
of neighboring points and the Shannon entropy with 
respect to numerous rotations of the local surface around 
each axis. Despite its superior descriptiveness, the RoPS 
descriptor is limited by extremely time-consuming and 
nonuniform points [13, 20]. Similar to the view-based 
method of the ROPS descriptor, Guo et al. [14] advanced 
the SI descriptor and proposed the tri-spin-image (TriSI) 
feature descriptor. The TriSI descriptor was generated 
by merging three spin-image signatures that were cal-
culated based on the coordinate axes of the LRF. TriSI 
is more robust to occlusion and clutter than RoPS; how-
ever, this approach is constrained by its high time con-
sumption [20]. Yang et  al. [20] introduced the TOLDI 
descriptor, which was created by integrating the feature 
information of three normalized local depth images 
acquired from projection planes perpendicular to each 
axis of the LRF. With an excellent LRF and a reason-
able encoding method, the TOLDI descriptor achieves 
extraordinary performance in terms of descriptiveness 
and robustness; however, it suffers from low compact-
ness of the feature description [27, 32]. Tang et  al. [33] 
proposed the signature of geometric centroids (SGC) 
descriptor, which serves as a novel approach to spa-
tial cubic voxelization for feature generation. The SGC 
descriptor voxelizes the neighboring space of the local 
surface into cubic voxels, counts the number of points 
in each voxel as the voxel label, and encodes label val-
ues to the feature vector according to a specific princi-
ple. The strategy of cubic voxelized neighboring space is 
convenient for uniform spatial segmentation to extract 
features, which are reflected on the voxel label that not 
only reserves the spatial distribution of points but also 
recodes the geometric information of the local surface. 
Quan et al. [21] extended the SGC descriptor to a LoVS 
descriptor. The LoVS descriptor splits the neighborhood 
space into a set of cubic voxels, similar to the voxelized 
strategy of the SGC. The label of the voxel is determined 
based on whether it contains points, and subsequently, all 
voxel labels are encoded to the feature vector. The LoVS 
descriptor is suitable for low-quality point clouds and is 
an efficient technique; however, it is also limited by its 
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relatively low compactness. Zhao et al. [32] proposed the 
statistic of deviation angles on subdivided space (SDASS) 
descriptor, which extracts the distribution information 
of neighboring points and encodes feature histograms 
based on a novel local reference axis and local minimum 
axis. The SDASS descriptor achieves high robustness 
to noise and varying surface resolutions. Sun et  al. [34] 
introduced a weighting function to improve the stabil-
ity of the description method according to the theory of 
feature space optimization and to improve the compact-
ness of feature information by varying the size of the sup-
port radius. Bai et al. [35] proposed a joint framework to 
extract description features while extracting keypoints, 
which improved the computational efficiency of the fea-
ture description and extraction process. Ao et  al. [36] 
used a deep learning method to extract the local features 
of a point cloud and generated a cylindrical voxel based 
on a spherical neighborhood. They performed convolu-
tion calculations based on this approach, which improved 
the calculation speed of feature extraction.

Although the aforementioned descriptors have vari-
ous degrees of descriptiveness and robustness to noise, 

different mesh decimations, and occlusions, none can 
effectively deal with multiple challenges.

Methods
This section introduces the novel feature-description 
method in detail. Considering that this description 
method contains two parts: an LRF construction method 
and a feature representation of the SVH, this section 
introduces these two parts in turn. First, we describe the 
construction method of the modified LRF in detail. It 
is based on the normal of the keypoint and sum of the 
weighted projection vectors. Subsequently, we present 
the feature representation by encoding homogenized 
spatial voxel labels based on the proposed LRF. Finally, 
the parameters of the descriptor were selected via quanti-
tative testing and analyses.

LRF construction
First, we introduce the construction method for the mod-
ified LRF in detail, as shown in Fig.  1. The LRF at key-
point p is composed of three vector coordinate axes that 
are orthogonal to each other in space:

Fig. 1 Sketch map of the method of LRF construction. The blue point and black points denote the keypoint p and neighboring points qi 
within the neighborhood with support radius r, respectively. The orange plane denotes the projective plane perpendicular to Z-axis. The blue, red, 
and green arrows denote the Z-axis of LRF, vectors from p to qi, and the vector projecting to plane L
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where F, F.xp, F.yp, and F.zp represent the LRF and its X-, 
Y-, and Z-axes, respectively. Considering that the Y-axis 
of the LRF can be obtained by the cross-product of the Z- 
and X-axes, determining the stable and accurate Z- and 
X-axes is the core function in LRF construction.

Specific illustration of our LRF construction method 
is as follows:

Given a keypoint p and a spherical neighboring space 
with radius r centered on p, the neighboring points qi of 
p within neighborhood S constitute a point set D = {q1, 
q2, …, qn}. The centroid c of D is defined as

The covariance matrix M is constructed using coordi-
nates c and qi to describe the distribution of qi around 
c, as follows:

where Gi is the weight of the covariance matrix M, ||•|| 
denotes the L2 norm, and pqi is the vector from keypoint 
p to neighboring point qi, whose L2 norm value represents 
the Euclidean distance from p to qi and is a significant rela-
tive invariant for rigid rotation and translation in the spher-
ical neighborhood. To improve the robustness of the LRF to 
varying mesh resolutions and noise, we employed Gi, which 
implies a larger distance from p to qi and the few influences 
it exerts on the LRF [23]. Thus, adding this weight can 
effectively improve the validity and distinguishability of the 
covariance matrix analysis results. The stability of the LRF 
increased with this weight. The detailed results are pre-
sented in Theoretical analysis of methods section.

After the covariance analysis, three eigenvalues {e1,  e2, 
 e3} and their corresponding eigenvectors {v1,  v2,  v3} were 
obtained. The eigenvector corresponding to the minimum 
eigenvalue is used to define the direction of the Z-axis 
on p. Note that there is a difference between the normal 
direction, which is calculated by the covariance matrix 
without weight, and the Z-axis owing to the employment 
of weight Gi for M. However, the direction of the Z-axis of 
p is always affected by sign ambiguity, which is related to 
the repeatable performance of the LRF. To solve this prob-
lem, we define the disambiguated Z-axis of p as

(1)F =
{

F .xp,F .yp,F .zp

}

(2)c =
1

n

n

i=1
qi

(3)M =
∑n

i=1
Gi(qi − c)T (qi − c)

(4)Gi = r −
∣

∣

∣

∣pqi
∣

∣

∣

∣

(5)F .zp =
{

zp, if
∑n

i=1zp · pqi · Gi ≥ 0
−zp, otherwise

where zp represents the direction of the Z-axis.
To determine the X-axis, we referred to the method 

described by Yang et  al. [20]. Based on the tangent 
plane L of p determined with respect to F.zp, the pro-
jection vector vi of pqi is obtained by

The weight selected available can be considered from 
five aspects:

(a) vi is the Z-axis height of the corresponding vector 
pqi, i.e., pqi · F.zp;

(b) For the spatial distribution of point qi, the surface 
distribution of the point cloud is similar to a Gauss-
ian distribution under a dense surface resolution. 
For Gaussian function G(||pqi||) = 1√

2πσ 2
e
− (||pqi ||−µ)2

2σ2  , 
where μ and σ mean and variance of ||pqi||, respec-
tively. Although adding a Gaussian distribution 
weight can improve the stability of the LRF [16], the 
weight is rendered invalid owing to the lack of suffi-
cient sample points under a low surface resolution.

(c) Distribution of projection points in the projection 
plane: it is difficult for the distribution of points in 
the projection plane to converge to a certain distri-
bution under low surface resolution; therefore, it is 
not considered.

(d) The module information of the pqi: to improve the 
robustness of the LRF to occlusion and stacking, 
it is formulated as r − ||pqi|| . Thus, the X-axis is 
defined as the sum of all weighted projection vec-
tors, as follows:

where wi1 is related to r and pqi, which enhance the 
robustness to clutter, occlusion, and surface bounda-
ries. The second weight wi2 represents the projection 
length of pqi along the Z-axis, which improves the dis-
tinguishability of the projection vector [20].

Finally, the Y-axis of the LRF was determined by the 
cross-product of the Z- and X-axes. It is possible to 
generate a local feature descriptor using this unique 
and highly descriptive LRF.

(6)vi = pqi − F .zp ·
(

F .zp · pqi
)

(7)F .xp =
∑n

i=1wi1wi2vi
∑n

i=1|wi1wi2vi|

(8)wi1 = (r −
∣

∣pqi
∣

∣)
1
2

(9)wi2 = (pqi · F .zp)2

(10)F .yp = F .xp × F .zp
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Method of feature descriptor
The general descriptor process is illustrated in Fig.  2. 
After LRF construction, we transform the local surface 
neighboring points of keypoint p with respect to LRF 
F for feature description and extraction, as shown in 
Fig. 2(c). We construct the transform matrix T = F using 
the LRF, F as the rotation matrix and translation matrix t 
to convert the neighboring points of the keypoint into a 
new coordinate system, as follows:

where  DT = {q′1, q′2, …, q′n} denotes the normalized local 
surface transformed with respect to T. Then, we consider 
the circumscribed cubic space of the sphere neighbor-
hood of the keypoint as the new neighborhood space. On 
the one hand, compared with a spherical neighborhood 
or other geometric neighborhoods, the cubic neighbor-
hood space has several obvious advantages. In particular, 
the cubic neighborhood facilitates uniform voxelization. 
On the other hand, uniform and equal spatial voxeliza-
tion better preserves the spatial distribution of points 
and geometrical local shapes and addresses information 
asymmetry problems such as redundancy or sparseness 
of spatial information caused by uneven voxelization in 
feature representation and extraction. We split the cubic 
neighborhood space g-1 times uniformly into N = g × g × g 

(11)DT = T · (D− p)

spatial voxels along the edge direction of the cube, and 
the length of each voxel l was 2rg .

To facilitate the expression of spatial features, we 
referred to the voxel index coding method of Quan et al. 
to create an index I for each voxel v [21]:

where p′q′
i represents the transformed pqi vector.

We counted the point set  Qi of each voxel and assigned 
all voxels the label li1 according to whether  Qi is empty, 
based on the following expression:

As shown in Figs. 3 and 4, according to the adjacency 
relationship, each voxel comprises (w3-1) adjacent voxels, 
where w is the number of adjacent voxels of a large voxel 
vl centered on vp, which is along the edge direction of vp. 
After calculating label li1, we assigned the adjacent voxels 
of vp to a new label li2:

(12)

Ivi =
⌊

p′q′i .z + r

l

⌋

· g2 +
⌊

p′q′i .y+ r

l

⌋

· g1 +
⌊

p′q′i .x + r

l

⌋

· g0

(13)li1 =
{

1 , if Qi> 0

0 , if Qi= 0

}

(14)li2 =
ni

w3

Fig. 2 Illustration of descriptor principle. (a) Original 3D object, where yellow points represent the keypoints obtained from the surface 
of the object; (b) The local surface within neighboring space with radius r and centered on keypoint p; (c) Construction of LRF on keypoint p 
and transformed local points with respect to the LRF, where blue, yellow, and red arrows represent X-, Y-, and Z-axis, respectively; (d) Split space 
into a set of cubic voxels; (e) Set label for each voxel, where blue voxels and transparent voxels represent label value is 1 and others is 0, respectively; 
(f) Update the label value of each voxel, where the color depth of the cube represents the size of voxel label value; (g) Output feature of keypoint p 
by merging label value of each voxel according to particular index coding
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where the ni is the number of points in vp. vl contained 
w × w × w voxels. Subsequently, the label value li2 of every 
voxel is updated, and li3 is calculated by summing the 
label values of the adjacent voxels for every voxel. The 
robustness of the descriptor to noise, varying distribution 
of the surface, and deviation of the LRF are improved in 
this step.

The feature value of each voxel is composed of its li1 
and li3:

Finally, all the labels of each voxel were recoded into 
features of p according to index I.

We encoded the three-dimensional space voxels and 
their labels into a one-dimensional feature number 
string. Although there is an inevitable loss of informa-
tion in the process (Eq.  16), this method guarantees 
computational efficiency. Compared to the binarized 
one-dimensional feature descriptor, our method has a 
slightly lower operating efficiency; however, it obtains 
stronger robustness to noise, varying surface distribu-
tion, and occlusion. In contrast, the spatial voxeliza-
tion method reduces the interference of the calculation 
error of the LRF on feature extraction and description 
to a certain extent; therefore, this method offers a cer-
tain level of stability.

(15)li3 =
w3
∑

i=1

li2

(15)fi = li1 + li3

(16)fp = [f1, f2, ..., fN ]

Theoretical analysis of methods
We performed a preliminary analysis of the theoretical 
level of algorithm performance, and the results are pre-
sented herein.

Descriptive ability
The description method fully considers the relative 
invariants of all neighboring points of the keypoint in 
the LRF construction and the appropriate weight. Spe-
cifically, the distance from neighboring points to the edge 
of the neighborhood was used as the weight to enhance 
the descriptiveness and stability of the Z-axis of the LRF. 
In addition, appropriate geometric attribute weights 
were used to determine the X-axis to improve the dis-
crimination and uniqueness of the X-axis. The descrip-
tor guarantees the consistency of each unit voxel in the 
spatial volume by uniformly splitting the spatial space, 
and ensures the equivalence of the spatial information of 
each spatial voxel. Based on these advantages, each voxel 
was assigned a label according to the spatial distribution 
of the surface points, and all voxel labels were encoded 
into one-dimensional features. The encoding sequence 
reflects the relative position distribution of spatial vox-
els, which is unique and descriptive. Therefore, it exhibits 
excellent space description performance.

Stability
This method leverages different weights to improve 
the adaptability and stability of the LRF to noise, local 
boundaries, and occlusions in various scenarios. To a cer-
tain extent, the spatial voxels constructed by the descrip-
tor were similar to those constructed by image filtering in 
2D image processing. Specifically, noise and truth points 

Fig. 3 The adjacency relationship of voxels when w is 3. vp is the center voxel whose voxel label value is “1” in the large voxel vl. The adjacent voxels 
of vp are represented in light blue
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have a certain probability of falling into the same voxel 
during feature extraction. Therefore, noise has little 
impact on the overall feature extraction. Moreover, fea-
ture updating is a smoothing process that reduces the 
interference of noise. In general, this method can elimi-
nate or reduce the influence of noise within a certain 
range of feature descriptors.

Invariance to rigid transformations
The LRF construction method builds a covariance matrix 
using the distance from each neighboring point of the 
keypoint to the centroid and center. These distances 
are relatively invariant for rigid transformations. There-
fore, the LRF is entirely defined by the geometric attrib-
utes and spatial distribution of neighboring points and 
is independent of the world coordinate system. Based 
on this unique LRF construction, the descriptor inherits 
invariance to a rigid transformation.

Computational efficiency
The time efficiency of the descriptor is primarily influ-
enced by the size of the matrix in the LRF construction 
and the number of voxels in the feature computation. 
Compared with other algorithms, the time efficiency of 
the proposed algorithm is at an intermediate level.

Parameters of descriptor
A few parameters and variables affect descriptor perfor-
mance. Specifically, the support radius r, parameter w 
with respect to the feature label, and parameter g which 
is related to the voxel number N, the weights used to 
determine Z- and X-axes in constructing the LRF, have 
a significant impact on the performance of the descrip-
tor. Note that the support radius r affects the perfor-
mance of both the LRF and the descriptor [20, 32]. With 
large values of r, the computational efficiency of the LRF 
construction and descriptor will be high because of the 
massive number of neighboring points, as well as being 
more sensitive to occlusion and boundary regions. How-
ever, the information density will be lower, leading to 
reduced descriptiveness for small values of r. Therefore, 
it is necessary to select a suitable size value of r to guar-
antee the performance of the descriptor. Furthermore, 
the parameter w is critical to the feature value. Based on 
a larger or smaller value of w, the feature label li2 is mini-
mized and loses its effect. Moreover, parameter g deter-
mines the number of voxels related to the information 
density of each voxel. On the one hand, a large value of 
g enhances descriptiveness owing to the high accuracy 
of spatial information, whereas it is time-consuming and 
sensitive to noisy or varying densities of the local surface 
[21]. However, for a small value of radius r, the descrip-
tor will not be sufficient for extracting sufficient feature 

Fig. 4 The parameter settings of the proposed descriptor. (a) Varying the 
support radius r; (b) Varying the parameter g; (c) Varying parameter w 
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information. Additionally, the weight used in LRF con-
struction affects the performance of the LRF. In this con-
text, a reasonable weight helps improve the robustness 
and descriptiveness of the descriptor.

To set the appropriate parameters of the proposed 
descriptor, the test was conducted on the scene with 1/4 
mesh decimation and 0.3 mr (mr hereinafter, mesh res-
olution) Gaussian noise in the B3R dataset. To evaluate 
the performance of the descriptor quantitatively under 
various parameter settings, we employed the recall vs 
1-precision curve (RPC; see the detailed introduction in 
Results and discussion section). The support radius r and 
parameter g were set varying from 5 to 30 mr and 4 to 12, 
respectively. For the weight test, we used the error curve 
to evaluate the influence of different weights and con-
firmed that the weight we used was reasonable.

The experimental results for the parameters and 
weights are shown in Figs.  3, 4 and 5, respectively. The 
parameter test results reveal that the performance 
improves gradually as the support radius r increases from 
10 to 30 mr, except for 5 mr due to less information in 
a small neighboring space. However, with a larger r, the 
performance of the descriptor increases and the com-
putational efficiency decreases. Therefore, it is reason-
able to set the support radius r to 20 mr. For parameter 
w, the performance increases when improves the value 
of w progressively, whereas it decreases when w is larger 
than three. Consequently, we set w to 3 in this study. For 
parameter g, it is evident that the performance increases 
as g increases from 4 to 9, whereas it decreases when g 
is greater than 9. The performance of the descriptor 
decreases because of its sensitivity to noise and mesh 
decimation with g larger than 9. Thus, parameter g was 
set to 9 in this study.

For the weight employed in the covariance matrix of the 
LRF construction, we tested five different weights: (r–di)2 
(where di =||qi – p||, the following is the same), 1/di, G(di) 

(where G(di) = 1√
2πσ 2

e
− (di−µ)2

2σ2  is a Gaussian function), 
e−(di/r)

2 , cos(2di/πr), (r–di), and 1, which means no weight. 
In the aforementioned weights, (r–di)2, (r–di), 1/di, and 
e−(di/r)

2 indicate that distant neighboring points have little 
influence, whereas (r–di)2 and (r–di) have been widely 
adopted in the literature [18, 20, 23, 27]. G(di) was used in 
ref. [27]. The distribution curve of the weight cos(2di/πr) is 
similar to a Gaussian function. To guarantee the validity of 
the results, we altered the weight used in the covariance 
matrix and kept the other variables unchanged. The weight 
test results indicate that these weights exhibit similar per-
formance, whereas the (r–di) weight exerts a superior 
influence over X-axis determination. Regarding the 
weights, wi1 was applied to determine the X-axis of the 

LRF construction, and the error of the X-axis of the LRFs 
was tested by assigning seven different weights, including 
the aforementioned weights, and altering the final weight 1 
to (r–di)1/2. Similarly, we maintain the variable wi2 during 
testing as this variable offers high descriptiveness. The 
experimental results are presented in Fig. 6. Consequently, 
the (r–di)1/2 weight realizes remarkable performance in 
determining the X-axis compared with the other weights. 
According to these results, the weight in the covariance 
matrix was set to (r–di), and wi1 was set to (r–di)1/2.

Results and discussion
In this section, the proposed LRF and descriptor are 
tested on three public standard datasets: the Bologna 
dataset [23, 37, 38], Bologna 3D retrieval dataset [39, 40], 
and University of Western Australia UWA 3D object rec-
ognition (U3OR) dataset [26, 41]. To provide convincing 
evaluation results, the proposed descriptor was compared 
with several advanced current methods under differ-
ent nuisances, including Gaussian noise, varying mesh 
decimation, and occlusion. All experiments were imple-
mented on a computer with a 2.9 GHz CPU (Intel Core 
i5-9400F) and 8 GB RAM.

Experimental setup
Datasets
The Bologna dataset for descriptor matching comprised 
six models and 45 scenes. The models (i.e., “Bunny,” 
“Armadillo,” “Asia Dragon,” “Happy Buddha,” “Dragon,” 
and “Thai Statue”) correspond to the Stanford 3D Scan-
ning Repository [42], and the scenes contain a subset of 
models augmented with rotation and translation. In addi-
tion, the datasets also offer configuration files that define 
the number of models and the names of scenes, along 
with ground-truth files that define the rotation and trans-
lation applied to each model in that scene.

The B3R dataset, consisting of six models and 18 
scenes, was established for retrieval. The models were 
also obtained from the Stanford 3D Scanning Reposi-
tory, and the scenes are created by the rotated models 
with three standard Gaussian noises of 0.1, 0.3, and 0.5 
mr. This dataset offers configuration and ground-truth 
matrix information.

The U3OR dataset contains 5 models (i.e., “Chicken,” 
“T-Rex,” “Parasaurolophus,” “Rhino” and “Chef”) and 50 
scenes. The scenes were scanned with several models played 
randomly using a Minolta Vivid 910 scanner. Note that the 
different levels of occlusion and clutter of each scene are sig-
nificant challenges to descriptors and are therefore widely 
employed in some experiments [16, 20, 21, 32, 41]. To pre-
sent the results intuitively, we classified several groups 
according to the occlusion rate, as shown in Fig. 7.
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In addition, to comprehensively evaluate the perfor-
mance of the proposed descriptor, we generated new 
scene-based datasets as described above. We built a scene 
group using several-level mesh decimations (1/2, 1/4, 
1/8, and 1/16) for scenes in the Bologna dataset to sepa-
rately test the robustness of the LRF to mesh decimation. 
The second scene group was generated by implementing 
different mesh decimation rates (1/2, 1/4, and 1/8) for 
scenes in B3R to test the performance of the descriptor. 

The surface of the second scene group is mixed with vari-
ous rates of Gaussian noise and mesh decimation.

Evaluation criteria
To quantitatively evaluate the performance of the pro-
posed LRF and descriptor, we employed Meancos [15, 20, 
23, 32] and other methods, as well as the RPC [21–23, 
32], to obtain the experimental results in this study. These 
methods are widely used to evaluate the performance of 

Fig. 5 The setting test of weights in the covariance matrix of LRF construction of the proposed descriptor. (a) Error distribution of Z-axis; (b) Error 
distribution of X-axis
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LRF, descriptors, and other algorithms [15, 16, 20–23, 32]. 
It is defined as follows:

First, we evaluate the performance of the LRF. The 
Meancos criterion is widely used to measure the mean 
angular error of the axes between two LRFs and is 
defined as follows:

where  Fm and  Fs represent the corresponding LRFs of 
the total keypoints in the model and scene,  Fm,i and  Fs,j 

(17)
MeanCos(Fm,Fs) =

n
∑

i=1,j=1

[CosX(Fm,i ,Fs,j)+CosZ(Fm,i ,Fs,j)]

2n

Fig. 6 The setting test of weights which applied to determine the X-axis of LRF construction of the proposed descriptor

Fig. 7 From left to right: three models and three scenes which viewed in mesh representation of (a) The Bologna dataset, (b) The B3R dataset, 
and (c) The U3OR dataset
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represent the LRF of the corresponding keypoints in the 
model and scene, n is the number of keypoints used for 
measurement, CosX and CosZ represent the cosines of 
the angles of the corresponding X-axis and correspond-
ing Z-axis between  Fs,j and the transformed  Fm,i by the 
ground-truth matrix, respectively. It is not necessary to 
consider the Y-axis, because it is generated along the X- 
and Z-axes. For each experiment, we randomly selected 
1000 points in the model as keypoints and generated the 
corresponding keypoints in the scene through a ground-
truth matrix transformation. Subsequently, the LRFs of 
the model and scene keypoints were calculated. Finally, 
the Meancos value was computed using Eq.  17. Ideally, 
the axis and Meancos errors of a group of LRFs at the cor-
responding keypoints should both 1.

In addition, considering that the performance of the 
LRF is influenced by both the accuracy and disambigua-
tion of each axis, we created the APX (i.e., accuracy 
percentage of X-axis), APZ (i.e., accuracy percentage of 
Z-axis), DAX (i.e., disambiguation percentage of X-axis), 
and DAZ (i.e., disambiguation percentage of Z-axis) to 
analyze the LRF performance in detail. APX, APZ, DAX, 
and DAZ are defined as follows:

where NX
amb and NZ

amb represent the number of sign 
ambiguations on the X- and Z-axes, respectively, in all 
LRFs. The higher the values of APX, APZ, DAX, and 
DAZ, the better the disambiguation and accuracy.

The RPC is calculated as follows: Given the model, 
scene, and corresponding ground-truth matrix from 
the model to scene, each model keypoint feature was 
matched with all scene keypoint features, and the closest 
and second-closest corresponding features were deter-
mined. If the ratio of the closest feature distance to the 
second-closest feature distance is less than a threshold δ, 
the model keypoint feature and scene keypoint feature 
are regarded as pairs of matches. Then, a pair of matches 
is regarded as a correct match if the spatial position 
error between the corresponding keypoints is sufficiently 
small (in this study, we set the error threshold to half of 
the value of the descriptor support radius r). Otherwise, 

(18)APX(Fm,Fs) =
||CosX(Fm,i,Fs,j)||

n

(19)APZ(Fm,Fs) =
||CosZ(Fm,i,Fs,j)||

n

(20)DAX(Fm,Fs) = 1−
NX
amb

n

(21)DAZ(Fm,Fs) = 1−
NZ
amb

n

the match was judged false. A curve can be calculated 
by changing the ratio threshold δ. Specifically, the Recall 
and Precision are defined as

If the descriptor ideally achieves both precision and 
recall, the RPC curve appears in the upper-left corner 
of the chart. To reduce the impact of keypoint sampling 
errors on the test results, each test experiment on the 
LRF and descriptors was performed five times, and the 
average of the results was considered the final result.

Parameter setting
The proposed LRF and descriptor were tested using five 
current LRF construction methods and eight descrip-
tors to conduct comparative experiments. Specifically, 
the compared LRF methods include those of Tombari 
et al. [37], Mian et al. [26], Guo et al. [9], Yang et al. [13], 
and Ao et al. [27]. The compared descriptors included SI, 
FPFH, USC, SHOT, RoPS, TOLDI, SGC, and LoVS. The 
parameter settings of the compared descriptors are listed 
in Table 1, and the support radius value of the LRF is the 
same as that of the corresponding descriptor. Note that 
the SI, FPFH, USC, SHOT, and RoPS descriptor codes 
were obtained from the Point Cloud Library [43], the 
TOLDI descriptor code was acquired from Yang, and the 
SGC and LoVS descriptors were obtained from published 
papers.

Proposed LRF’s performance evaluation result 
of and discussion
The performance results of the six LRF construction 
methods experimentally tested on the three datasets are 

(22)Recall =
The number of true point matches

Number of total points

(23)

1 - precision =
The number of false point matches

Number of total point matches

Table 1 Parameter settings for 8 feature descriptors

Support radius 
(mr)

Dimensionality Length (mm)

SI 15 15 × 15 225

FPFH 15 15 × 15 225

3DSC 15 15 × 11 × 12 1980

SHOT 15 8 × 2 × 2 × 10 320

RoPS 15 3 × 3 × 3 × 5 135

TOLDI 15 3 × 20 × 20 1200

SGC 15 8 × 8 × 8 × 2 1024

LoVS 15 9 × 9 × 9 729

Proposed 15 9 × 9 × 9 729
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shown in Fig.  8. In the experiments, different levels of 
Gaussian noise, mesh decimation, and occlusion were 
selected as variables. We used the Bologna dataset to 
test the performance of the LRF methods against differ-
ent mesh decimations and time efficiencies, the U3OR 
dataset to test the performance against occlusion, and the 
B3R dataset to test the robustness of the LRF to Gauss-
ian noise. Considering that most LRF methods are rela-
tively robust to noise and sensitive to mesh decimation, 
we focused on testing the accuracy and ambiguity of each 
axis of the LRFs under different levels of mesh decima-
tion. To present the results of the robustness to occlu-
sion, we classified each model in scenes by the occlusion 
rate given in the initial configuration.

Repeatability performance
As shown in Fig.  8, compared with other current LRF 
construction methods, the proposed LRF method main-
tained an excellent performance in some experiments. 
Specifically, Ao’s method introduces the Gaussian stand-
ard distribution function of the neighboring points of the 
keypoint as the X-axis determination weight of the LRF. 
Although the performance was improved by employing 
a Gaussian function to construct the LRF, this method 
was relatively sensitive to mesh decimation. Compared to 
other methods, the performance of the method proposed 
by Mian et al. is not ideal because it only solves the ambi-
guity of the Z-axis sign of the LRF and does not address 
the ambiguity of the X-axis. Therefore, the method of 
Mian et  al. performed poorly in the X-axis ambiguity 
test, and its overall performance was greatly limited.

The three methods proposed by Tombari et  al., Guo 
et  al., and Yang et  al. considered addressing sign ambi-
guity for each coordinate axis using different principles; 
thus, the overall performance was greatly improved. The 
method proposed by Tombari et al. constructed a spatial 
scatter matrix and added a distance weight to improve its 
accuracy and stability. The Z- and X-axes of the LRF take 
the eigenvectors of the covariance matrix. Thus, the cal-
culation of the algorithm is relatively small; yet it is quite 
sensitive to changing surface resolution. The method pro-
posed by Guo et al. constructs triangular grids based on 
neighboring points and adds a weight related to the area 
of   the grid to improve the robustness of the surface reso-
lution; however, this method makes the LRF relatively 
sensitive to noise. The method proposed by Yang et  al. 
selects smaller subspace neighboring points of the key-
point as the input of the covariance matrix, which makes 
the method more stable at the boundary of the surface, as 
shown in Fig. 8(h).

In the experiment using the U3OR dataset, the mod-
els in the scene exhibit varying degrees of occlusion 
and overlap. TOLDI exhibits better stability owing to 

the selection of a smaller subspace. Benefitting from 
the appropriate weight selected, the proposed method 
exhibited excellent performance compared to the other 
methods.

Compared with the above methods, the LRF proposed 
in this study performed better in terms of stability and 
repeatability in the experiment. We applied weights to 
the covariance matrix and conducted effective disam-
biguation, which successfully improved the descriptive-
ness and distinguishability of each axis of the LRF. For 
occlusion and clutter in scenes, we consider that choos-
ing a smaller neighborhood space improves the stabil-
ity of the LRF to the local surface boundary, but it also 
affects the stability of the LRF [32]. To ensure the accu-
racy of the descriptor, we selected the original neighbor-
hood space for feature extraction.

Generalization performance
To further evaluate the generalization ability of the 
proposed LRF, we replaced the corresponding LRF in 
two LRF-based descriptors, that is, the SGC and LoVS 
descriptors, with our LRF. This experiment was imple-
mented using scenes from the Bologna dataset with 
1/4 mesh decimation and 0.3 mr Gaussian noise to test 
the performance. The results of the original and LRF-
replaced descriptors using the RPC are shown in Fig. 9.

It is evident that these two LRF-replaced descriptors 
perform better than the original descriptors. Therefore, 
the generalization ability of the proposed LRF is better, 
and the performance of the descriptors can be improved 
by employing the proposed LRF.

Time efficiency
We chose the Bologna dataset to test the time consump-
tions of the LRF construction methods. During each 
experiment, 1000 keypoints were randomly selected to 
calculate and collect the time costs of the LRF generation 
with several support radii. The larger the neighborhood 
radius, the more abundant the number of points in the 
neighboring space, thereby raising the calculation load 
involved for the covariance matrix.

As shown in Fig. 8(f ), the LRF proposed by Yang et al. 
is the most efficient method because it selects the sub-
space neighboring points to generate the covariance 
matrix and reduces the dimensions of the covariance 
matrix; therefore, its calculation efficiency is faster. 
The LRF proposed by Tombari et  al. [37] and Mian 
et al. [26] only needed to generate a covariance analy-
sis to determine the LRF; therefore, the calculation effi-
ciency was relatively high. The computational efficiency 
of the LRF proposed by Guo et al. is much lower than 
that of others because this method needs to construct 
a triangular mesh and perform a covariance analysis 
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Fig. 8 The repeatability and time efficiency performance of six LRF construction methods tested on three datasets. (a) APZ under mesh decimation 
on the Bologna dataset; (b) APX under mesh decimation on the Bologna dataset; (c) DAZ under mesh decimation on the Bologna dataset; (d) 
DAX under mesh decimation on the Bologna dataset; (e) Meancos under mesh decimation on Bologna dataset; (f) Time efficiency; (g) Meancos 
under Gaussian noise on the B3R dataset; (h) Meancos tested on the U3OR dataset
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on each triangle; thus, the computation is larger than 
that of other methods. The LRF proposed by Ao et al. 
must calculate the mean of the neighboring keypoint, 
Gaussian function, and covariance matrix, which raises 
the computational load. The time efficiency of the LRF 
proposed in this study was slightly lower than those of 
Tombari et al. and Mian et al. and better than those of 
Guo et al. [9] and Ao et al. [27]

Performance evaluation of proposed descriptor’s 
performance evaluation result of and discussion
We tested nine descriptors, including the descriptor in 
this study, on the Bologna and B3R datasets, under vary-
ing mesh decimation, different levels of Gaussian noise, 
and the situation using both mesh decimation and Gauss-
ian noise. The experimental results of the descriptors are 
shown using the RPC.

Performance on the Bologna dataset
The experimental results for the performance of the nine 
descriptors exhibited by RPC are shown in Fig. 10. With 
respect to the robustness of mesh decimation, the pro-
posed descriptor performed better on the Bologna dataset 
with several different levels of decimation compared with 
other descriptors. The performance of the USC descrip-
tor decreases rapidly with a gradual increase in decima-
tion. It can be inferred that the USC descriptor extracts 
features depending on the number of points in each grid 
and consequently presents sensitivity to mesh decimation. 
The LoVS and SGC descriptors performed well in 1/2 and 

1/4 mesh decimations, whereas they were inferior to the 
1/8 mesh decimation and other higher-level decimations. 
In general, the performance of the SHOT descriptor was 
stable under varying mesh decimations.

Performance on the B3R dataset
Regarding the robustness to Gaussian noise, the USC 
descriptor performed excellently to higher-level noise 
compared to the others, whereas the FPFH, SHOT, and 
RoPS descriptors were sensitive to Gaussian noise. Specif-
ically, it can be seen that LoVS, SGC, and our descriptors 
perform better at different levels of noise and follow USC. 
This is because these express features use point informa-
tion in each voxel, and the output feature is not affected 
if noise and true points are dropped in the same voxel 
[21]. These results demonstrate that the methods of cubic 
splitting of neighboring spaces are significantly robust to 
Gaussian noise. Moreover, the SI descriptor was relatively 
stable with respect to different types of noise.

Under the mixed interference of noise and decreased 
surface resolution, as shown in Fig. 11, the performance of 
all descriptors is greatly affected. Our descriptor achieved 
excellent performance compared to the others, followed by 
the LoVS descriptor. Although it is evident that all descrip-
tors perform inferiorly to the 1/8 mesh decimation and 0.5 
Gaussian noise, the proposed descriptor is relatively bet-
ter. The excellent performance of the descriptor proposed 
in this study relies on its high stability and distinguishing 
LRF. However, it improves the stability of the descriptor by 
homogenizing the spatial voxel information.

Fig. 9 The generalization performance test of proposed LRF
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Fig. 10 The experiment results of the performance of nine feature descriptors tested on Bologna datasets. (a) Bologna dataset without noise 
or mesh decimation; (b) Bologna dataset with 1/2 mesh decimation; (c) The Bologna dataset with 1/4 mesh decimation; (d) The Bologna dataset 
with 1/8 mesh decimation
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Performance on the U3OR dataset
The experimental results tested on the U3OR dataset are 
shown in Fig. 12. As shown in Fig. 7(c), the scenes in the 

U3OR dataset have varying rates of occlusion, clutter, 
overlap, and mesh decimation. Therefore, the robust-
ness and descriptiveness of descriptors are rigorous 

Fig. 11 The experiment results of the performance of nine feature descriptors tested on the B3R datasets. (a) B3R dataset with 0.1mr Gaussian 
noise; (b) B3R dataset with 0.3 mr Gaussian noise; (c) B3R dataset with 0.5 mr Gaussian noise; (d) B3R dataset with both 1/2 mesh decimation and 0.1 
mr Gaussian noise; (e) B3R dataset with 1/4 mesh decimation and 0.3 mr Gaussian noise; (f) B3R dataset with 1/8 mesh decimation and 0.5 mr 
Gaussian noise
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challenges. Although all nine descriptors performed 
poorly on the U3OR dataset, the proposed descriptor 
achieved the best performance in complicated situa-
tions. In particular, the LoVS and SGC descriptors per-
formed better, proving the feasibility of the spatial cubic 
voxel strategy for feature descriptors. Moreover, the 
RoPS, TOLDI, SGC, and FPFH descriptors performed 
well, whereas USC performed poorly.

Time efficiency
The time efficiencies of nine descriptors were tested using 
the B3R dataset. Similar to testing for the time efficiency of 
the LRF, we randomly selected 1000 keypoints from each 

model in the B3R dataset and collected the time costs of 
the descriptor calculations that were implemented on 
these keypoints with varying support radii r. Note that the 
time efficiency is determined by the number of points in 
the radius of the neighboring space of the keypoints. Thus, 
the time efficiency can be tested by changing the value of 
the support radius. The experimental results are presented 
in Fig. 13.

The results shown in Fig.  13 conclusively indicate 
that the FPFH and SI descriptors exhibit excellent time 
efficiency, followed by the SHOT descriptor, whereas 
the RoPS descriptor is the most time-consuming 
method owing to the time cost of calculation in the 

Fig. 12 The experiment results of the performance of nine feature descriptors tested on U3OR datasets

Fig. 13 The experiment results of the time efficiency of nine feature descriptors tested on B3R datasets
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LRF construction. Moreover, the time efficiencies of 
TOLDI, SGC, LoVS, and our descriptor are similar, 
and all rank fourth. Although the proposed descriptor 
is slightly inferior in terms of the time efficiency of SI, 
FPFH, and SHOT, it achieves a better performance in 
terms of descriptiveness and stability compared with 
the other descriptors.

Proposed descriptor’s performance evaluation result 
of and discussion
3D point cloud registration is one of the most impor-
tant aspects of 3D vision applications, and feature 
matching is a basic method for registration. Eight pairs 
of scanned point clouds are used to test the registra-
tion application using the proposed descriptor. These 

point clouds include ‘Bunny’, “Happy Buddha”, ‘Dragon’ 
and ‘Armadillo’ in Stanford Repository, and ‘Mario’, 
‘PeterRabbit’, ‘Duck’ and ‘Frog’ in the Kinect data-
set [23, 37, 38]. The detailed experiment is as follows. 
First, we selected 1000 points on the model and cer-
tain points on the scene as keypoints and used the pro-
posed descriptor to extract the features. Subsequently, 
for each keypoint feature vector of the model, a corre-
spondence was established between the feature vector 
of the model and the scene using the RANSAC method. 
The registration results are presented in Fig.  14 and 
Table  2. The original and target point clouds are set 
to red and blue, respectively. The experimental results 
reveal that the proposed descriptor can accurately 
extract features and perform matching.

Fig. 14 Results of 8 pairs of point clouds with various resolutions using the proposed descriptor. The left view of the red point clouds and the blue 
point clouds represent original and target, respectively. The right view presents the registration result of the two above point clouds using 
the proposed descriptor. (a) The Rabbit; (b) The Happy Buddha; (c) The Dragon; (d) The Armadillo; (e) Scenario; (f) Peterbit; (g) Duck; (h) Frog
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Conclusions
In this study, we propose a new description method that 
contains an LRF and a feature descriptor. The advantages 
of the proposed method include high descriptiveness and 
robustness to mesh decimation, noise, occlusion, and 
clutter.

The proposed LRF construction is based on the Z-axis, 
which is determined by the weighted covariance matrix, 
and the X-axis, which uses weighted projection vectors. 
To achieve excellent performance, we tested and ana-
lyzed the weights implemented in the LRF construction. 
Compared to other current methods, our LRF performed 
best on the three datasets with several levels of mesh dec-
imation, noise, occlusion, and clutter. Moreover, the pro-
posed LRF is suitable for other descriptors. On the other 
hand, the descriptor relies on the LRF to extract features 
by splitting the neighboring space into voxels and encod-
ing the labels of these voxels. Owing to the robustness 
and high descriptiveness of the proposed LRF, the geo-
metrical and spatial distribution information of the local 
surface encoded in the descriptor exhibited superior per-
formance. Experiments designed to evaluate the perfor-
mance show that the proposed descriptor outperforms 
eight current descriptors with high descriptiveness and 
strong robustness to noise, mesh decimation, etc. Finally, 
our descriptor performs well in 3D registration applica-
tions, further verifying the superiority of our descriptor.
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