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Abstract 

Waste pollution is a significant environmental problem worldwide. With the continuous improvement in the living 
standards of the population and increasing richness of the consumption structure, the amount of domestic waste 
generated has increased dramatically, and there is an urgent need for further treatment. The rapid development 
of artificial intelligence has provided an effective solution for automated waste classification. However, the high 
computational power and complexity of algorithms make convolutional neural networks unsuitable for real‑time 
embedded applications. In this paper, we propose a lightweight network architecture called Focus‑RCNet, designed 
with reference to the sandglass structure of MobileNetV2, which uses deeply separable convolution to extract 
features from images. The Focus module is introduced to the field of recyclable waste image classification to reduce 
the dimensionality of features while retaining relevant information. To make the model focus more on waste image 
features while keeping the number of parameters small, we introduce the SimAM attention mechanism. In addition, 
knowledge distillation was used to further compress the number of parameters in the model. By training and testing 
on the TrashNet dataset, the Focus‑RCNet model not only achieved an accuracy of 92% but also showed high deploy‑
ment mobility.
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Introduction
As the living standards of residents continue to improve 
and the consumption structure becomes richer, the 
amount of domestic waste generated has dramatically 
increased. According to the latest report by the United 
Press International, the amount of global waste will 
increase by 70% by 2050  [1]. Environmental problems 
caused by large amounts of waste are becoming increas-
ingly serious, and the development of waste treatment 
is urgently required. Waste disposal has a direct or indi-
rect impact on human life and the environment, and 

classifying waste into different categories based on its 
nature is a key activity in waste management.

A proper waste management system can treat differ-
ent types of waste accordingly (e.g., composting, incin-
eration, landfilling, and recycling) and help mitigate the 
adverse effects of waste. Waste management involves 
several activities, such as waste collection, classification, 
and disposal or recycling. The World Bank states that only 
13.5% of global waste is recycled, while approximately 
33% of waste is publicly discarded without any initial clas-
sification  [2]. This results in different types of waste are 
freely scattered across a wide variety of environments. 
To control the environmental impact of waste, waste 
classification is considered an effective way to improve 
resource efficiency and protect the environment and has 
been actively promoted widely as a management meas-
ure. However, the implementation of waste separation 
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is problematic due to the wide variety of waste types, 
low awareness of waste separation among residents, and 
imperfections in related policies. Currently, waste sepa-
ration requires considerable manpower for manual clas-
sification, which is time-consuming and inefficient. To 
prevent further environmental pollution and improve the 
efficiency of waste classification, it is of great academic 
value and practical significance to study an effective 
automatic waste classification method.

The development of artificial intelligence has provided 
new solutions to this problem. With the rapid develop-
ment of science and technology, especially computer and 
sensor technology, there have been many improvements 
and developments in traditional municipal waste man-
agement systems [1]. Many scholars have designed smart 
waste classification algorithms based on deep learning 
techniques  [3–5] that can be directly applied to smart 
waste classification devices, such as smart bins, waste 
classification machines, and smart dumpsters. These 
studies have shown that deep learning applications can 
accelerate waste classification and detection and effec-
tively improve waste classification efficiency. However, 
these algorithms suffer from complex model structures, 
long inference times, and high computational costs. 
These problems limit the widespread implementation of 
intelligent waste classification systems in IoT hardware, 
and the research direction has shifted back to lightweight 
deep learning models  [4, 6]. For complex deep learning 
models, lightweightness can shorten the inference time 
and reduce the computational cost, thus adapting to the 
needs of most IoT devices. However, lightweight models 
are often accompanied by a decrease in model accuracy. 
Improving the computational speed of a model while 
maintaining its high accuracy is attracting increasing 
attention.

Given this background, this study makes the following 
main contributions: 

1. Our goal is to reduce the dimensionality of the fea-
tures and retain effective information while avoid-
ing overfitting and loss of information. We apply the 
Focus module to waste classification for the first time 
and show its satisfactory results in waste image clas-
sification tasks.

2. Models with large computational and parametric 
quantities are difficult to deploy in certain settings. 
To address this disadvantage, we adopt a lightweight 
idea to design the network, which can maintain the 
characteristics of a larger model with high efficiency 
and high accuracy while keeping the computational 
cost and number of parameters small.

3. We aim to make the model focus more on waste 
image features while ensuring a small number of 

parameters. Therefore, the SimAM attention mecha-
nism is introduced, and we demonstrate that it can 
focus on image features efficiently and improve the 
model accuracy with a small number of parameters.

Related work
In urban waste management, waste separation and recy-
cling play crucial roles in improving the overall living 
environment of city residents  [7]. Waste classification 
requires a large amount of human resources and has high 
cost. Therefore, several researchers have studied waste 
classification, mainly using traditional methods. For 
example, Riba et  al.  [8] proposed a method for detect-
ing and classifying the components of automated waste 
classification machines. Gundupalli et al. [9] used a ther-
mography-based technique to classify the metallic and 
non-metallic fractions of e-waste. Bonifazi et al. [10] used 
an innovative hierarchical classification strategy based on 
hyperspectral imaging to classify different polymer flakes 
in mixed plastic waste. Xiao et al.  [11] proposed a com-
plementary troubleshooting method for online identifi-
cation of construction waste, which was used to improve 
the utilization of construction waste. However, these 
methods involve complex algorithmic processes and have 
low recognition rates.

With the rise of deep learning techniques, many effec-
tive visual representations and recognition techniques 
have emerged, which hold promise for designing more 
effective algorithms for waste classification tasks. Yang 
and  Thung [12] collected 2527 waste images as a data-
set called TrashNet. They used a support vector machine 
(SVM) on scale-invariant features learned by ResNet50 
for classification and achieved good results. Similarly, 
Adedeji and Wang  [13] presented a feature encoder that 
uses ResNet50 as a pre-trained model to extract waste 
images and an SVM to classify different types of waste.  
Nowakowski and Pamuła [14] attempted to quickly detect 
the class and size of e-waste devices in images using a 
region-based convolutional neural network (CNN). Liang 
and Gu [15] proposed a multi-task learning architecture 
based on CNNs, which can be used to simultaneously rec-
ognize and localize garbage in images. Zhang et  al.  [16] 
proposed the DenseNet169 spam image classification 
model based on migration learning. Bircanoğlu et  al.  [4] 
proposed the RecycleNet model, which reduced the num-
ber of parameters in a 121-layer network to three million; 
however, the accuracy of the model test was only 81%.

Although the use of CNN-based algorithms has led to 
some improvements in waste classification, the classifica-
tion accuracy and efficiency of the model require further 
improvement. The concept of knowledge distillation was 
first introduced by Hinton et  al.  [17]. Knowledge distil-
lation focuses on migrating the knowledge contained in 
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model parameters to a new parametric model that aids in 
the training and classification of other tasks in a limited 
manner during training [18, 19].

To address the above issues, we designed a lightweight 
network. We applied the Focus module to the image clas-
sification task using the SimAM parameter-free atten-
tion mechanism, and we used knowledge distillation to 
effectively migrate the knowledge learned by the model 
to the waste classification task. In this paper, we propose 
a lightweight improved waste classification model that 
maintains a recognition accuracy of 92% while focusing 
on implementing a lightweight algorithm.

Methods
In this paper, we propose a lightweight waste classifica-
tion model called Focus-RCNet, which can be deployed 
in mobile terminals. Figure  1 and Table  1 describe the 
model architecture.

Focus module
Before the image enters the network layer, this study aims 
to shrink the image to reduce the dimensionality of the 
features and retain the valid information to some extent 
to avoid overfitting without losing information. Common 
downsampling methods sacrifice some information in 
exchange for a reduction in data volume.

As shown in Fig. 1 (a), this research model introduces 
the Focus module in the YoloV5 [20] framework, which 
aims to reduce the numbers of layers, parameters, and 
flops and increase the forward and backward speed 
while minimizing the impact of mean average precision. 
The Focus process is to first perform a slicing operation 

on a 224×224× 3 image with inter-column sampling, and 
four independent feature maps are taken and stacked 
on the image at the same time; at this time the number 
of channels is expanded to 12 compared with the origi-
nal three RGB color channels, and the channel dimen-
sion is expanded 4-fold. A feature map of 112×112× 12 is 
obtained, and then the feature map is convolved into the 
SiLU function output, that is, the CBS operation; finally, 
the 2-fold downsampled feature map with no lost infor-
mation is obtained.

The Focus layer converts the information in the 
w-h plane to the channel dimension and then extracts 

Fig. 1 Overall architecture diagram: a Focus module; b Structure in each layer from the stage

Table 1 Description of the architecture of Focus‑RCNet

Layer Output_size Ksize Stride Repeat Output_channel

Image 380 × 380 3

Focus 190 × 190 1 × 1 1 1 24

Stage1 95 × 95 2 1 48

95 × 95 1 3

Stage2 48 × 48 2 1 96

48 × 48 1 2

Stage3 24 × 24 2 1 192

24 × 24 1 1

Stage4 12 × 12 2 1 384

12 × 12 1 1

Conv5 12 × 12 1 × 1 1 1 512

GAP 1 × 1 7 × 7

FC 1000

Flops 418.8 M
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different features using CBS. This approach can reduce 
the information loss caused by downsampling, thus 
achieving our ultimate goal.

Sandglass structure and SimAM attention module
In recent years, bottleneck structures, inverted resid-
ual structures, and the sandglass structure used in this 
study have emerged to construct lightweight backbone 
networks. It has been experimentally proven that add-
ing deep convolution to the ends of the residual path 
increases its spatial expressiveness.

In this study, we aimed to design a network that main-
tains an efficient and highly accurate network structure 
while also maintaining a low computational cost and 
parametric volume. Therefore, in this study, the structure 
was designed by referring to the inverted sandglass struc-
ture of MobileNetV2 [21]. This study used depth-separa-
ble convolution to perform feature extraction operations 
on images. Specifically, the feature maps after Focus 
extraction are first convolved channel-by-channel and 
then point-by-point. The designed network goes through 
Dwise3 × 3 convolution and then into two 1 × 1 convolu-
tions, before finally going through Dwise3 ×  3 convolu-
tion again to output the features shown in Fig. 1(b).

As shown in Fig.  2(a), the bottleneck structure first 
reduces the dimensionality to reduce the number of 
channels, uses normal convolution for feature extrac-
tion, and finally boosts the dimensionality again. The 
bottleneck structure not only reduces computational 
effort but also increases the number of network layers 
to facilitate training. As shown in Fig.  2(b), an inverted 
residual structure was proposed for MoblieNet V2, which 
improves the performance of the mobile network in 
multi-type task classification. The inverted residual struc-
ture first uses 1 × 1 convolution for dimension genera-
tion to obtain more image features, followed by feature 
extraction using a 3 × 3 convolution kernel, and finally a 
1 × 1 convolution kernel for dimensionality reduction. 

However, the reduced feature dimensionality tends to 
lead to gradient confusion in propagation, which reduces 
the ability of gradient propagation across layers and thus 
affects the convergence and model performance during 
training. Therefore, a sandglass structure is formed. As 
shown in Fig.  2(c), compared with the inverted residual 
structure, the sandglass structure creates jump connec-
tions between linear high dimensions, can transmit more 
information in the network structure, and applies deep 
convolution to the high-dimensional space to learn more 
expressive features.

As shown in Fig. 1(b), after each stage, our work intro-
duces a general parameter-free attention mechanism, 
namely, the SimAM  [22] attention mechanism. This 
study is designed to make the model of focus plays more 
attention to waste image features, while ensuring that the 
number of parameters is computationally small. SimAM 
can derive a fast analytical solution to the energy func-
tion while discovering the importance of each neuron.
The SimAM attention mechanism differs from the tradi-
tional 1-D and 2-D attention weights that would limit the 
ability to learn more discriminative retrieval, and it hopes 
to pay attention from 3-D attention weights to each neu-
ron in the channel. Yang and Thung [12] argue that the 
computation of the 3-D weights should be straightfor-
ward while allowing the module to maintain a lightweight 
property by defining the following energy function for 
each neuron, as shown in Eq. 1.

where t̂ = wtt + bt and x̂i = wtxi + bt are linear trans-
forms of t and xi , where t and xi are the target neuronand 
other neurons in a single channel of the input feature 
X ∈ R

C×H×W  . M = H ×W  denotes the number of neu-
rons in the channel. wt and bt are the weights and biases 
of the transformation, respectively.

(1)

et wt , bt , y, xi = yt − t̂
2
+

1

M − 1

M−1

i=1

yo − x̂i
2

Fig. 2 a Bottleneck module; b Inverted residual block; c Sandglass structure
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A network with the stacking structure designed in this 
study can help the model learn features better and ensure 
that it has the advantages of a low number of parameters, 
fast computation, and no loss of accuracy.

Knowledge distillation and training strategies
This study integrated knowledge distillation into the field 
of waste classification. Hinton et al. [17] first introduced 
the concept of knowledge distillation, hoping to achieve 
knowledge migration using a complex but prediction-
accurate teacher network to predict a soft target, and 
then feed it to a lightweight student network that is more 
suitable for inference deployment. The knowledge distil-
lation operation has the advantages of accelerating model 
training, improving performance, and migrating learning.

Our study uses EfficientNetB4  [23] as the teacher 
model, and EfficientNetB4 distillation can help the model 
obtain high-quality features from the pretrained model. 
The accuracy of the model designed in this study was 
90% , and the accuracy reached 92% after using Efficienet-
Netb4 knowledge distillation, which can improve the per-
formance of the network by 2 % compared to the original 
design. As shown in Fig. 3, the output of softmax using 
the EfficientNetB4 teacher network yields a soft target 
with Eq. 2.

where T denotes the temperature. The original softmax 
function is a special case in which T = 1. The higher T is, 
the smoother the output probability distribution of soft-
max tends to be. The greater the entropy of its distribu-
tion, the more information carried by the negative labels 
will be relatively amplified, and the model training will 
focus more on the negative labels.

(2)qi =
exp (zi/T )

�j exp
(

zj/T
)

In the teacher network predicted results and in the 
student network predicted results to calculate loss-soft, 
while the student network directly predicted results with 
the real label to calculate loss-hard, total-loss is the 
combination of both, and the final loss formula is

where L is the total-loss, L(soft) is the soft label predicted 
by the teacher, and L(hard) is the hard-loss experienced by 
students.

These  below three subsections first describe the envi-
ronment and parameter settings used in the model train-
ing and the dataset used and then evaluate the model 
using the classification model evaluation metrics.

Experimental setup
For training, PyTorch was used to implement the model. 
This model was trained on the NVIDIA GeForce RTX 
3090 Ti server configuration. The algorithm was trained 
on a 64-bit Ubuntu 22.04 operating system. The param-
eters were optimized using stochastic gradient descent 
with a momentum β of 0.9, batch size set to 16, learning 
rate initialized to 0.05, learning rate reduced by a factor 
of 10 every 90 cycles, and weight decayed to 10-4. All 
models were trained for 200 epochs. At the same time, 
cosine annealing [24] learning rate was used in the train-
ing to ensure that the model went beyond local optima to 
the full optimum.

Datasets and data processing
The dataset used in this study was TrashNet [12], which 
is a dataset for the classification of waste images. As 
shown in Table 2, the TrashNet dataset has a total of 2528 
images, which are divided into six categories: 594 images 
of paper, 501 images of glass, 483 images of plastic, 
410 images of metal, 403 images of cardboard, and 137 

(3)L = aL(soft) + (1− a)L(hard).

Fig. 3 Knowledge distillation architecture
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images of trash. This study divided the dataset into 70% 
for training and 30% for validation. In the data process-
ing stage, data enhancement operations were performed 
on the data. The data augmentation operations used were 
as follows: (1) random flip and horizontal flip operations, 
(2) RandomBrightnessContrast, which randomly changes 
the brightness and contrast of the input images, and (3) 
cutout, which randomly cuts out some areas of the sam-
ple and fills them with zero pixel values. The classifica-
tion results remained unchanged. Then, the size of the 
image was converted to 224 × 224 and normalized. (4) 
Finally, the image was cropped to a 380 × 380 pixel RGB 
image and normalized.

Experimental indicators
After the model was constructed, it was evaluated using 
several performance metrics, including accuracy, recall, 
and F1 score. This subsection evaluates the proposed 
waste classification model using confusion matrix, 
receiver operating characteristic (ROC) curve, area under 
the curve (AUC), loss value, and accuracy metrics. These 
evaluation metrics are calculated as follows:

Recall rate indicates the proportion of all matched 
positive cases, calculated as

Precision indicates the number of waste samples that 
predicted TP as positive during waste classification, 
calculated as

Accuracy represents the proportion of the type of 
waste that is correctly classified in the total waste 
classification, calculated as

(4)Recall =
TP

(TP + FN )

(5)Precision =
TP

(TP + FP)

F1-score is a judgment index that integrates the two 
indicators of precision and recall, calculated as

This study aimed to comprehensively evaluate the pre-
cision and recall of confusion matrices. The method cal-
culates the precision and recall and then calculates an 
average over each confusion matrix to obtain the “macro-
precision”, “macro-recall”, and corresponding “macro-F1”. 
This is calculated as follows:

Results
Confusion matrix
The model designed in this study after knowledge dis-
tillation was tested using the TrashNet dataset. The 
accuracy of the model was 92% . The confusion matrix 
is presented in Fig.  4. Each row of the matrix gives the 
values predicted for cardboard, glass, metal, paper, plas-
tic, and waste, and each column of the confusion matrix 
gives the true value of the TrashNet dataset. The diagonal 
lines of the matrix indicate the images in the correct cat-
egory, while the values outside the diagonal line indicate 
the number of incorrectly predicted images. As show in 
Fig. 4, the accuracy of the proposed model was 96% for 
cardboard, 90% for glass, 93% for metal, 97% for paper, 
and 90% for plastic. However, it was only 74% for trash, 
mainly because the images in the trash image dataset 
contain other categories of trash, such as paper, plastic, 
and metal; these are not other waste and therefore affect 
the overall accuracy of the model in classifying this type 
of waste. It is also not possible to exclude the fact that 
this part of the classification is smaller than the data of 
other classes. The specific data are listed in Table 2.

ROC curves
The ROC curves for the different types of waste are 
shown in Fig. 5. Waste data for cardboard, glass, metal, 

(6)Accuracy =
TP + TN

(TP + FP + TN + FN )

(7)F1− score =
2(Recall× Precision)

(Recall+ Precision)

(8)

macro− F1 =
2× macroP × macroR

macroP + macroR

macroP =
1

n

n
∑

i=1

Pi

macroR =
1

n

n
∑

i=1

Ri

Table 2 Experimental dataset information

Classes Number Train set (70%) Valid set (30%)

Paper 594 415 179

Glass 501 350 151

Plastic 483 338 145

Metal 410 287 123

Cardboard 403 282 121

Trash 137 96 41

Sum 2528 1768 760
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paper, plastic, and trash are shown separately in this 
figure. These six types of samples have similar AUC, 
similar classifications, and relatively similar accuracy, 
as shown in Table  3. Therefore, the proposed model 
works very well.

Ablation experiments
Ablation experiments were conducted to demonstrate 
the effectiveness of the proposed method. The accuracy 
of the baseline model used in this study was 88.07% , 
which increased by 3.13% with the addition of the 
Focus module. The SimAM module was then added, 
and the accuracy was increased by 1 % . These experi-
ments proved that all proposed methods were effective. 
The results are listed in Table 4.

Fig. 4 Confusion matrix

Fig. 5 ROC curve after prediction of Focus‑RCNet classification 
model

Table 3 Accuracy for each type of waste prediction

Classes Precision Recall F1-score

Cardboard 0.99 0.96 0.97

Glass 0.91 0.90 0.90

Metal 0.89 0.93 0.91

Paper 0.94 0.97 0.95

Plastic 0.91 0.90 0.90

Trash 0.80 0.74 0.77

Macro average 0.91 0.90 0.90
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Model performance comparison
Finally, the proposed model was compared with Shuf-
fleNet, MobileNet, and DenseNet on the same dataset, 
and the results are shown in Fig. 6.

It can be seen from Fig. 6 that the accuracy of the pro-
posed model was 92% after knowledge distillation and 
90% for the original model, while it was 86% for Shuffle-
NetV1, 88% for DenseNet121, and 85% for MobileNetV1.

This study also compared some classical large models, 
and the proposed model showed superior results in terms 
of accuracy, number of parameters, and computational 
volume.

In addition, we compared the parametric quantities 
of Focus-RCNet with those of the teacher model Effi-
cientB4 on the TrashNet dataset. As shown in Table  5, 
EfficientB4 has 17.559M parameters and 4.49G Flops, 
while Focus-RCNet has 525.802k parameters and 418.8M 
Flops. Therefore, the proposed model not only has good 
performance in terms of accuracy but also has very small 
parameter number and Flops, as well as high deployability 
on various devices.

Discussion
We proposed a lightweight CNN model called Focus-
RCNet for automatic garbage classification. Com-
pared with traditional CNNs, this model offers higher 

mobility and smaller computational complexity while 
maintaining high accuracy. This study addressed the 
problem of high computational complexity and the 
complexity of CNNs in practical applications and 
achieved satisfactory results in garbage classification. 
However, there are still some limitations to this work. 
The experiments in this study were only conducted on 
the TrashNet dataset, and their applicability to other 
datasets must be further verified. In addition, although 
the proposed model has high accuracy, it may lead to 
misjudgments in certain marginal cases. Therefore, 
we need to explore the limitations and directions for 
improving the model in future research. Furthermore, 
we should compare the proposed model with other 
garbage classification models and explore the advan-
tages and disadvantages of different models. Finally, 
we must pay attention to the advantages and limita-
tions of this study. The model presented in this paper 
is considered a good candidate for garbage classifica-
tion; however, its application in other fields requires 
further exploration. This paper proposed a lightweight 
CNN model but ensuring low computational complex-
ity may affect the accuracy of the model, which is a 
long-standing problem in balancing complexity and 
accuracy.

Conclusions
This paper proposed a lightweight network architecture 
using knowledge distillation to further compress and 
optimize the model and validate the performance of 
Focus-RCNet on the TrashNet dataset. The model has 
the advantages of low computational cost, small num-
ber of parameters, high speed, and high accuracy, and it 
can be well deployed on mobile devices. The results of 
this study can be used for the automatic classification of 
waste, which can effectively reduce human intervention. 
Finally, the model was tested using the TrashNet dataset, 
and the accuracy of the model reached 92%.

Table 4 Results of ablation experiments

Model Factor Accuracy (%)

Focus SimAM

Focus‑RCNet ‑ ‑ 88.07

✓ ‑ 91.20

✓ ✓ 92.20

Fig. 6 Accuracy of proposed model compared to other networks

Table 5 Model effect comparison

Model Accuracy 
(%)

Flops (G) Params (M)

ResNet50 0.87 12.087 25.560

DenseNet121 0.88 8.121 6.960

ShuffleNetV1 0.86 0.127 0.348

MobileNetV1 0.85 0.952 2.232

EfficientB4(teacher) 0.97 4.490 17.559

Focus‑RCNet 0.90 0.418 0.525

Focus‑RCNet‑KD 0.92 0.418 0.525
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SVM  Support vector machine
CNN  Convolutional neural network
ROC  Receiver operating characteristic
AUC   Area under the curve
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