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Abstract 

Deep neural networks are vulnerable to attacks from adversarial inputs. Corresponding attack research on human 
pose estimation (HPE), particularly for body joint detection, has been largely unexplored. Transferring classification-
based attack methods to body joint regression tasks is not straightforward. Another issue is that the attack effec-
tiveness and imperceptibility contradict each other. To solve these issues, we propose local imperceptible attacks 
on HPE networks. In particular, we reformulate imperceptible attacks on body joint regression into a constrained 
maximum allowable attack. Furthermore, we approximate the solution using iterative gradient-based strength 
refinement and greedy-based pixel selection. Our method crafts effective perceptual adversarial attacks that consider 
both human perception and attack effectiveness. We conducted a series of imperceptible attacks against state-of-
the-art HPE methods, including HigherHRNet, DEKR, and ViTPose. The experimental results demonstrate that the pro-
posed method achieves excellent imperceptibility while maintaining attack effectiveness by significantly reducing 
the number of perturbed pixels. Approximately 4% of the pixels can achieve sufficient attacks on HPE.
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Introduction
Although great success has been achieved using deep 
learning systems in various tasks, recent research has 
shown that neural networks are susceptible to small 
imperceptible perturbations called adversarial examples. 
Owing to the existence of adversarial examples, attacking 
a classifier becomes a search problem within a small per-
turbation around a target image. The reliability of neural 
networks is attracting increasing attention. Exploring 
adversarial attacks would benefit the understanding of 
deep learning models and the development of a more 
robust model. Although adversarial perturbations can 
effectively attack image classification networks, leading 
to incorrect predictions, relevant research on human 
pose estimation (HPE) has not been conducted.

Two issues remain to be solved regarding adversarial 
attacks on HPE networks. First, adversarial examples gen-
erated by perturbing an entire image are insufficiently 
imperceptible, particularly when the human-body region 
is easily detected by the human vision system. The tradeoff 
between the optimality and imperceptibility of adversarial 
attacks has already been implemented using minimum-
norm attacks such as Carlini & Wagner attack (C&W) 
[1]. The goal of a minimum-norm attack is to minimize 
the perturbation strength while ensuring its success. An 
alternative to the minimum-norm attack is the maximum 
allowable attack that constrains the strength of the attack 
under an upper bound, such as the fast gradient sign 
method (FGSM) [2]. Both methods require the perturba-
tion to be as small as possible. However, these two attacks 
focused on the entire image and depended on predefined 
iterations and the upper bound of the attack strength. 
Another study [3] generated a one-pixel adversarial per-
turbation based on differential evolution and successfully 
fooled a neural network by changing only a single pixel 
of the image to a specific value. Recent researches have 
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focused more attention on local perturbations on images 
to overcome attack optimality and imperceptibility. Stud-
ies have shown that perturbing pixels limited to a small 
area can craft invisible attacks that are difficult to detect 
by the human eye. Second, HPE networks are a blend of 
classification and regression architectures, resulting in a 
difference between the objective function of adversarial 
attacks on HPE and its counterpart in image classification 
tasks. Methods based on boundary attacks and softmax 
cross-entropy cannot be applied to HPE.

To solve the two problems, we propose a novel method 
for crafting perturbations to critical pixels rather than 
a full image with appealing imperceptibility. Therefore, 
our method is an evolving version of the FGSM that 
considers attack optimality and imperceptibility. We 
reformulate a local invisible adversarial attack into an l0 
optimization problem and provide a greedy algorithm 
for its optimization. The novelty of our study lies in both 
the research problem and the proposed solution. In par-
ticular, local invisible adversarial attacks on HPE have not 
been explored. We are also the first to propose a formula-
tion that (1) considers both the perturbation strength and 
pixel selection of adversarial samples and (2) generalizes 
minimal local perturbation to HPE networks.

The proposed attack method aims to perturb human-
body keypoints using a small number of perturbed pixels. 
In particular, we convert our problem into a maximum 
allowable attack under an l0 norm constraint in the key-
point regression framework and solve it using a greedy 
algorithm to find which pixels to perturb and what 
strength to add effectively and efficiently. Our optimiza-
tion method can generate adversarial examples with high 
imperceptibility and maximum attack effectiveness.

The main contributions of this paper are as follows:

1. We studied imperceptible attacks on HPE and reformu-
lated them into a problem of the maximum allowable 
attack under an l0 norm constraint in a regression form.

2. A greedy algorithm is proposed to solve the afore-
mentioned l0-norm optimization by choosing pixels 
with less sensitivity to the human eye and maximiz-
ing the adversarial loss for keypoint regression.

3. Extensive experiments have shown that our method 
can successfully attack representative HPE networks 
with high efficacy and imperceptibility.

Adversarial attack
According to the accessibility of the target models, adver-
sarial attack methods can be divided into three types: 
white-box, gray-box, and black-box attacks. This study 
focuses on white-box attack methods that assume that 
adversaries can completely access the target models, 

including the model’s architecture, parameters, and gra-
dients. On the contrary, black-box attacks have no access 
to the target model and can only observe its outputs. In 
contrast to the previous two attacks, gray-box attacks 
only assume access to the target model during the train-
ing phase or partial gradient information during the 
inference phase. In addition, an adversarial attack can be 
targeted, where the adversary’s goal is specified as a par-
ticular class t, or untargeted, where the adversary’s goal is 
any class other than the correct class.

FGSM [2] is the most representative work in white-box 
attacks, initially proposed by Goodfellow, and gener-
ates adversarial examples under the l∞-norm constraint 
to close to clean samples. The FGSM utilizes gradient 
information to update the adversarial example in one 
step along the direction of the maximum classification 
loss. Basic iterative method (BIM) [4] extends FGSM 
with an iterative scheme to craft adversarial perturba-
tions through multistep updates. Projected gradient 
descent (PGD) [5] is similar to BIM, except that it ran-
domly selects the starting point of an iterative attack. In 
essence, FGSM, BIM, and PGD belong to the category 
of maximum allowable attacks. DeepFool [6] generates 
the smallest perturbation while satisfying the target of a 
successful attack. DeepFool is a type of minimum-norm 
attack using the l2-norm. C&W [1] crafts an adversarial 
perturbation by optimizing regularization-based attacks. 
This method can generate adversarial examples under 
l0, l2, and l∞-norm constraints with minimal perturba-
tion amounts. BIM, PGD, and C&W are commonly used 
white-box attack methods that work well for various 
datasets and domains.

Many studies have been conducted on black-box attacks, 
such as score-based [7], decision-based [8], and transfer-
based [9] attacks. Although these methods have gradually 
improved the efficiency of transfer attacks or reduced the 
number of queries, black-box attacks still have a large per-
formance gap between white- and black-box attacks.

Imperceptibility
The true perceptual distance between two images, 
defined as how different a pair of images appears to 
humans, is nontrivial and cannot be easily computed or 
optimized. Fortunately, there exists many surrogate per-
ceptual distances in the computer vision field, such as 
peak signal-to-noise ratio (PSNR), structural similarity 
(SSIM) [10], and learning perceptual image patch similar-
ity (LPIPS) [11]. However, these metrics do not fully rep-
resent the perceptibility of the human eye. The traditional 
PSNR lacks structural representations and contradictions 
for human perception. SSIM focuses on the similarity 
between edges and textures to mimic human perception. 
However, a perception-driven distance function based on 
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edges and textures is not ideal and performs poorly for 
nonstructural distortions. LPIPS [11] is more consistent 
with human perception than traditional methods. It was 
demonstrated that the LPIPS matched the human visual 
system well, without additional training weights. In this 
paper, we propose using all these as metrics to measure 
the perceptual similarity between two images. Further 
discussions and comprehensive studies can be found in 
the neural perceptual threat model [12].

Attacks on HPE models
HPE can generally be categorized into regression- and 
heatmap-based methods. Regression-based methods such 
as DeepPose [13] and MaskRCNN [14] frame the HPE as 
a coordinate regression problem. However, regression-
based methods are not widely used, because they lack 
spatial and contextual information. Heatmaps were first 
introduced in the joint training of a convolutional net-
work and a graphical model for HPE [15], and rapidly 
became the most commonly used coordinate representa-
tion. Most state-of-the-art methods [16–18] attempt to 
improve network architectures for heatmap regression.

There are several evaluation metrics for HPE, such as 
object keypoint similarity (OKS) [19], percentage of cor-
rect keypoints [20], average precision (AP), and average 
recall (AR).

Little research has been conducted on adversarial per-
turbations in HPE, particularly adversarial attacks on 
human-body keypoint detection. A recent study [21] 
evaluated the robustness of most existing HPE mod-
els using various data corruptions such as blur and pix-
elation. Jain et  al. [22] presented a study of adversarial 
attacks on HPE models and evaluated their robustness. 
Liu et  al. [23] provided solutions for adversarial attacks 

and defenses against human activity recognition. In addi-
tion, these studies [24–26] achieved good attack effects 
on the adversarial perturbations of the human skel-
eton from the perspective of human action recognition. 
Although most of the aforementioned studies demon-
strated that adversarial attacks are truly a threat to vision 
tasks based on HPE, their focus is not on imperceptible 
adversarial attacks on 2D HPE.

Methods
In this section, we briefly introduce the optimization 
problem for imperceptible adversarial attacks on HPE 
and provide a greedy algorithm for optimization.

The idea behind this is that imperceptible adversarial 
attacks can be alternatively optimized using two subopti-
mal problems: strength refinement and pixel selection. In 
perturbation strength refinement, we use iterative gradient 
methods such as FGSM to optimize the attack strength. 
Subsequently, we added a perturbation with an optimized 
strength to select pixels for the target images. However, 
pixel selection optimization is l0 norm optimization, and 
hence, NP-hard in general. Therefore, we propose a greedy-
based method to optimize which pixels to modify based on 
a sensitivity that is consistent with the human eye.

Figure  1 illustrates the pipeline of the proposed local 
imperceptible adversarial attack on HPE. Given a clean 
image, a PGD attack is performed to compute the pertur-
bation strength. Only the top k pixels based on our sensi-
tivity metric (a weighted sum of gradients and variances) 
can be selected for the next iteration of strength refine-
ment. Pixel selection and strength refinement were alter-
nately performed to complement each other. The entire 
attack process is iterative and converges to a predefined 
upper bound of the perturbed pixels.

Fig. 1 Overview of the proposed method. We frame local imperceptible adversarial attacks on HPE into two alternative optimizations. One 
is for perturbation strength refinement; the other is for critical pixel selection. Strength refinement is used for finding what strength to add, 
while pixel selection is used for finding which pixels to modify. The process is repeated until the iteration reaches the predefined value
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Problem formulation
The problem of interest is as follows: Let F(x; θ) be a heat-
map-based HPE model, where x ∈ X is the input image, 
and the output is keypoint heatmaps H = {h1, h2..., hn} for 
n human joint locations.

Given an image x, we aim to find a minimal set of pix-
els that can generate an adversarial image x′ to attack 
the network F(x; θ). We express the selection of pix-
els in x for perturbation by a binary indication vector 
a = [a1, ..., aN]T ∈ {0,1}N where ai is 1 if the ith pixel is 
selected, and 0 otherwise. Ht is the ground truth pose 
from the validation set. Suppose that δ = [δ1 ,... ,δN]T ∈ 
RN is the perturbation strength vector. In particular, a0 
refers to the initial status of the pixel selection, and x0 
refers to the clean image. The loss function for untar-
geted attacks can be expressed as

The process of generating the minimal perturbation on 
HPE can be formulated as

Where x0 represents the original input to the HPE, which 
is the input data without any perturbation,  a represents 
the perturbation term, δ denotes a set of parameters that 
restrict or control the perturbation a to ensure that the gen-
erated perturbation is minimal under certain constraints, η 
is a constant representing the maximum l0 norm distance 
between the input data x and the original input data x0.

However, it is well known that l0 norm optimization is 
generally notorious and NP-hard. Thus, we convert Eq. 
(2) into a constrained optimization problem using the 
maximum allowable attack form as follows:

We apply a first-order approximation:

Using a first-order approximation, we approximated 
the solution of Eq. (3) by decomposing it into two opti-
mization problems (strength refinement and pixel selec-
tion), that described in Eqs. (5) and (7).

(1)J (x, a, δ) = �F(x0 + a⊙ δ; θ)−Ht�
2

2

mina‖a‖0

(2)s.t. maxa,δ J (x, a, δ) and � x − x0� ∞ ≤ η

maxa,δJ (x, a, δ)

(3)s.t. �x − x0�∞ ≤ η, �a− a0�0 ≤ ζ

(4)

J (x, a, δ) = J (x0,+a⊙ δ, a0 +�a, δ0 +�δ) ≈ J (x0, a0, δ0)

+∇xJ (x0, a0, δ0) ·�x +∇aJ (x0, a0, δ0) ·�a = J (x0, a0, δ0)

+∇xJ (x0, a0, δ0) · a⊙ δ +∇aJ (x0, a0, δ0) ·�a

max�xJ (x0, a0, δ0)+ ∇xJ (x0, a0, δ0) ·�x

Similar to FGSM, the solution of Eq. (5) is given by

The a can be optimized subsequently using Eq. (7).

For Eq. (7), it is l0 norm constraint optimization. To 
solve this problem, we applied a greedy algorithm for 
optimization. Thus, the optimization of Eq. (3) can be 
solved using Eqs. (5) and (7) alternately as follows.

Sensitivity‑based pixel selection
To solve Eq. (7), an efficient greedy algorithm is intro-
duced to find pixels that modify and maintain impercep-
tibility. In particular, we ranked all pixels according to 
their sensitivities to the human eye and selected the less 
sensitive ones to be perturbed. The process is iterative 
and ceases when the number of selected pixels reaches ζ.

According to the observations of the contrast masking 
theory [27] in image processing, the human eye is usually 
more sensitive to pixel changes in low-variance areas than in 
high-variance areas [28]. Thus, we define a sensitivity that is 
consistent with that of the human eye using a weighted sum 
of gradients and variances, which is written as follows:

Where ∇i represents the gradient of the adversarial 
loss function ∇xJ(x, a, δ) at pixel i, σi

2 represents the vari-
ance of the pixel with its n × n neighborhood. a and b 
are hyperparameters used to tradeoff attack effectiveness 
and imperceptibility, respectively. g is a function that 
scales the variables to the normalized range of [0, 1].

The philosophy of tuning a and b reflects the trade-
off between attack effectiveness and imperceptibility. 
When b is zero, the sensitivity focuses on attack effec-
tiveness rather than invisibility. In contrast, increas-
ing the value of b can reduce human perceptibility but 
reduces effectiveness. We give users the freedom to 
tweak the tradeoff of output samples between attack 
effectiveness and imperceptibility.

It is worth noting that even when b = 0, the adversarial 
samples generated by our method maintained good per-
ceptual quality. This was because the selected number of 
pixels was sufficiently small. Taking an image resolution 
of 512 × 512 as an example, 10k pixels are finally selected, 
which means that less than 4% of all image pixels need to 

(5)s.t. ��x�∞ ≤ η

(6)
x = x0 + a⊙ δ = x0 + η · a⊙ sign(∇aJ (x0, a0, δ0))

max�aJ (x0, a0, δ0)+∇aJ (x0, a0, δ0) ·�a

(7)s.t. ��a�0 ≤ ζ

(8)GV i = a · g(|∇i|)+ b · g(σ 2
i )
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be perturbed. Additionally, the number of critical pixels 
was adapted to the resolution of the images. Pixel selec-
tion was implemented by ranking the sensitivity of the 
pixels and selecting the top k pixels.

Greedy‑based imperceptible adversarial attack 
via strength refinement and pixel selection
In this process, we select the top k pixels with a small 
sensitivity to perturbation and then add perturbations 
only to these pixels. We repeat the pixel selection and 
perturbation and output the final adversarial example.

For every iteration, we use the l1 norm regularized 
PGD method to attack the target human pose model, 
called strength refinement, which corresponds to Eq. (5). 
We solved this problem by using the iterative gradient 
method as the FGSM. Equation (1) can be rewritten as:

(9)
J x, x′ = LH x.x′ =

n

i=1
smoothL1(hi(x), hi x′ )

(10)δ = ǫ · sign(∇xLH )

where hi(x) is the predicted heatmap for the ith joint of 
the clean image x. hi(x′) is the predicted heatmap for the 
ith joint of the perturbed image x′. η is the perturbation 
constant. Then perturbation noise will be normalized 
into the range (−ϵ, ϵ), to further ensure the impercepti-
bility of the perturbation noise.

After strength refinement, we perform sensitivity-
based pixel selection to refine the attack pixels as pixel 
selection, which corresponds to Eq. (7). Our proposed 
critical pixel-based perturbation method is different 
from the traditional PGD method, which perturbs all 
the pixels in the image. Instead, this method focuses 
on choosing the critical pixels in an image that are 
most vulnerable to attacks and are invisible to the 
human eye.

We note that some networks resize the input image to 
a fixed size during training and inference, which degrades 
the attack effectiveness. In our case, we added perturba-
tions directly to the original images without changing the 
image size.

The steps of the greedy-based imperceptible attack 
via strength refinement and pixel selection are sum-
marized in Algorithm 1.

 

 Algorithm 1 Greedy-based local imperceptible adversarial attack



Page 6 of 11Liu et al. Visual Computing for Industry, Biomedicine, and Art            (2023) 6:22 

Results and discussion
Datasets and settings
Datasets
Extensive experiments were conducted using the MS 
COCO 2017 dataset [19]. The dataset contained 123287 
images, of which 118287 were used for training and 5000 
images were used for testing. The test set included 6352 
human instances. All images in our experiments had 512 
× 512 pixels.

Attack setup
All experiments were performed on an Intel CPU 
i7-11700 machine with 32 GB of RAM and a GeForce 
RTX 3060 GPU with 12 GB of memory under Ubuntu 
20.04. We set the neighborhood size n = 5 and other 
hyperparameters as follows: BIM: epoch = 10, eps = 16, ϵ 
= eps/200, ϵclip = eps/255; PGD: epoch = 10, eps = 16, ϵ = 
eps/200, ϵclip = eps/255, rand minmax = eps; C&W: c = 1, 
κ = 0, max iter = 100, learning rate = 0.04; Ours: epoch = 
10, eps = 160, ϵ = eps/200, ϵclip = eps/255.

Evaluation metric
The standard AP based on OKS, which is the same as 
that of COCO, was employed as the evaluation metric. 
The following metrics are reported: AP,  AP50,  AP75,  APM, 
 APL, AR,  AR50,  AR75,  ARM, and  ARL. We used the SSIM, 
PSNR, and LPIPS to evaluate the imperceptibility.

Baselines
We selected three state-of-the-art HPE methods as base-
lines: HigherHRNet [17], DEKR [18] and ViTPose [29]. 
For the model implementation, we directly used the 
release code and pretrained models from their official 
implementation websites.

Quantitative comparison of perturbed accuracy 
and imperceptibility
Tables 1, 2, and 3 present the precision and recall of dif-
ferent architectures and attack types on the MS COCO 
dataset, respectively. From the results, we can con-
clude that both BIM and PGD attacks cause the AP to 

Table 1 Perturbed performance comparisons of different attack types on the COCO validation set for HigherHRNet

AP50 is the AP at IOU = 0.5,  AP75 is the AP at IOU = 0.75,  APM is the AP for medium objects,  APL is the AP for large objects

AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

Clean 0.671 0.862 0.730 0.615 0.761 0.718 0.885 0.768 0.651 0.814

BIM 0.499 0.706 0.538 0.411 0.627 0.543 0.723 0.579 0.441 0.684

PGD 0.463 0.723 0.494 0.395 0.568 0.541 0.770 0.573 0.454 0.661

C&W 0.651 0.842 0.710 0.578 0.760 0.695 0.865 0.742 0.610 0.815

Ours 0.605 0.802 0.658 0.516 0.739 0.653 0.826 0.696 0.552 0.796

Table 2 Perturbed performance comparisons of different attack types on the COCO validation set for DEKR

AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

Clean 0.680 0.867 0.745 0.621 0.777 0.730 0.898 0.784 0.662 0.827

BIM 0.528 0.734 0.573 0.439 0.665 0.578 0.761 0.619 0.475 0.722

PGD 0.535 0.741 0.580 0.441 0.677 0.585 0.768 0.624 0.477 0.736

C&W 0.664 0.856 0.726 0.596 0.772 0.713 0.886 0.764 0.636 0.822

Ours 0.618 0.814 0.674 0.530 0.753 0.672 0.848 0.719 0.574 0.809

Table 3 Perturbed performance comparisons of different attack types on the COCO validation set for ViTPose

AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

Clean 0.693 0.835 0.757 0.631 0.788 0.732 0.860 0.787 0.661 0.834

BIM 0.444 0.613 0.475 0.357 0.566 0.512 0.665 0.545 0.405 0.661

PGD 0.445 0.613 0.473 0.355 0.571 0.515 0.669 0.546 0.406 0.665

C&W 0.633 0.795 0.690 0.578 0.716 0.684 0.827 0.734 0.616 0.782

Ours 0.620 0.800 0.675 0.542 0.734 0.670 0.824 0.718 0.582 0.794
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decrease significantly owing to their large perturbations. 
Consequently, they have worse imperceptibility (higher 
LPIPS, which means dissimilar) and degrade image 
quality with large noise (lower SSIM and PSNR, which 
means low quality; usually, SSIM is close to 1 and PSNR 
> 30 for high-quality images), as shown in Table 4. Our 
method was imperceptible and effective, reducing the 
precision of HigherHRNet to 60.5%, that of DEKR to 
61.8%, and that of ViTPose to 62.0%. C&W has excel-
lent imperceptibility but creates the weakest attacks, 
reducing the precision of HigherHRNet by 2%, DEKR by 
1.6%, and ViTPose by 6.0%. In addition to weak attack 
effectiveness, C&W is slow for regularization-based 
unconstrained optimization. From Table  4, we observe 
that our method is very close to C&W in terms of the 
SSIM, PSNR, and LPIPS. ViTPose is a more powerful 
state-of-the-art model based on a transformer architec-
ture. Unexpectedly, we found that earlier attack methods 
could effectively attack ViTPose. It is noteworthy that 
the values of SSIM, PSNR, and LPIPS on ViTPose are 
significantly different from the others because ViTPose 
has a different detection process from other networks 
by only detecting keypoints in cropped regions contain-
ing persons. Thus, we only added perturbation to the 
cropped person areas and computed the SSIM, PSNR, 
and LPIPS for these cropped images.

Ablation study
In this section, we study the effects of different loss func-
tions, selected pixel numbers, and tradeoff hyperparam-
eters. HigherHRNet was used as the baseline.

The results of the ablation study are presented in 
Tables  5, 6, 7, 8, 9 and 10. We can observe that (1) 
The adversarial loss function, based on the difference 
between the predicted and ground truth heat maps, 
provides the best attack results compared to other 
loss functions, such as the adversarial loss function. 
This result provides insight into crafting perturbations 
against keypoint regression networks; perturbing heat-
maps is more effective than manipulating MSE-based 
regression losses. These three loss functions achieved 
very close imperceptibilities. (2) The increment of 
selected pixels (from 0.38% to 38% of  5122 pixels) gradu-
ally increases attack effectiveness but decreases imper-
ceptibility, which also demonstrates the decent stability 
and flexibility of our local attack. (3) Parameters a and 
b provide a tradeoff between attack effectiveness and 
imperceptibility. a affects attack effectiveness, and b 
affects attack imperceptibility.

We further analyzed how parameters a and b contribute 
to attack effectiveness and imperceptibility. For example, if 
a = 0, our method selects pixels by focusing only on the 
imperceptibility. In contrast, if b = 0, our method selects 

pixels by considering only the perturbation ability. There-
fore, the worst perturbation performance was achieved 
for a = 1, b = 0, whereas the best perceptual attack was 
obtained for a = 0, b = 1 in terms of SSIM, PSNR, and 
LPIPS. Tweaking a and b can provide a reasonable trade-
off between attack effectiveness and imperceptibility. We 
leave finding a better tradeoff scheme for our future work.

Table 4 Imperceptibility of different attack types on HigherHRNet, DEKR and ViTPose

Metric 
Method
Baseline

HigherHRNet DEKR ViTPose

SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

BIM 0.559 23.993 0.469 0.575 24.137 0.478 0.883 16.810 0.137

PGD 0.559 23.993 0.469 0.574 24.198 0.468 0.882 16.792 0.137

C&W 0.934 31.148 0.090 0.934 31.165 0.089 0.919 17.928 0.107

Ours 0.928 31.299 0.118 0.924 31.293 0.130 0.935 22.775 0.095

Table 5 Ablation study of attack effectiveness in terms of loss functions used in our method

AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

Clean 0.671 0.862 0.730 0.615 0.761 0.718 0.885 0.768 0.651 0.814

Ours (+ heatmap loss) 0.605 0.802 0.658 0.516 0.739 0.653 0.826 0.696 0.552 0.796
Ours (+ joints-MSE loss) 0.632 0.825 0.690 0.552 0.752 0.676 0.849 0.721 0.583 0.807

Ours (+ joints-OHKM-MSE loss) 0.623 0.823 0.679 0.539 0.748 0.669 0.846 0.713 0.572 0.804

Table 6 Ablation study of attack imperceptibility in terms of loss 
functions used in our method

SSIM ↑ PSNR ↑ LPIPS ↓

Ours (+ heatmap loss) 0.928 31.299 0.118
Ours (+ joints-MSE loss) 0.949 31.388 0.096

Ours (+ joints-OHKM-MSE loss) 0.942 31.363 0.106
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Qualitative comparison of perturbed pose 
and imperceptibility
This section presents a few adversarial samples crafted 
using the proposed method and baselines. As shown 
in Fig.  2, we compared the imperceptibility and attack 
effectiveness of different attack methods. Our adver-
sarial attacks are local and imperceptible to humans and 
succeed in fooling HPE networks. Although C&W also 
exhibits good imperceptibility, its attacks are weak and 

overly smooth for the images. It is obvious that PGD has 
the strongest attack but the worst imperceptibility and 
obvious noise. This is because it assumes that the attack 
strength at every feature dimension is the same, and thus 
perturbs the entire image. Our local attacks only perturb 
regions with high variance, which is imperceptible to the 
human eye. We can see that the proposed locally imper-
ceptible adversarial attack maintains good visual quality 
for perturbed images without massive noise.

Discussion
However, the contradiction between attack effectiveness 
and imperceptibility can be further optimized using more 
semantic information and body joint features. In future 
work, we will further reduce the number of critical pixels 
by incorporating feature maps and the spatial relation-
ships of human-body keypoints.

An HPE attack is essentially a regression-based pertur-
bation method. Therefore, it cannot employ the approach 
used in classification attacks based on decision bounda-
ries. Instead, it relies solely on a loss function related to 
keypoint regression to conduct the attack. Our method 
operates primarily on pixels without considering seman-
tics. In future studies, we aim to incorporate specific action 
semantics to further enhance the perturbation technique.

Conclusions
Existing neural networks are vulnerable to adversarial 
attacks that pose a challenge to the safety of artificial 
intelligence applications. In this study, we investigated 

Table 7 Ablation study of attack effectiveness in terms of the number of selected pixels used in our method

AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

Clean 0.671 0.862 0.730 0.615 0.761 0.718 0.885 0.768 0.651 0.814

Ours (1000 pixels/0.38%) 0.645 0.834 0.701 0.569 0.759 0.690 0.860 0.737 0.603 0.812

Ours (5000 pixels/1.9%) 0.631 0.824 0.681 0.551 0.749 0.676 0.849 0.719 0.584 0.805

Ours (10000 pixels/3.8%) 0.605 0.802 0.658 0.516 0.739 0.653 0.826 0.696 0.552 0.796

Ours (20000 pixels/7.6%) 0.598 0.793 0.645 0.509 0.731 0.644 0.815 0.681 0.542 0.787

Ours (100000 pixels/38%) 0.537 0.735 0.579 0.441 0.675 0.581 0.755 0.618 0.472 0.732

Table 8 Ablation study of attack imperceptibility in terms of the 
number of selected pixels used in our method

SSIM ↑ PSNR ↑ LPIPS ↓

Ours (1000 pixels/0.38%) 0.950 32.245 0.093
Ours (5000 pixels/1.9%) 0.946 31.343 0.108

Ours (10000 pixels/3.8%) 0.928 31.299 0.118

Ours (2000 pixels/7.6%) 0.893 30.508 0.170

Ours (100000 pixels/38%) 0.754 27.162 0.313

Table 9 Ablation study of attack effectiveness in terms of hyperparameters used in our method

AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

Clean 0.671 0.862 0.730 0.615 0.761 0.718 0.885 0.768 0.651 0.814

Ours (a = 1, b = 0) 0.605 0.802 0.658 0.516 0.739 0.653 0.826 0.696 0.552 0.796
Ours (a = 1, b = 0.5) 0.615 0.813 0.669 0.530 0.742 0.660 0.834 0.705 0.562 0.798

Ours (a = 1, b = 1) 0.639 0.833 0.698 0.562 0.761 0.692 0.866 0.741 0.606 0.814

Ours (a = 0.5, b = 1) 0.636 0.832 0.690 0.553 0.755 0.679 0.852 0.724 0.586 0.809

Ours (a = 0, b = 1) 0.642 0.834 0.700 0.563 0.759 0.686 0.857 0.732 0.596 0.811

Table 10 Ablation study of attack imperceptibility in terms of 
hyperparameters used in our method

SSIM ↑ PSNR ↑ LPIPS ↓

Ours (a = 1, b = 0) 0.928 31.299 0.118

Ours (a = 1, b = 0.5) 0.932 31.302 0.127

Ours (a = 1, b = 1) 0.946 31.343 0.108

Ours (a = 0.5, b = 1) 0.950 31.364 0.099

Ours (a = 0, b = 1) 0.950 31.376 0.097
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the vulnerabilities of HPE networks and provided an 
imperceptible adversarial attack against mainstream 
HPE models. It is generally recognized that attack effec-
tiveness and imperceptibility contradict each other. We 
optimized this dilemma from both perspectives: theo-
retical analysis and practical solutions. We formulated 
the proposed imperceptible attack on HPE networks as 
a constrained optimization problem using the maximum 
allowable attack form. This optimization problem can 
be solved using two alternating suboptimal processes. 

The first process determines how to refine the pertur-
bation strength, and the second process determines 
how to select the perturbed pixels. Experimental results 
demonstrate that the proposed method achieves excel-
lent imperceptibility while maintaining sufficient attack 
effectiveness.

However, our method does not consider the spatial rela-
tionship between feature maps and human-body keypoints. 
The number of perturbed pixels in the attack is relatively 
high, and the attack cannot target the physical space.

Fig. 2 Comparing perturbation crafted by PGD, C&W and ours in various scenarios on HigherHRNet. Adversarial examples of our method are locally 
perturbed and able to truly maintain imperceptibility. In all cases, PGD and ours can fool HigherHRNet to predict incorrect poses or even to fail 
in detecting human joints, while C&W cannot always succeed. First column: human poses predicted on clean data. Second column: human poses 
attacked by PGD. Third column: human poses attacked by C&W. Fourth column: human poses attacked by our method
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