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Abstract 

Although prognostic prediction of nasopharyngeal carcinoma (NPC) remains a pivotal research area, the role 
of dynamic contrast-enhanced magnetic resonance (DCE-MR) has been less explored. This study aimed to investigate 
the role of DCR-MR in predicting progression-free survival (PFS) in patients with NPC using magnetic resonance (MR)- 
and DCE-MR-based radiomic models. A total of 434 patients with two MR scanning sequences were included. The 
MR- and DCE-MR-based radiomics models were developed based on 289 patients with only MR scanning sequences 
and 145 patients with four additional pharmacokinetic parameters (volume fraction of extravascular extracellular 
space (ve), volume fraction of plasma space (vp), volume transfer constant (Ktrans), and reverse reflux rate constant 
(kep) of DCE-MR. A combined model integrating MR and DCE-MR was constructed. Utilizing methods such as correla-
tion analysis, least absolute shrinkage and selection operator regression, and multivariate Cox proportional hazards 
regression, we built the radiomics models. Finally, we calculated the net reclassification index and C-index to evaluate 
and compare the prognostic performance of the radiomics models. Kaplan-Meier survival curve analysis was per-
formed to investigate the model’s ability to stratify risk in patients with NPC. The integration of MR and DCE-MR 
radiomic features significantly enhanced prognostic prediction performance compared to MR- and DCE-MR-based 
models, evidenced by a test set C-index of 0.808 vs 0.729 and 0.731, respectively. The combined radiomics model 
improved net reclassification by 22.9%–52.6% and could significantly stratify the risk levels of patients with NPC 
(p = 0.036). Furthermore, the MR-based radiomic feature maps achieved similar results to the DCE-MR pharmacoki-
netic parameters in terms of reflecting the underlying angiogenesis information in NPC. Compared to conventional 
MR-based radiomics models, the combined radiomics model integrating MR and DCE-MR showed promising results 
in delivering more accurate prognostic predictions and provided more clinical benefits in quantifying and monitoring 
phenotypic changes associated with NPC prognosis.
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Introduction
As an endemic common malignancy, nasopharyngeal 
carcinoma (NPC) ranks first among head and neck malig-
nant tumors with an incidence rate of 3.0 per 100000 
individuals in Southeast Asia [1]. Radiotherapy-based 
comprehensive treatment is regarded as the standard 
strategy for NPC. Although the prognosis has consid-
erably improved with the popularization of intensity-
modulated radiotherapy in the past decades, the 5-year 
survival rate remains approximately 60% in patients with 
locoregional advanced NPC [2]. The lack of responses to 
therapy, recurrence, and distant metastasis are the main 
causes of poor prognosis in NPC [3]. Pretreatment iden-
tification of adverse events is thus important to make 
individualized treatment decisions. In current clinical 
practice, tumor therapeutic response is only evaluated 
using RECIST (one-dimensional descriptors) or WHO 
(two-dimensional descriptors) criteria [4]. These cri-
teria have significant potential in indicating therapeu-
tic response but often fail to predict progression-free 
survival (PFS). The most commonly used benchmark 
for prognostic estimation of NPC is the tumor-node-
metastasis (TNM) staging system. However, patients 
with similar treatment regimens or at the same stage can 
show large variations in clinical outcomes [5]. Thus, the 
present TNM staging system may not provide adequate 
prognostic information to comprehensively express the 
biological heterogeneity of NPC [6].

Magnetic resonance (MR) imaging plays an important 
role in NPC detection and staging. The excellent soft-
contrast resolution of conventional MR can reveal the 
morphological features. Dynamic contrast-enhanced MR 
(DCE-MR) is an MR perfusion technique that consists of 
a series of rapid contrast-enhanced T1-weighted (CET1-
w) acquisitions of serial MR images with high temporal 
resolution before and after the administration of clini-
cally available contrast agents (i.e., gadolinium chelates). 
These contrast agents alter the signal intensity in the 
target tissues, which is proportional to their concentra-
tion. During analysis, signal intensities are converted into 
concentration curves, provided that a pre-contrast relax-
ation map is obtained and the relationship between sig-
nal intensity and concentration is known for the specific 
MR sequence used. With appropriate modeling, quan-
titative analysis allows for the inference of blood flow, 
blood volume, and vascular permeability, in addition to 
the morphological tumor characteristics used in clinical 
practice. The pharmacokinetic parameters of DCE-MR, 
such as volume fraction of extravascular extracellular 
space (ve), volume fraction of plasma space (vp), volume 
transfer constant (Ktrans), and reverse reflux rate con-
stant (kep), can potentially reflect angiogenesis and tumor 
aggressiveness [7]. Until now, many studies have utilized 

DCE-MR to predict therapeutic response or prognosis in 
patients with NPC [8–10]. However, the concentration of 
the contrast agent in the vessel and the variability of arte-
rial input function (AIF) have been considered the main 
reasons for the low dependability of DCE-MR [11–13].

Radiomics is a popular medical image analysis tech-
nique that involves image processing, feature engineer-
ing, and deep learning algorithms, which can extract 
features related to lesion shape, statistics, and texture and 
construct a mathematical model associated with clinical 
events [14–17]. In recent years, radiomics has signifi-
cantly assisted clinicians in the early diagnosis, determi-
nation of treatment plans, and prognostic assessment of 
NPC [18–22]. Due to its fast speed, accurate calculation, 
and noninvasiveness, radiomics presents immense pros-
pects for development. However, some unresolved issues, 
such as interpretability, are becoming serious obstacles. 
In most deep learning models, class activation mapping 
(CAM)-based methods [23, 24] can be used to generate 
visual explanation maps. However, for feature engineer-
ing-based radiomics models, the algorithm for generat-
ing radiomics feature maps still needs to be improved to 
present noteworthy regions inside the tumor. In previous 
radiomics studies, most of the predefined radiomic fea-
tures tended to be calculated based on the global region 
of interest (ROI), while the visual representation of these 
features requires individual calculations from each local 
image patch and then overlaying the feature values   of all 
patches onto the ROI [25]. Therefore, the image patch 
size may significantly affect the visual representation 
of radiomic features. The statistical calculation of radi-
omic features tends to be more accurate when a larger 
local image patch is selected; however, the resolution of 
the visualized image may be reduced accordingly. There 
is a compromise between accurate feature extraction 
and precise information localization, which restricts the 
patch size and step size settings.

Radiomics can help evaluate tumor heterogeneity and 
the microenvironment, and thus lead to the identifica-
tion of novel predictors of prognosis [26, 27]. Radiomic 
analysis based on multiparametric MR has been suc-
cessfully performed to predict individual PFS in patients 
with advanced NPC [28, 29]. Moreover, the radiomic fea-
tures derived from MR images are useful for predicting 
the treatment response to chemoradiotherapy [30] and 
induction chemotherapy [31, 32] in patients with NPC. 
However, most previous studies have focused on con-
ventional MR sequences. Recent studies have revealed 
that DCE-MR-based radiomics are more efficient than 
conventional MR sequences in predicting prognosis and 
evaluating treatment responses in malignant gliomas 
[33], breast cancer [34], and rectal cancer [35]. In addi-
tion, the prognostic predictive performance of MR-based 
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radiomics models has been reported to outperform tra-
ditional clinical models in previous radiomics studies 
[36–38]. In this study, we developed a radiomics model 
by combining MR and DCE-MR imaging features to pre-
dict PFS and assessed its incremental value in MR- and 
DCE-MR-based radiomics models. To test our hypoth-
esis that MR-based radiomics features contain prognostic 
information related to the underlying angiogenesis and 
pharmacokinetic information, we further visualized MR-
based radiomics feature maps on DCE-MR images.

Methods
This study was approved by the Institutional Review 
Board of Hainan General Hospital, which waived the 
requirement for written informed consent. The overall 
workflow includes patient enrollment, segmentation for 

MR and DCE-MR images, radiomics feature extraction, 
radiomics model construction and assessment, as shown 
by the flowchart in Fig.  1. The open source PyRadiom-
ics platform (version 3.0.1) was used in this study, which 
adheres to the image biomarker standardization initiative 
protocol.

Study population
This study enrolled patients with NPC from Decem-
ber 2014 to January 2021, and the inclusion and exclu-
sion criteria can be found in Supplementary Methods 
1. As shown in Fig.  2, we first divided the patients into 
two cohorts based on whether they had correspond-
ing DCE-MR images: the cohort with only MR images 
(n = 289) was allocated to an MR training set and an MR 
test set at a ratio of 7:3. Another cohort with both MR 

Fig. 1 Study layout. The MR based and DCE-MR based prognostic prediction models were constructed after image acquisition, feature extraction, 
and feature selection. The models were then assessed by C-index, Kaplan-Meier survival curve analysis, and NRI. Finally, four DCE-MR parameters 
and the radiomics feature map of MR based model were shown and analyzed
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and DCE-MR images (n = 145) was allocated to a mul-
timodality training set and a multimodality test set. An 
MR-based model was built on the MR training set and 
evaluated on the MR test set, and a DCE-MR-based 
model was built on the multimodality training set and 
evaluated on the multimodality test set. Because the 
multi-modality training and test sets contained not only 
DCE-MR images but also MR images, a combined model 
integrating the MR-based model and DCE-MR features 
was constructed and evaluated on these two sets.

Acquisition and segmentation for MR and DCE‑MR
MR examinations were conducted using a 3.0 T MR sys-
tem (Siemens Skyra, Erlangen, Germany) with a 20-chan-
nel head/neck coil. The detailed protocol can be found in 
Supplementary Methods 2. The pharmacokinetic param-
eters (ve, vp, Ktrans, and kep) of DCE-MR were estimated 
using the extended Tofts’ linear model, with the intracra-
nial internal carotid artery serving as the AIF. The three-
dimensional ROIs of the primary lesions were manually 
delineated on proton density-weighted (PD-w) images, 
CET1-w images, and DCE-MR images slice-by-slice 
using ITK-SNAP (version 3.6.0, http:// www. itksn ap. org). 
The segmented ROIs were created by a junior radiologist 
(G.D. with 3-year experience) and further checked by a 

senior radiologist (W.H. with 12-year experience), both 
of whom had no access to patients’ clinical information.

Clinical endpoint and follow‑up
Patients were assessed by MR examination every 
3  months for the first 24  months, and then every 
6 months. The endpoint of our study was PFS, which was 
defined as the time from the initial treatment to the first 
recurrence of the disease, death caused by NPC, or the 
latest follow-up visit, whichever occurred first. Disease 
progression was identified using pathological biopsy and/
or imaging methods.

Image pre‑processing and radiomics feature extraction
Based on the open-source PyRadiomics platform (version 
3.0.1), we extracted three types of radiomics features for 
MR and DCE-MR images, including shape, first-order 
statistics, and texture features [39]. The shape features 
were only calculated on the original images (i.e., tumor 
ROIs). The texture features and first-order statistical fea-
tures were also extracted from the derived images using 
filters. Because the MR signal is relative, with substantial 
differences between scanners and vendors, we normal-
ized the image before the matrix-based texture feature 
calculation to reduce the confounding effect. Here, we 

Fig. 2 Patient recruitment flowchart. A total of 434 patients were included in this study. The patients were then divided into two cohorts based 
on the presence or absence of DCE-MR images. The MR cohort with only MR images was randomly divided into an MR training set and test set 
at a ratio of 7:3. In addition, the multi-modality cohort with both MR and DCE-MR images was randomly allocated to a multi-modality training set 
and test set at a ratio of 7:3 as well. The MR cohort shown in the gray box and the multi-modality cohort in blue box constituted the whole dataset 
of this study

http://www.itksnap.org
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performed gray-value discretization using the window 
width of the five MR intensity values. The details of radi-
omics feature engineering can be found in Supplemen-
tary Methods 3.

Construction and evaluation of MR based radiomics 
models
To identify a subset of features associated with PFS, we 
employed the least absolute shrinkage and selection 
operator (LASSO) method for radiomics feature selec-
tion on the MR training set using the ‘glmnet’ package 
in the R language. The selection of the λ parameter was 
performed based on tenfold cross-validation and the 
minimum error criterion. We then conducted backward 
feature elimination based on the p values in multivari-
ate regression analysis. Finally, a multivariate Cox pro-
portional hazards (CPH) regression model was used to 
build the radiomics model by fitting the aforementioned 
radiomic features. To address the issue of multicollinear-
ity, we employed a variance inflation factor (VIF) func-
tion (‘car’ package in R language) to assess the presence 
of multicollinearity among all the feature considered in 
this study. Specifically, a VIF exceeding 5 was consid-
ered an indicator of multicollinearity. In this study, three 
MR-based radiomics models were constructed for PD-w 
images, CET1-w images, and their combinations (multi-
sequence MR images). The model with the best prog-
nostic prediction performance was selected for further 
comparison.

C-index was calculated to assess the prognostic perfor-
mance of each model. In addition, Kaplan-Meier survival 
analysis was performed to investigate the ability of each 
model in risk stratification of patients with NPC, and a 
log-rank test was conducted to determine the statistical 
differences between the two risk groups.

Construction and evaluation of DCE‑MR based radiomics 
models
In the multi-modality training set, five DCE-MR-based 
radiomics models were constructed using images of four 
DCE-MR parameters (ve, vp, Ktran, and kep) and their com-
bination (multi-parameter DCE-MR-based model), fol-
lowing the same procedure as the MR-based radiomics 
models. In the construction of the multiparameter DCE-
MR-based model, given the substantial interrelation 
among the numerous features in our original dataset, we 
initially employed Pearson correlation analysis to elimi-
nate redundant features. Following this, consistent with 
the construction of MR-based models, we sequentially 
implemented LASSO regression and backward feature 
elimination for additional feature dimensionality reduc-
tion. Finally, the CPH regression was used to construct a 
survival analysis model. In Pearson correlation analysis, 

we quantified the degree of similarity between pairwise 
features. Features that displayed a correlation coefficient 
exceeding 0.8 were deemed to have significant similarity. 
In these instances, one feature was arbitrarily excluded, 
thereby mitigating the covariance between features to a 
certain degree. DCE-MR-based radiomics models were 
evaluated using the same methods as the MR-based radi-
omics models in multimodality training and test sets.

Combined model based on MR and DCE‑MR
To explore whether the DCE-MR radiomic features 
could improve the performance of the MR-based radi-
omics model, a combined model was constructed in a 
multimodality training set by integrating the DCE-MR 
radiomic features and an optimal MR-based radiomics 
model. Pearson’s correlation analysis was first performed 
to eliminate redundant DCE-MR radiomic features. To 
ensure that the DCE-MR-based model captured tumor 
information divergent from the MR-based model, fea-
tures highly correlated (Pearson correlation analysis) 
with the MR-based radiomics model were eliminated. 
This refinement ensures an enhanced performance upon 
the fusion of both models. Finally, we incorporated the 
remaining DCE-MR radiomics features and MR-based 
radiomics model predictions and adopted LASSO regres-
sion and backward feature elimination to determine the 
PFS-related feature subset. Similarly, a multivariate CPH 
regression model was used to construct a combined 
model.

We calculated the C-index and conducted Kaplan-
Meier survival curve analysis to evaluate the prognostic 
performance and risk stratification ability of the com-
bined model in the DCE-MR test set. Additionally, the 
net reclassification index (NRI) was calculated to quan-
tify the relative improvement of the combined model in 
prognostic prediction compared with the MR- and DCE-
MR-based radiomics models.

MR based radiomics feature map
To extract features of the tumor ROIs more accurately, 
as well as to maintain a high resolution of the feature 
map, a sliding window algorithm with a larger window 
width (patch size) and a smaller step size was applied to 
calculate the radiomic features of image patches pixel 
by pixel. A larger window width (patch size) improves 
the accuracy of feature computation. However, a 
smaller step size (1 in this study) allows us to generate 
the final feature map with a higher image resolution. In 
this study, the length of the shortest edge of the outer 
rectangles of the tumor ROIs was 21. Consequently, 
the window size should be smaller than 21 to ensure 
that radiomic features are extracted from the inside 
area of the tumor. In addition, to obtain a relatively 
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large window width such that the extracted informa-
tion could be more accurate, the window width was set 
to 21. It is worth highlighting that there is a compro-
mise between too small a window size, which leads to 
inaccurate feature calculation, and too large a window 
size, which leads to excessive aggregation of informa-
tion. Owing to the limitations of the tumor ROI size in 
this study, the optimal window size in practice needs 
to be investigated in more detail in future studies. Fea-
ture extraction was performed at the image patch level, 
and the feature values were concatenated according 
to the patch coordinates to form a feature matrix. We 
then overlaid the feature matrix onto the ROI of the 
MR images of PD-w/CET1-w to generate an MR-based 

radiomics feature map. A more detailed generation 
process for the MR-based radiomics feature map is pro-
vided in Supplementary Methods 4.

Results
Patient characteristics and clinical outcomes
A total of 443 consecutive patients newly diagnosed with 
NPC were enrolled, and 434 patients were included after 
verifying the exclusion criteria. The mean age was 49.13 
± 11.56 years. The median PFS was 27  months (range, 
3–75 months). During follow-up, 70 patients showed dis-
ease progression. The patient characteristics in the MR 
and multimodality cohorts are summarized in Table 1.

Table 1 Patient characteristics in MR and multi-modality cohorts

Independent-sample t-test was applied for continuous variables, and χ2 test was applied for categorical variables. No significant differences were found between 
the MR and multi-modality cohorts in terms of sex, age, T stage, and N stage (p = 0.315–0.987). The M stage, overall stage, and follow-up time differed significantly 
between the two cohorts (p = 2.96 ×  10–4, 0.015, and 2.20 ×  10–16, respectively). IQR interquartile range

Characteristic MR cohort Multi‑modality cohort

Training set (n = 202) Test set (n = 87) Training set (n = 102) Test set (n = 43)

Sex

 Male 144 (71.3%) 65 (74.7%) 75 (73.5%) 29 (67.4%)

 Female 58 (28.7%) 22 (25.3%) 27 (26.5%) 14 (32.6%)

Age

 Median (IQR) 48 (41–56) 49 (40–57) 49 (42–57) 51 (40–57)

 ≤ 40 50 (24.8%) 23 (26.4%) 19 (18.6%) 12 (27.9%)

 40–50 67 (33.2%) 48 (55.2%) 63 (61.8%) 25 (58.1%)

 > 50 85 (42%) 16 (18.4%) 20 (19.6%) 6 (14.0%)

T stage

 T1 7 (3.5%) 1 (1.2%) 3 (2.9%) 0 (0.0%)

 T2 54 (26.7%) 32 (36.8%) 29 (28.4%) 6 (14.0%)

 T3 84 (41.6%) 25 (28.7%) 48 (47.1%) 20 (46.5%)

 T4 57 (28.2%) 29 (33.3%) 22 (21.6%) 17 (39.5%)

N stage

 N0 12 (5.9%) 6 (6.9%) 8 (7.8%) 1 (2.3%)

 N1 49 (24.3%) 23 (26.4%) 28 (27.5%) 8 (18.6%)

 N2 106 (52.5%) 47 (54.0%) 48 (47.1%) 19 (44.2%)

 N3 35 (17.3%) 11 (12.7%) 18 (17.6%) 15 (34.9%)

M stage

 M0 199 (98.5%) 84 (96.6%) 100 (98.0%) 42 (97.7%)

 M1 3 (1.5%) 3 (3.4%) 2 (2.0%) 1 (2.3%)

Overall stage

 I 2 (1.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

 II 18 (8.9%) 14 (16.1%) 11 (10.8%) 1 (2.3%)

 III 93 (46.0%) 32 (36.8%) 57 (55.9%) 19 (44.2%)

 IV 86 (42.6%) 37 (42.5%) 34 (33.3%) 23 (53.5%)

 V 3 (1.5%) 4 (4.6%) 0 (0.0%) 0 (0.0%)

Follow-up time (mo)

 Median (IQR) 49 (23–61) 55 (34–63) 11 (7–17) 10 (6–19)
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Construction and evaluation of MR based radiomics 
models
After data cleaning (deleting features with missing or 
repetitive values), 1681 and 1678 radiomic features were 
calculated based on the PD-w and CET1-w sequences, 
respectively. Two and four features were selected for 
the PD-w and CET1-w sequences, respectively, using 
LASSO-Cox regression. In addition, from the combi-
nation of features of the PD-w and CET1-w sequences, 
four radiomic features were screened out with significant 
multivariate regression coefficients (p < 0.05), including 
wavelet-LHL_glszm_LAHGLE and lbp_firstorder_Vari-
ance from the PD-w sequence, as well as wavelet-HHH_
glszm_LAHGLE and squareroot_firstorder_RMAD from 
the CET1-w sequence. Finally, the PD-w-, CET1-w-, and 
multi-sequence MR-based radiomics models were con-
structed by fitting the selected features using multivariate 
CPH regression.

For the PD-w- and CET1-w-based radiomics mod-
els, the C-indices were 0.657 (95%CI: 0.549–0.765) and 
0.664 (95% CI: 0.540–0.789) on the MR test set and 0.687 
(95%CI: 0.582–0.791) and 0.626 (95%CI: 0.482–0.770) 
on the multi-modality test set, respectively. The multi-
sequence MR-based radiomics model demonstrated the 
best prognostic prediction performance among the MR-
based models, with a C-index of 0.729 (95%CI: 0.611–
0.847) on the MR test set and 0.702 (95%CI: 0.547–0.857) 

on the multi-modality test set. On the MR training and 
test sets, all three MR-based models performed well in 
the risk stratification of NPC, with statistical signifi-
cance (log-rank test, p < 0.05). The multi-sequence MR 
based radiomics model achieved superior risk stratifi-
cation ability among the three MR-based models. The 
Kaplan-Meier survival curves of the multi-sequence 
MR-based radiomics model are shown in Fig. 3. We used 
the median output values of the radiomics model in the 
training set as a cutoff to stratify patients into high- and 
low-risk groups.

Construction and evaluation of DCE‑MR based radiomics 
models
We extracted 1392, 1395, 1391, and 1394 radiomic fea-
tures from the images of the four pharmacokinetic 
parameters (ve, vp, Ktrans, and kep). Similar to the feature 
selection and model construction processes of the PD-w- 
and CET1-w-based radiomics models, five, four, four, and 
six features were selected for ve, vp, Ktrans, and kep based 
models, respectively. Four DCE-MR parameter-based 
models were constructed. To construct the multiparam-
eter DCE-MR-based radiomics model, three features 
extracted from Ktrans, ve, and vp were determined using 
Pearson correlation analysis and LASSO regression.

Five DCE-MR-based models were evaluated in the 
multi-modality test set, with a C-index of 0.654 (95%CI: 

Fig. 3 Kaplan-Meier survival curve analysis of multi-sequence MR based radiomics model on MR cohort. Kaplan-Meier survival curves 
of multi-sequence MR based radiomics model on (a) MR training set and (b) MR test set. A p value < 0.05 was used to determine 
whether the difference was statistically significant between the low- and high-risk groups
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0.493–0.815) for Ktrans based model, 0.606 (95%CI: 
0.378–0.834) for ve based model, 0.587 (95%CI: 0.337–
0.836) for vp based model, 0.644 (95%CI: 0.458–0.830) for 
kep based model, and 0.731 (95%CI: 0.595–0.867) for the 
multi-parameter DCE-MR based model. Of the five mod-
els compared, the multi-parameter DCE-MR-based radi-
omics model achieved the highest C-index but still failed 
to significantly risk stratify NPC in the Kaplan-Meier 
survival curve analysis (p = 0.08).

Construction and evaluation of combined radiomics model
We constructed a combined model by integrating the 
radiomic features of DCE-MRI and a multi-sequence 
MR-based radiomics model. After Pearson correla-
tion analysis and LASSO regression, five features were 
selected: two texture features extracted from Ktrans 
(maximal correlation coefficient and gray level non-uni-
formity normalized, abbreviated as MCC and GLNN), 
two texture features extracted from kep (complexity and 
large dependence high gray level emphasis, abbreviated 
as complexity and LDHGLE), and the prediction of the 
MR-based radiomics model. The detailed feature selec-
tion flow and LASSO-CV regression process are shown 
in Supplementary Methods 3.5 and 3.6, respectively. 
By calculating the VIF, it was observed that all features 
had a VIF value below 5. The range of VIF values for 
the combined model and other models can be found in 
Supplementary Methods 3.7. This finding demonstrates 
that the constructed radiomics regression model is sta-
ble and is not significantly affected by high multicollin-
earity among the features. The C-index of the combined 
radiomics model achieved 0.812 (95%CI: 0.620–0.989) 
on the multi-modality training set, and 0.808 (95%CI: 
0.691–0.924) on the multi-modality test set. As shown 
in Table  2, the combined radiomics model showed a 
statistically significant improvement in prognostic per-
formance compared with all DCE-MRI- and MR-based 
models (p < 0.05). Kaplan-Meier survival analysis (Fig. 4c 
and d) demonstrated that the combined radiomics model 
could significantly stratify the risk of NPC in the multi-
modality training set (p = 0.028) and multi-modality test 
set (p = 0.036). To verify the robustness of our combined 
model across different age groups, sexes, T stages, and N 
stages, we performed subgroup analyses of these clinical 
parameters. The outcomes highlight the consistent per-
formance of the combined model across these subgroups, 
with C-index values ranging from 0.779 to 0.810; no sig-
nificant differences were observed between the differ-
ent subgroups. Finally, we quantified the improvement 
of the combined radiomics model in prognostic predic-
tion by computing the NRI, where the NRI achieved 
0.526 (combined model vs multi-sequence MR-based 
model, 95% CI: 0.265–0.706) and 0.229 (combined model 

vs multi-parameter DCE-MR-based model, 95%CI: 
0.134–0.579).

MR based radiomics feature map
As shown in Fig. 5, a 41-year-old male patient with stage 
IV NPC (case 1) was confirmed to have metastasis at 
3 months, and a 57-year-old male patient with stage IV 
NPC (case 2) did not experience any disease progres-
sion after treatment at 21  months. The tumor in case 1 
showed a more obvious enhancement on CET1-w images 
and was more heterogeneous on PD-w images than that 
in case 2. DCE maps showed a similar tendency, with a 
poor prognosis case having higher perfusion and more 
heterogeneity in the tumor area. These characteristics 
were visualized to some extent using MR-based radiom-
ics feature maps, particularly first-order feature maps 
(i.e., feature maps of lbp_firstorder_Variance in the 
PD-w sequence and squareroot_firstorder_RMAD in the 
CET1-w sequence). MR-based radiomics feature maps 
have the potential to be novel tools for visualizing tumor 
perfusion and heterogeneity. However, MR-based radi-
omics feature maps cannot reflect all the angiogenesis 
information of DCE-MR within tumors, which may also 
explain why DCE-MR features could help improve the 
performance of MR-based radiomics models in prognos-
tic prediction.

Discussion
The combined radiomics model established in this 
study outperformed the MR based radiomics models 
as well as DCE-MR based radiomics models in prog-
nosis prediction. This is primarily because angiogenesis 
information within tumors in DCE-MR complements 
MR-based radiomic features. In conventional MR-
based radiomics, the models generated from the com-
bination of PD-w and CET1-w images demonstrated 

Table 2 Performance of radiomics models on multi-modality 
test set

CI confidence interval, p < 0.05, significant differences in C-indices between the 
combined model and MR/DCE-MR-based models

Model C‑index (95%CI) p

MR based PD-w 0.687 (0.582–0.791) 0.022

CET1-w 0.626 (0.482–0.770) 0.032

Multi-sequence MR 0.702 (0.547–0.857) 0.030

DCE-MR based Ktrans 0.654 (0.493–0.815) 0.002

kep 0.644 (0.458–0.830) 0.013

ve 0.606 (0.378–0.834) 0.030

vp 0.587 (0.337–0.836) 0.027

Multi-parameter DCE-MR 0.731 (0.595–0.867) 0.043

MR and DCE-MR Combined 0.808 (0.691–0.924) -
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better prognostic performance than the model from 
either PD-w or CET1-w alone, and all MR-based radi-
omics models could significantly stratify the risk 
levels of patients with NPC. In addition, in DCE-MR-
based radiomics models, the joint analysis of multiple 
parameters enhanced the efficiency compared to any 
single parameter model but was still unable to achieve 

significant risk stratification in patients with NPC. Fur-
thermore, a high-resolution radiomics feature map was 
constructed to visualize and interpret the MR-based 
radiomic features, indicating that the MR-based radi-
omic features contained strong prognostic informa-
tion, which might be interpreted using the underlying 
pharmacokinetic information quantitated by DCE-MR. 

Fig. 4 Kaplan-Meier survival curve analysis of DCE-MR based radiomics model and the combined radiomics model on multi-modality cohort. 
Kaplan-Meier survival curves of multi-parameter DCE-MR based radiomics model on (a) multi-modality training set and (b) multi-modality test 
set; and the combined radiomics model on (c) multi-modality training set and (d) multi-modality test set. A p value < 0.05 was used to determine 
whether the difference was statistically significant between the low- and high-risk groups
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Radiomic feature maps have the potential to visualize 
NPC prognosis to some extent.

Compared to traditional methods, radiomics pro-
vides a new train of thought for the potential asso-
ciations between tumor angiogenesis and biological 
behaviors from a powerful and noninvasive perspective. 
Similar conclusions were reported in our previous study 
on advanced NPCs [29]. Only CET1-w and PD-w images 
were used to construct our radiomics models. Both the 
CET1-w and PD-w single-sequence models showed relia-
ble capability in evaluating PFS, with the PD-w sequence 
model performing better. Their combination yielded sig-
nificantly improved efficiency by integrating the morpho-
logical and functional features that affect the biological 
behavior of tumors. These results were similar to the 
naked-eye experience of radiologists in clinical prac-
tice. Unlike other tumors, the T staging of NPC mainly 
depends on the accurate tumor boundary information 

provided by the PD-w rather than the CET1-w sequence. 
However, CET1-w images can capture flow and hetero-
geneity information using a contrast agent, which helps 
solve the problem in which the signal of the tumor invad-
ing the nasopharynx muscle on PD-w images looks simi-
lar to that of inflammatory edema.

DCE-MR, as a non-invasive imaging modality, shows 
potential in reflecting blood volume, blood flow, and 
vascular permeability [40]. In Malamas et al.’s [41] study, 
significant reductions in tumor blood flow, vascularity 
permeability, and plasma volume fraction were observed 
on DCE-MR in colon tumors. Our previous study also 
indicated significant correlations of DCE-MR pharma-
cokinetic parameters with EGFR and Ki-67 expression 
levels in NPC patients [7]. Thus, DCE-MR can detect 
tumor angiogenesis and heterogeneity by quantifying 
pharmacokinetic parameters, so as to realize non-inva-
sive treatment monitoring and predict prognosis [8, 10, 

Fig. 5 Typical examples of poor prognosis and good prognosis. Each case provides 10 subgraphs, including 2 MR images, 4 radiomics feature maps 
and 4 DCE-MR parameter images. The name of each subgraph is marked below itself



Page 11 of 14Li et al. Visual Computing for Industry, Biomedicine, and Art            (2023) 6:23  

42]. Our results revealed that the MR based radiomics 
model demonstrated better performance in risk strati-
fication in patients with NPC than the DCE-MR based 
radiomics model. This may be because fast dynamic 
enhancement sequences achieve multiphase repeated 
scanning within a short time. Notably, our combined 
model did not show an obvious advantage, as illustrated 
by the Kaplan-Meier survival curve analysis, which may 
be due to the small size of the test set. However, these 
findings require further validation.

An MR-based radiomics model was constructed using 
two first-order statistical and two textural features. The 
two texture features were both large-area high-gray-level 
emphasis (LAHGLE) but were estimated on the PD-w 
and CET1-w sequences, respectively. LAHGLE computes 
the proportion of the joint distribution of larger zones 
with higher grey-level values within the tumor, reflecting 
tumor heterogeneity. Both first-order statistical features 
(variance and robust mean absolute deviation) reflected 
the uniformity of gray values in the tumors, suggesting 
that a more homogeneous tumor on PD-w or CET1-w 
images may indicate a better prognosis. The MR-based 
radiomics model and four DCE-MR radiomic features 
(extracted from Ktrans and kep images). For Ktrans, MCC 
measures the texture complexity and GLNN quantifies 
the similarity of pixel values. For kep, complexity focuses 
on rapid changes in pixel values, and LDHGLE computes 
the distribution of large dependence with higher grey-
level values [39].

In our study, we found that the MR-based radiom-
ics feature map showed promising consistency with 
the DCE parameter maps in terms of the NPC tumor 
boundary and heterogeneity. Radiomic features related 
to NPC prognosis were also identified to be associated 
with tumor heterogeneity in MR images [43]. However, 
the interpretability of radiomics is slightly poor, in addi-
tion to its quantitative ability. Compared with artificially 
assessed radiological measurements, there is a vacancy 
in the visual interpretation of the selected radiomic fea-
tures, which motivated our attempts to form a reasonable 
interpretative tool for clinical practice. This challenge has 
been well recognized, and some researchers have made 
efforts to find correlations between radiomic features and 
known biological markers, such as HIF [44] or fibroblast 
growth factor receptor [45]. However, the biological data 
are often difficult to acquire because of complex proto-
cols, while radiomic features containing more spatial and 
functional information are conveniently available. Akram 
et al.’s study [46] revealed that there was a substantial dif-
ference in MR-based radiomic features extracted from 
complete ROIs between recurrent and non-recurrent 
subregions in NPC treated with radiotherapy. Following 
a high success rate in risk stratification using MR-based 

radiomic features, our results revealed that conventional 
MR-based radiomics might contain information with a 
similarly high impact on prognosis as angiogenesis infor-
mation in accordance with DCE parameters. The above 
results suggest that MR-based radiomics feature maps 
can not only potentially visualize the heterogeneity and 
angiogenesis of the tumor from the ROI patches, but also 
allow tracing of the most revealing sub-regions in the 
analysis of a radiomics model.

Radiomics can be an effective method for monitoring 
phenotypic changes associated with prognosis in clini-
cal settings. Our results revealed that radiomic features 
contained useful prognostic information in patients 
with NPC, and that the radiomics feature maps could 
visualize the heterogeneity and angiogenesis informa-
tion of tumors, thereby improving the interpretation 
ability of radiomics. These results suggest that radiomics 
can decode the general phenotype associated with NPC 
prognosis. However, the conventional MR-based radi-
omics feature map showed similar but incomprehensive 
heterogeneity compared to the DCE parameter maps. A 
comparison between the MR-based radiomics feature 
map and the four pharmacokinetic parameters of DCE-
MR images showed that not all the angiogenesis infor-
mation on DCE-MR could be reflected by the radiomic 
features, which may explain why the integration of DCE-
MR features and MR-based radiomics model prediction 
can significantly improve prognostic performance. Note 
that in the process of generating feature map, an essential 
observation is that the tumor ROI dimensions dictate the 
maximum window width during the feature map crea-
tion. Hence, an impending challenge lies in developing 
methods that assess the fidelity of model-used features, 
particularly at this maximum window width.

This study has several limitations. First, despite our 
efforts to include an exhaustive patient database, ele-
vated censoring rates may have biased our findings. As 
a requirement for robustness, it is paramount to further 
validate our model against a dataset enriched with more 
extensive data. Second, the paucity of DCE-MR patients 
relative to the abundance of radiomic features neces-
sitates meticulous feature selection to avoid overfitting. 
As the DCE-MR patient cohort expands in future work, 
there is the potential to incorporate more radiomic fea-
tures. This would allow us to mine comprehensive prog-
nostic prediction information, thereby enhancing the 
performance of our model. Third, the widespread use of 
DCE-MR came much later than that of conventional MR, 
resulting in a significant difference in follow-up between 
the MR and multi-modality cohorts. The drastically 
shorter follow-up of the DCE-MR cohort may harm the 
ability to build a convincing model to some extent. More 
DCE-MR-based radiomics studies with longer follow-up 
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periods should be conducted. Fourth, although the VIF 
analysis was performed on the final selected set of fea-
tures to mitigate the impact of multicollinearity on the 
final model, the regression models constructed during the 
feature selection process were still susceptible to multi-
collinearity. In this study, we followed common practices 
observed in previous research; however, it is important to 
optimize this aspect in future studies. Finally, given that 
certain studies indicate that NRIs in the context of inad-
equately fitted risk functions can at times be misleading 
[47], we urge readers to approach conclusions regarding 
the NRIs in our study with due circumspection.

Conclusions
A combined radiomics model was identified by integrat-
ing DCE-MR and MR, which outperformed conventional 
MR-based radiomics models and can be used as an artifi-
cial intelligence tool for individualized prognostic assess-
ment before treatment in patients with NPC.
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