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Abstract 

The traditional feature-extraction method of oriented FAST and rotated BRIEF (ORB) detects image features based 
on a fixed threshold; however, ORB descriptors do not distinguish features well in capsule endoscopy images. 
Therefore, a new feature detector that uses a new method for setting thresholds, called the adaptive threshold FAST 
and FREAK in capsule endoscopy images (AFFCEI), is proposed. This method, first constructs an image pyramid 
and then calculates the thresholds of pixels based on the gray value contrast of all pixels in the local neighborhood 
of the image, to achieve adaptive image feature extraction in each layer of the pyramid. Subsequently, the features are 
expressed by the FREAK descriptor, which can enhance the discrimination of the features extracted from the stomach 
image. Finally, a refined matching is obtained by applying the grid-based motion statistics algorithm to the result 
of Hamming distance, whereby mismatches are rejected using the RANSAC algorithm. Compared with the ASIFT 
method, which previously had the best performance, the average running time of AFFCEI was 4/5 that of ASIFT, 
and the average matching score improved by 5% when tracking features in a moving capsule endoscope.

Keywords Capsule endoscopy, Feature extraction, Adaptive threshold

Introduction
Background
Regular classical feature-extraction methods, such as 
scale-invariant feature transform (SIFT) [1], speed-up 
robust features (SURF) [2], features from accelerated 
segment test (FAST) [3], and oriented FAST and rotated 
BRIEF (ORB) [4] are widely used in realistic scenarios.

Although these popular methods have achieved good 
results in indoor and outdoor scenes [5–7] and can 
extract sufficient features for wired endoscopic images 
from bladder [8] and viscera [9, 10], they are not the best 

for capsule endoscopic scenes compared to other envi-
ronments. The underlying reason for this is the presence 
of low texture, specular reflection, and high light inten-
sity in endoscopic images. The combined interference of 
these joint factors makes effective extraction of features 
difficult, complicating the completion of later tasks such 
as feature matching, positional estimation, and 3D point 
calculation for capsule endoscopic images. To ensure 
that the feature-extraction method is effective for cap-
sule endoscopic images, researchers have used artificial 
enhancement strategies. For example, some research-
ers have used projection devices to add structured light 
patterns to surfaces with less texture [11]. Others have 
sprayed the indigo carmine (IC) dye onto the stomach to 
improve imaging conditions [12–14]. These techniques 
aim to improve the environment and facilitate accurate 
feature extraction.

The aforementioned methods entail the use of addi-
tional equipment and more significantly, may adversely 
affect or even harm the patient. Moreover, physicians are 
generally reluctant to introduce additional procedures 
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for lesion diagnosis. Therefore, these techniques may 
not be feasible in specific clinical settings. To address 
these issues, this study proposes an adaptive feature-
extraction method for capsule endoscopy images, called 
adaptive threshold FAST and FREAK in capsule endos-
copy image (AFFCEI), which draws inspiration from the 
ORB method. This technique aims to enhance feature 
extraction by adapting to the specific imaging condi-
tions of the capsule endoscope, without introducing 
additional equipment or potentially harmful procedures. 
The method first constructs an adaptive threshold based 
on FAST to achieve the localization of features and then 
combines the variability of visual sensitivity to feature 
distance with proximity to realize feature description 
based on the FREAK [15] descriptor.

The innovative contributions of this study are summa-
rized as follows: 

(1) An adaptive threshold feature-extraction method is 
proposed to solve the problem of insufficient FAST 
feature extraction.

(2) The FREAK descriptor is combined with the fea-
ture-extraction method proposed in this study to 
enhance feature distinction in capsule endoscopy 
images.

Related work
Feature extraction methods are widely used in many 
fields, such as target detection and image tracking.

The SIFT algorithm which was proposed in 2004, dis-
plays strong robustness to image scale changes and has 
been a milestone for the feature extraction task. Many 
improved methods [16, 17] are based on SIFT which sim-
plifies the process of feature extraction and provides sat-
isfactory results not only for natural scenes but also for 
handheld endoscopic images [18, 19]. However, SIFT and 
related improved methods are not well adapted to feature 
extraction for capsule endoscopic images because of the 
elimination of the edge response and for lacking speed 
when extracting features.

To address this issue, for faster feature extraction, 
Rosten proposed the FAST corner detection algorithm 
[3], which compares the value of the central pixel with 
the surrounding 16 pixels, and if the absolute difference 
between the value of 12 consecutive pixels and the value 
of the central pixel is greater than a preset threshold, the 
central point is a FAST corner. Because FAST corners 
are not scale- or rotation-invariant, Rublee proposed the 
ORB algorithm [4], which is popular among research-
ers because it reduces the complexity of the FAST algo-
rithm while ensuring the accuracy of feature extraction 
[20]. ORB uses FAST corner detection on the scale space 
and the rotation-aware BRIEF (rBRIEF) [21] descriptor 

to describe features, imparting rotational invariance to 
the features. Experiments have also shown that the ORB 
algorithm can achieve good results for organs, such as 
liver images captured by endoscopy [22]. However, ORB 
does not perform well on the stomach in capsule endos-
copy because of low texture, specular reflection, and high 
light intensity of capsule endoscopic images. The rBRIEF 
descriptor used in the ORB algorithm is constructed 
using a greedy exhaustive method to obtain random 
point pairs with low correlation. Although this method 
is faster, it reduces accuracy and cannot distinguish fea-
tures as well. ORB uses the FAST method for feature 
extraction, essentially comparing the grayscale values of 
the pixel points. The fixed threshold value used in the 
FAST method also leads to instability in feature extrac-
tion. Despite these limitations, the ORB algorithm has 
demonstrated unique advantages and is a popular choice 
for image feature extraction in both extra-cavity scenes 
and internal cavity environments, outperforming many 
classical feature extraction algorithms [22].

Spyrou  and  Iakovidis [23] compared and evalu-
ated the performance of feature-extraction methods 
in capsule endoscopy. The ORB method exhibited sig-
nificant advantages over the other algorithms. Subse-
quent research improved the selection of thresholds. In 
ORB_SLAM2, Mur-Arta  and  Tardós [24] introduced 
a dual-threshold approach to optimize feature extrac-
tion. However, this algorithm sets thresholds artificially 
without considering pixels. Ma et al. [25] used a dynamic 
local threshold instead of a fixed threshold, which allows 
the extraction of additional features through local 
thresholds calculated based on neighborhood image 
blocks. However, this method only considers average 
grayscale values, leading to poorer performance on cap-
sule endoscopy images.

With the development of deep learning (DL), DL 
concepts have also been applied in feature extraction 
methods [26–29]. SuperPoint [30] is a representative 
algorithm for these methods. This method first crops 
an image to obtain a feature map using VGGnet, where 
a feature extractor is used to output the probabilities of 
pixels as features in the feature map. The positions of the 
features are then determined using non-maximum sup-
pression. In the feature description stage, the feature 
map dimensions are first expanded, and descriptors are 
obtained by linearly interpolating the results of feature 
extraction. This method has achieved favorable results in 
natural scenes; however, the performance of SuperPoint 
largely relies on training data and pretrained models. 
Training data that are not sufficiently diverse and rep-
resentative may limit the generalizability of the model, 
leading to performance degradation in certain situa-
tions. Additionally, the performance of this method has 
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not been validated in capsule endoscopy environments. 
Notably, these methods lack strong interpretability.

This study focuses on the threshold variability strat-
egy, and inspired by ORB, proposes an adaptive feature 
extraction method, AFFCEI, for capsule endoscopy. The 
core idea of the method is to dynamically determine 
the threshold value based on a pixel point and remain-
ing grayscale values in a specific neighborhood using 
the formula proposed in this study, thereby achieving a 
self-adaptive threshold value, which combined with the 
FREAK descriptor [15], can better distinguish stomach 
features as well as describe the extracted features. It is 
also important to note that the FREAK method provides 
directional information when constructing the descriptor 
and maintains the same feature direction invariance as 
the ORB method.

Methods
The methodological approach of this study is illustrated 
in Fig.  1. First, a scale space is constructed to impart 
feature-scale invariance [1]. Second, a variable thresh-
old calculation method is designed for FAST to imple-
ment an adaptive threshold. Third, a feature descriptor 
based on FREAK is designed to enhance the effective 
discrimination of gastric features based on sensitivity dif-
ferences of the features with respect to simulated human 
eye visual distances. Finally, in the experiment, a two-
level feature matching (coarse and fine) is implemented 
based on the Hamming distance and grid-based motion 

statistics (GMS) [31] algorithm, effectively eliminating 
misaligned point pairs through random sample consen-
sus (RANSAC).

Scale space construction
To ensure the scale invariance of the extracted features, a 
Gaussian pyramid is first constructed. The original image 
is used as the first level, and a Gaussian filter is applied to 
the original image to simulate scale changes and reduce 
resolution. The image is then downsampled by a scale 
factor of 1.5 to obtain the second-level image. The same 
process is repeated for the new image to obtain eight 
images. Feature extraction is performed on each of the 
resulting images, recording the layer number where each 
feature is located.

Adaptive threshold calculation
When extracting features, a threshold value t must be set 
to determine whether a pixel is a feature. In traditional 
methods, this threshold value is usually set manually to a 
fixed value based on experimental results and is applied 
to all images at different scales. In capsule endoscopy, 
the camera light source affects the image, with higher 
brightness in the near field and darker brightness in 
the far field. As the capsule endoscope moves, the same 
scene can be affected by different lighting conditions, and 
applying a fixed global threshold to all pixels is difficult. 
Therefore, an adaptive threshold is required to increase 
the accuracy of feature extraction and obtain a sufficient 

Fig. 1 Framework of proposed method
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number of features. In this study, the threshold value is 
associated with the local contrast of the image: 16 pixel 
points on a circle with the pixel point as the center and 
three neighboring pixel points with the neighborhood 
determined by the selected radius [16]. To avoid the 
influence of noise points and lighting anomalies on the 
reasonableness of the threshold, the threshold value t was 
calculated as shown in Eq. (1).

where δ is a global fixed parameter; Imax and Imin repre-
sent the maximum and minimum values in the neigh-
borhood, respectively; and Ia is the average of 16 pixel 
gray scales in the neighborhood. The essence of the 
FAST algorithm is the measurement of the contrast of 
adjacent pixels. The pixel that is commonly referred to 
as the center point, is not the same as the point on the 
circumference of the circle. Therefore, in this study, the 
threshold value is set to be proportional to the local con-
trast of the image. This method subtracts the maximum 
and minimum values, thereby preventing the effects of 
extreme values, such as the influence of noise points and 
lighting anomalies. To prevent the simultaneous elimina-
tion of normal points, the denominator is set to the aver-
age of 16 pixel gray scales.

After acquiring the images by capsule endoscopy, a 
Gaussian pyramid is constructed from the images, and 
features are extracted for each layer of the pyramid indi-
vidually. When feature extraction is performed on images 
acquired in spaces of different scales, each pixel of the 
image has a different threshold value. In particular, in the 
case of uneven illumination, which is the main influenc-
ing factor, the adaptive threshold can adapt well to the 
variation in each pixel.

Feature extraction and description
The proposed method for feature extraction is based on 
FAST [3] with the threshold value calculated using the 
adaptive threshold Eq. (1) proposed in this study. After 
extraction, the features are described using the FREAK 
descriptor [1]. This binary descriptor imitates the human 
retinal visual mechanism in describing features, sampling 
images, similar to the human retina. FREAK constructs 
seven concentric circles with the feature at the center and 
samples around it. Six sampling points are obtained on 
each concentric circle, spaced evenly at 60◦intervals. The 
perceptual field is then created with the sampling point 
at its center and a radius half that of the concentric cir-
cle where the sampling point is located. To reduce noise, 
each sampling point undergoes Gaussian blurring, and 
the radius of the field represents the standard deviation of 

(1)t = δ ×

16
i=1 Ii − Imax − Imin

Ia

the Gaussian blur. Figure 2 illustrates the sampling mode 
utilized by FREAK. The receptive fields of the sampling 
points have overlapping areas, and Gaussian kernel func-
tions of varying sizes are used to smooth the sampling 
points based on their distances from the features. Recep-
tive fields of different sizes in the human retina exhibit 
comparable modes of action. By using overlapping recep-
tive fields, more information can be acquired, resulting 
in a final descriptor that is more distinctive and eas-
ily distinguishable in features. Let F denote the FREAK 
descriptor, which is calculated as shown in Eq. (2).

where Pa is the ath sample point pair, and N is the length 
of the descriptor. T (Pa) represents the comparison result 
between sample point pairs, and T (Pa) is calculated, as 
shown in Eq. (3).
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 are the pixel values of the pairs 
of points after Gaussian blurring, and Pr1

a  and Pr2
a  are the 

coordinates of the pairs of points in the image. Under this 
sampling pattern, 43 sampling points are generated, result-
ing in 903 sampling point pairs. However, not all point 
pairs affect feature description and may even introduce 
redundancy. Therefore, the following steps are used to 
select the point pairs for dimensionality reduction. First, 
a matrix containing all feature descriptions is constructed, 
where each row represents the encoding of all the sam-
pling point pairs for that feature. The mean of each matrix 
column is calculated. The columns of the matrix are then 
reordered from smallest to largest according to the dis-
tance between their variance and 0.5. The top 512 columns 
are then selected for the final binary description.

Finally, to achieve rotational invariance, FREAK adds 
gradient values to the descriptors to represent directional 
features.

 Feature optimization
After feature extraction and description, the features 
must be further optimized by feature matching and mis-
match removal.

First, the Hamming distance between the feature 
descriptions is calculated, and the initial coarse matching 
is completed by finding the feature with the smallest dis-
tance to another feature set through brute-force matching.

Second, the GMS algorithm divides the image into fea-
ture neighborhoods by creating grids, whereby correct 
matches are distinguished from mismatches by assum-
ing that correct matches have more matching pairs that 
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conform to the matching relationship in the neighborhood. 
This is based on the motion smoothness assumption. Thus, 
the number of matching pairs that conform to the matching 
relationship in the neighborhood is counted to determine 
the correct and incorrect matches, prior to fine matching.

Finally, to further reduce the number of false matches, 
the RANSAC method is used to eliminate false matches 
between images after obtaining the fine matching pairs 
from GMS. Specifically, four features are randomly selected 
from the matched features, and the parameter model that 
matches the maximum number of features is determined to 
be optimal through calculations and continuous iterations.

After coarse and fine matching and elimination of false 
matches, the remaining features are considered valid.

Results and discussion
Dataset
The simulation data were acquired in the VR-Caps plat-
form designed by İncetan  et al. [32]. This platform was 
built using Unity. VR-Caps generates a model of stomach 
organs based on CT images. Subsequently, stomach tex-
tures are created from the dataset acquired from patients 
and projected onto the model. The platform contains a 
virtual capsule endoscope that simulates a real capsule 
endoscopy procedure for filming. In this study, 320× 320 
stomach images were acquired using VR-Caps.

Metrics and experimental details
The experiments were compared based on the correct 
number of features, matching scores, and running time.

The number of correct features was obtained by the 
GMS method, and false matches were eliminated using 
the RANSAC method. The matching score MS was cal-
culated using Eq. (4).

where CM is the number of correct features; and N is the 
number of features. N was calculated using Eq. (5).

where n1 is the number of extracted features for image 1; 
and n2 is the number of extracted features for image 2. N 
is the smaller of the n1 and n2 values.

Correct features represent the number of feature recur-
rences when the image changes. The matching score which 
is the percentage of correct features among all features, 
indicates the efficiency of feature extraction.

In this study, the stomach images were randomly 
selected from the dataset simulated for the experiments. 
As there was a lack of real feature correspondence, the 
images were rotated during the experiments, to verify 
the effectiveness of the method in this study. The rotation 

(4)MS =
CM

N

(5)N = min (n1, n2)

Fig. 2 Sampling mode of FREAK
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angle ranged from 5◦ to 30◦ with a rotation step of 5◦ , 
which produced a total of six images. The original images 
were matched with the rotated images for features, and 
the rotation matrix was calculated according to the 
matching results and compared with the real data to esti-
mate the rotation error.

In the image-supported endoscopic navigation system, 
some common methods can only obtain a small number 
of reliable features from multiple frames of endoscopic 
images. Thus, the number of feature matches between 
the first and subsequent frames gradually decreases as the 
view of the capsule endoscope changes over time. There-
fore, stable tracking of features is a challenge in this appli-
cation when the capsule endoscope view changes. In this 
study, one frame was extracted every 0.03 s in the simula-
tion dataset.

Experiment
In the experiments, maintaining rotational invariance by 
the proposed method was first verified using previously 
generated artificial images. The original images were then 
matched with the rotated images to verify the probability 

of feature repetition. The true rotation angles of the images 
were obtained because the test images were generated arti-
ficially. In this experiment, the homography matrix was 
calculated through feature matching and compared with 
the true angle to determine the error. The experimen-
tal results are listed in Table 1. Features extracted by the 
proposed method appear repeatedly during image rota-
tion. As the rotation angle gradually increases, the feature 
extraction error increases, and the number of effective 
features decreases. In the results, when the rotation angle 
is < 5◦ , the proposed method achieves high scores in all 
indicators. When the rotation angle is < 20◦ , 40% of the 
features can be repeated. As the rotation angle increases, 
stability in feature extraction ability significantly decreases. 
The results are presented in Fig. 3.

Next, in the simulated environment of the virtual stom-
ach, the rotational and translational motion states of the 
capsule endoscope inside the human body during exami-
nation were simulated. By matching the first frame with 
subsequent frames, the ability of the proposed method to 
stably track features was verified as the viewing angle of 
the capsule endoscope changed. The results are presented 
in Table 2, and the performance is displayed in Fig. 4.

According to the results, the number of matched fea-
tures between the first and subsequent frames gradually 
decreases, indicating that the number of repeatable fea-
tures also decreases. The proposed method can stably 
track nine consecutive frames, and the repeatability of 
the extracted features is over 50% for all nine consecu-
tive frames. Except for possible errors when matching the 
sixth frame, the data exhibit fluctuations.

Based on the results of rotation and consecutive 
frame experiments, the proposed method works nor-
mally when the image undergoes small rotations and 

Fig. 3 Performance under rotation frames

Table 1 Result under rotation scene

Rotation angle 
(degree)

Error Correct feature Matching score

5 0.019 280 0.743

10 0.045 240 0.692

15 0.054 142 0.432

20 0.072 143 0.433

25 0.089 133 0.367

30 0.111 134 0.325
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translations. The capsule endoscope is controlled by 
a doctor in the human stomach and does not undergo 
significant changes in the viewing angle; therefore, our 
method is applicable to capsule endoscopy.

In terms of time complexity, the Gaussian pyramid con-
structed using this method has eight levels, and the time 
complexity of the Gaussian smoothing operations is approx-
imately O(1). Assuming that the sum of the pixels is N, the 
calculation complexity of the first-level image is O(N), and 
subsequent images are created by 1.5 times downsampling. 
Therefore, the total complexity of pyramid construction is 

O(N). Subsequently, feature extraction is performed for each 
image. By traversing all the pixels in the image, the proposed 
threshold calculation method requires iterating over each 
pixel in the neighborhood to compute the sum while finding 
the maximum and minimum values. Assuming k is the sum 
of the pixel neighborhood, this process has a time complex-
ity of O(k). Further assuming that the number of pixels is M, 
the time complexity reaches O(M ∗ k) . In terms of space 
complexity, the feature descriptor used in this study is con-
sistent with that of the FREAK algorithm.

In feature optimization, the time complexity of a match 
based on the Hamming distance is O(L), where L repre-
sents the length of the feature description. Finally, the 
time complexity of the GMS algorithm is O(A), with A 
representing the number of features to match.

Ablation experiments
First, the original feature-extraction method was com-
pared with the adaptive feature-extraction method in two 
scenes. The original method extracted features using the 
fixed-threshold FAST method and described them using 
FREAK. The results demonstrate the improvements 
obtained by the proposed method. The results of the 
rotational scenes are listed in Tables 3 and 4 and those of 
the simulated motion scenes are listed in Tables 5 and 6.

Fig. 4 Performance under subsequent frames

Table 2 Result under simulated motion scenes

Index of frame matched to 
frame 1

Correct feature Matching score

2 340 0.825

3 345 0.837

4 327 0.794

5 286 0.694

6 269 0.653

7 299 0.726

8 280 0.680

9 279 0.677

10 263 0.638
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According to the results, the proposed method for fea-
ture extraction is significantly more powerful than the 
original method in extracting highly reproducible fea-
tures for the same descriptor. As expected, the proposed 
method computes the corresponding threshold for all 
pixels in the feature-extraction range, demonstrating the 
adaptive nature of the approach.

The features extracted by the proposed method were 
compared against those obtained by different descrip-
tors, such as SIFT, Brief, and SURF. The experiments 
were conducted under rotational and simulated motion 
scenes. The results of the rotational scenes are presented 
in Tables  7 and 8. The results for the simulated motion 
scenes are presented in Tables 9 and 10.

Table 3 Correct features for rotation scene - comparison with 
the original method

Rotation angle (degree) Original method Proposed

5 0 280

10 0 240

15 0 142

20 0 143

25 0 133

30 0 134

Table 4 Matching score for rotation scene - comparison with 
the original method

Rotation angle (degree) Original method Proposed

5 0 0.743

10 0 0.692

15 0 0.432

20 0 0.433

25 0 0.367

30 0 0.325

Table 5 Correct features under simulated motion scenes - 
comparison with the original method

Index of frame matched to 
frame 1

Original method Proposed

2 0 340

3 0 345

4 0 327

5 0 286

6 0 269

7 0 299

8 0 280

9 0 279

10 0 263

Table 6 Matching score under simulated motion scenes - 
comparison with original method

Index of frame matched to 
frame 1

Original method Proposed

2 0 0.825

3 0 0.837

4 0 0.794

5 0 0.694

6 0 0.653

7 0 0.726

8 0 0.680

9 0 0.677

10 0 0.638

Table 7 Correct features under rotation scenes - comparison of 
different descriptors

Rotation angle 
(degree)

BRISK SIFT rBrief Proposed

5 222 0 245 280

10 181 0 212 240

15 120 0 131 142

20 150 0 76 143

25 63 0 42 133

30 109 0 40 134

Table 8 Matching score under rotation scenes - comparison of 
different descriptors

Rotation angle 
(degree)

BRISK SIFT rBrief Proposed

5 0.540 0.000 0.666 0.743

10 0.484 0.000 0.629 0.692

15 0.318 0.000 0.411 0.432

20 0.375 0.000 0.248 0.433

25 0.148 0.000 0.133 0.367

30 0.255 0.000 0.114 0.325

Table 9 Correct features under simulated motion scenes - 
comparison of different descriptors

Index of frame 
matched to frame 1

BRISK SIFT rBrief Proposed

2 286 0 305 340

3 264 0 293 345

4 264 0 281 327

5 204 0 250 286

6 186 0 216 269

7 228 0 255 299

8 193 0 234 280

9 187 0 183 279

10 166 0 216 263



Page 9 of 13Wu et al. Visual Computing for Industry, Biomedicine, and Art            (2023) 6:24  

Comparison experiments
In this experiment, several popular feature-extraction 
methods were compared with the method proposed 
herein to demonstrate the advantages of the proposed 
method.

First, ORB was considered as a comparison method 
before improving it using the rBrief descriptor. Subse-
quently, SURF and ASIFT, which are improved SIFT 
methods, were considered. Recently, with the develop-
ment of DL, numerous feature-extraction methods based 
on learning methods have been proposed. In the experi-
ment, SuperPoint [25] was considered as the representa-
tive learning method. The number of correct features for 

the moving capsule endoscope were compared, as shown 
in Fig.  5. The matching-score comparison is shown in 
Fig. 6, and the running times are displayed in Fig. 7. It is 
worth noting that the experiments did not consider the 
running time of SuperPoint because this method con-
verts the data into the style of Pytorch running on GPU, 
which is unfair to other methods.

The performance of SuperPoint, as a self-supervised 
DL model, depends on the quality and quantity of the 
training datasets. Capsule endoscopy datasets are rare 
because of the privacy protection of patients and hospi-
tals, which affects the effectiveness of the model. More-
over, images of the human stomach may differ due to 
disease and individual body composition. The lack of a 
large dataset to support the portability of the model is 
another problem.

Additionally, the model structure of SuperPoint is com-
plex and requires considerable computational resources 
and time for training and testing, which may not be suit-
able for application scenarios with limited resources.

The proposed method is used in medical application 
scenarios of capsule endoscopy, which require methods 
with reliable interpretability. Compared with the method 
used in this study, SuperPoint relies on a pre-trained fea-
ture extractor and does not have good interpretability. 
Although SuperPoint has the best performance in match-
ing scores in Fig. 5, combined the Fig. 3, the method of 
this study can track at least 200 features, whereas the 

Table 10 Matching score under simulated motion scenes - 
comparison of different descriptors

Index of frame 
matched to frame 1

BRISK SIFT rBrief Proposed

2 0.670 0.000 0.801 0.825

3 0.618 0.000 0.769 0.837

4 0.618 0.000 0.738 0.794

5 0.478 0.000 0.656 0.694

6 0.436 0.000 0.567 0.653

7 0.534 0.000 0.669 0.726

8 0.452 0.000 0.614 0.680

9 0.438 0.000 0.480 0.677

10 0.389 0.000 0.567 0.638

Fig. 5 Correct features
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number of features tracked by SuperPoint is maintained 
at approximately 125. The number of features that appear 
repeatedly in adjacent frames is significantly higher. Med-
ical aid with computer vision requires more valid support 
features. The method proposed in this study is a reliable 
traditional method that does not require GPU resources 
for training and testing and can extract the largest num-
ber of effective features. Considering resource efficiency 
and cost, the proposed method is a better choice for spe-
cific cases.

Moreover, compared with ASIFT, the average matching 
score of this method is improved by 5%, and the running 
time is 4/5 that of the ASIFT method.

Verification of universality
To verify that the method in this study is also applica-
ble to other images, feature extraction was performed 
on images other than capsule endoscopes. This section 
describes the selection of images from Homography 
patches. The images used in the universality verifi-
cation included rainy days, daytime, and nighttime, 

as shown in Fig.  8. The results of the number of cor-
rect features are shown in Table 11, and the matching 
score results are shown in Table  12. According to the 
experimental results, the traditional methods, SURF 
and ORB, do not work normally at night; however, the 
method in this study can obtain the most accurate fea-
tures at night. Thus, the proposed AFFCEI works well 
when the illumination is changed to match that of nat-
ural scenes.

Conclusions
This study proposes an improved feature extraction 
algorithm called AFFCEI for capsule endoscopic stom-
ach images characterized by weak texture and uneven 
illumination. The algorithm uses an improved FAST 
feature-extraction method in the localization stage to 
extract a sufficient number of features. The threshold 
value of each pixel point is determined by calculat-
ing the gray-level contrast in the local neighborhood 
of the image, which is regionally adaptive and helps 
extract features more reliably even when the illumina-
tion changes. In the description stage, the features of 

Fig. 6 Macthing score
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the stomach image were accurately differentiated using 
the FREAK descriptor. The proposed method can 
be applied to extract features from images with poor 

texture. Overall, this approach significantly enhances 
feature extraction from capsule endoscopic stomach 
images and those of similar scenes.

Fig. 7 Running time

Table 11 Correct features

Match with 
daytime

SURF ORB ASIFT AFFCEI

Rain 413 613 6208 4360

Night 0 0 469 523

Table 12 Matching score

Match with 
daytime

SURF ORB ASIFT AFFCEI

Rain 0.279 0.294 0.500 0.443

Night 0 0 0.056 0.066

Fig. 8 Images for verification
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