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CT-based radiomics: predicting early 
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Abstract 

This study aimed to comprehensively evaluate non-contrast computed tomography (CT)-based radiomics for pre-
dicting early outcomes in patients with severe atherosclerotic renal artery stenosis (ARAS) after percutaneous trans-
luminal renal angioplasty (PTRA). A total of 52 patients were retrospectively recruited, and their clinical characteristics 
and pretreatment CT images were collected. During a median follow-up period of 3.7 mo, 18 patients were confirmed 
to have benefited from the treatment, defined as a 20% improvement from baseline in the estimated glomerular 
filtration rate. A deep learning network trained via self-supervised learning was used to enhance the imaging phe-
notype characteristics. Radiomics features, comprising 116 handcrafted features and 78 deep learning features, 
were extracted from the affected renal and perirenal adipose regions. More features from the latter were correlated 
with early outcomes, as determined by univariate analysis, and were visually represented in radiomics heatmaps 
and volcano plots. After using consensus clustering and the least absolute shrinkage and selection operator method 
for feature selection, five machine learning models were evaluated. Logistic regression yielded the highest leave-one-
out cross-validation accuracy of 0.780 (95%CI: 0.660–0.880) for the renal signature, while the support vector machine 
achieved 0.865 (95%CI: 0.769–0.942) for the perirenal adipose signature. SHapley Additive exPlanations was used 
to visually interpret the prediction mechanism, and a histogram feature and a deep learning feature were identi-
fied as the most influential factors for the renal signature and perirenal adipose signature, respectively. Multivariate 
analysis revealed that both signatures served as independent predictive factors. When combined, they achieved 
an area under the receiver operating characteristic curve of 0.888 (95%CI: 0.784–0.992), indicating that the imaging 
phenotypes from both regions complemented each other. In conclusion, non-contrast CT-based radiomics can be 
leveraged to predict the early outcomes of PTRA, thereby assisting in identifying patients with ARAS suitable for this 
treatment, with perirenal adipose tissue providing added predictive value.
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Introduction
Atherosclerotic renal artery stenosis (ARAS) is defined as 
the narrowing of the main renal arteries or their branches 
as a result of atherosclerotic plaques, and is the leading 
cause of renal artery stenosis [1]. The prevalence of ARAS 
is approximately 7% among individuals aged 65 years and 
older and can reach up to 20% among those with diabetes 
and secondary hypertension [2]. Severe renal artery ste-
nosis may lead to serious complications, such as second-
ary hypertension, ischemic nephropathy, left ventricular 
dysfunction, pulmonary edema, and cerebro-cardiovas-
cular events [3]. Therefore, early and prompt treatment 
is essential for the effective management of the condition.

Several treatment options are available for ARAS, 
including medical therapy, revascularization, and sur-
gery [4]. Endovascular therapy is often the initial treat-
ment [5]. However, ARAS management is complicated 
and controversial [4, 5]. On the one hand, three rand-
omized clinical trials (STAR, ASTRAL, and CORAL) 
indicated that renal artery revascularization did not sig-
nificantly improve the renal function and prognosis when 
compared to medical therapy alone [4, 6, 7]. In contrast, 
recent studies (GSH and KDIGO) have suggested that 
percutaneous transluminal renal angioplasty (PTRA) 
may provide potential benefits for selected patients by 
controlling blood pressure and delaying renal failure [8, 
9]. Therefore, it is crucial to identify patient subgroups 
that may benefit from PTRA before treatment. This will 
assist clinicians in developing tailored treatment plans 
for patients with ARAS.

Computed tomography (CT), a noninvasive imag-
ing tool with high resolution, is essential for the clinical 
diagnosis and treatment planning of patients with ARAS 
[10]. Previous studies have primarily focused on assess-
ing ARAS based on morphological information such as 
renal size [9]. Radiomics, which utilizes handcrafted 
formulas and deep learning networks, extracts high-
throughput quantitative features from medical images. 
By integrating artificial intelligence (AI) methodologies, 
radiomics also enhances the modeling and analysis pro-
cesses, offering new insights for radiological diagnosis. It 
has been proven to objectively evaluate the imaging phe-
notype characteristics of the renal tissues and lesions [11, 
12]. Previous CT-based radiomics research has largely 
targeted renal tumor diagnosis and constructed predic-
tive models by extracting radiomics features from pri-
mary tumors [13, 14] or extra-tumoral invasive tissues 
[15]. For other types of renal diseases, researchers have 
explored the feasibility of using radiomics to assist in 
clinical diagnosis. For example, Shin et al. [16] improved 
the V-net for precise kidney segmentation and volume 
measurement, achieving an accuracy comparable to that 
of human specialists for 50 randomly selected image 

slices. Amiri et al. [17] utilized a modified Mask R-CNN 
for kidney segmentation and extracted handcrafted fea-
tures to train a random forest (RF) model for predict-
ing radiation-induced kidney damage. Patro et  al. [18] 
enhanced network computational efficiency and diag-
nostic performance for kidney stone detection by intro-
ducing a Kronecker product-based convolution. Sudhir 
Pillai et al. [19] integrated handcrafted features of kidney 
stone regions using a linear regression model to diagnose 
fragility. Additionally, as a crucial component of radiom-
ics, research on automatic segmentation algorithms for 
the kidney and related lesions has been initiated. This is 
instrumental in standardizing and automating the diag-
nostic systems. For example, Hsiao et al. [20] developed a 
segmentation model based on a feature pyramid network 
that improved the delineation between the kidney and 
surrounding tissues through multi-scale feature integra-
tion. Li et al. [21] proposed a two-stage training strategy 
applied to five types of deep learning models aimed at the 
precise segmentation of kidneys and kidney stones.

Drawing on these studies, although there is still a lack 
of research on and application of CT-based radiomics 
in renal artery stenosis, this technology holds promise 
for mining diagnostic and prognostic information on 
ARAS from abdominal CT images, thereby identifying 
useful biomarkers for clinical use. Therefore, this retro-
spective study aimed to evaluate the feasibility of using 
non-contrast CT-based radiomics features and signatures 
to predict the early outcomes of PTRA in patients with 
severe ARAS. Unlike other renal-related CT-based radi-
omics studies, this study not only extracted features from 
the affected renal region but also quantified the imaging 
phenotype of perirenal adipose tissues to gain a more 
comprehensive understanding of the impact of ARAS. 
Simultaneously, a pretext task was used to train a deep 
learning network on unlabeled data, reveal and enhance 
the intrinsic characteristics of CT images, and explore 
the benefits of self-supervised learning in radiomics. 
Additionally, various methods were used to visually dem-
onstrate the potential of radiomics models in predicting 
the efficacy of endovascular therapy, suggesting that this 
technique may guide treatment choices for patients with 
ARAS.

Methods
Participants
This single-center retrospective study was approved by 
the Institutional Review Board of Peking University First 
Hospital, and the requirement for informed consent was 
waived. A total of 89 patients treated for severe ARAS 
at an interventional center between January 2021 and 
December 2022 were screened for inclusion in the study. 
The inclusion criteria were as follows: (1) patients aged 40 



Page 3 of 15Fu et al. Visual Computing for Industry, Biomedicine, and Art             (2024) 7:1 	

years or older; (2) patients with ≥ 75% stenosis (including 
occlusion) on the treatment side of the renal artery, with 
no definite stenosis in the branches of the renal artery; 
(3) patients with renal artery stenosis caused by ath-
erosclerosis; (4) patients presenting with clinical symp-
toms related to renal artery stenosis, such as resistant 
hypertension; (5) patients who underwent subsequent 
endovascular treatment; and (6) patients with complete 
clinical data, including abdominal CT examinations per-
formed within 10 d prior to treatment. The exclusion 
criteria were as follows: (1) patients with tumors and a 
history of arterial stenting (n = 2); (2) patients without 
pretreatment CT examinations (n = 25); (3) patients with 
≥ 1 mo interval between CT scans (n = 6); (4) patients 
with poor CT imaging quality (n = 3); and (5) patients 
lost to follow-up (n = 1).

Therefore, 52 patients with the required clinical, radi-
ological, and prognostic data were enrolled. Baseline 
clinical data, including age, sex, blood pressure, smoking 
status, serum creatinine (SCr), split glomerular filtration 
rate (GFR), and estimated GFR (eGFR), were obtained 
from the medical records [1, 8, 22]. All patients were 
scanned using a 64-detector row CT scanner (Discov-
ery CT750, USA) in the supine position. The CT scan-
ning settings were as follows: tube voltage, 120 keV; tube 
current, 200 mAs; interval, 1.25 mm; and slice thickness, 
5 mm.

To enhance the imaging phenotypic characteristics 
of the renal and adjacent adipose tissues in CT images 
using deep learning, abdominal non-contrast CT scans 

were collected from an additional 316 patients to form 
an unlabeled dataset. The scanning parameters were 
matched with those of the ARAS dataset. A self-super-
vised learning approach was used, leveraging the pretext 
task to allow the network to autonomously learn repre-
sentation patterns from images. As a result, this dataset 
did not require the inclusion of patients’ clinical informa-
tion. The radiomics modeling pipeline is shown in Fig. 1.

Endovascular treatment and follow‑up
This subsection details the endovascular intervention 
protocols and follow-up rules adopted for patients in the 
study to clarify the targeted clinical application scenario.

Experienced interventional radiologists performed per-
cutaneous interventions after undergoing artery digital 
subtraction angiography. Endovascular treatment was 
administered to patients with severe stenosis and occlu-
sion [1]. A 7  F short sheath was exchanged for arterial 
access, followed by a 7  F guiding catheter engaging the 
ostium of the stenotic renal artery, and the stenotic lesion 
was then crossed with a 0.014-inch guidewire. A rapid 
exchange balloon, 3–5  mm in diameter, was advanced 
along the guidewire to predilate the lesion. A balloon-
expandable stent was deployed in the stenotic seg-
ment via a guiding catheter. Successful intervention was 
defined as achieving a residual stenosis of < 30% at the 
completion of angiography.

All patients were followed up for at least 3 mo after 
PTRA. Blood pressure and renal function were reas-
sessed. For those who could not visit the hospital, doctors 

Fig. 1  Workflow of radiomics modeling for early outcomes in patients with severe ARAS after PTRA​
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conducted telephone and online clinics to obtain and 
record information. The categorization of patients as 
benefiting or not was based on renal function, i.e., eGFR 
[22, 23], as follows: (1) Improvement: ≥ 20% increase 
in eGFR compared to preoperative levels, which lasted 
for at least 3 mo; (2) Stable: postoperative change in 
eGFR < 20%; (3) Exacerbation: ≥ 20% decrease in eGFR 
compared to preoperative levels. Patients who demon-
strated improvement were defined as the benefit group, 
whereas those who remained stable or experienced wors-
ening were defined as the non-benefit group.

Image segmentation
The segmentation process was conducted before extract-
ing the radiomics features. To balance efficient clinical use 
and stable feature extraction, semiautomatic segmenta-
tion for the region of interest (ROI) was performed on the 
axial section where the affected renal tissue showed the 
largest area, consistent with other renal radiomics studies 
[24, 25]. This step was performed in all patients using ITK-
SNAP (version 3.6.0) by a radiologist with over 10 years of 
clinical diagnostic experience. Specifically, all segmenta-
tions were performed on non-contrast CT and guided by 
multiplanar reformation. ITK-SNAP offers an “adaptive 

brush” tool, designed to perform adaptive segmentation 
within manually designated rectangular areas, based on 
the intensity variations between different tissues. Initially, 
the radiologist utilized this tool to obtain a preliminary 
outline of the ROI, followed by manual adjustments to 
ensure accurate segmentation while specifically excluding 
cystic tissues and vessels during this process.

In this study, the affected renal region was segmented 
as ROI1, while the perirenal adipose region was seg-
mented as ROI2 for radiomics analysis. However, it is 
noteworthy that segmentation was not possible in two 
patients because renal parenchymal atrophy blurred the 
boundaries.

Hand‑crafted feature extraction
For each patient, radiomics features were separately 
extracted from the renal (ROI1) and perirenal adipose 
tissues (ROI2) and the association of these features with 
early outcomes was analyzed.

Before feature extraction, the CT images were preproc-
essed for standardization, which included aligning the 
gray-level histograms and adjusting the image pixel size 
to 0.5 mm through non-linear interpolation. Additionally, 
smoothing filtering was applied to improve image quality 

Table 1  Comparison of the clinical characteristics of patients between benefit and non-benefit groups

Item Benefit group (n = 18) Non-benefit group (n = 34) P value

Stenosis type (n [%]) 1.000

  Unilateral 16 (88.89) 31 (91.18)

  Bilateral 2 (11.11) 3 (8.82)

Age (year, mean ± SD) 59.20 ± 16.40 59.50 ± 15.20 0.943

Gender (n [%]) 0.727

  Female 3 (16.67) 8 (23.53)

  Male 15 (83.33) 26 (76.47)

Body mass index (kg/m2, mean ± SD) 25.10 ± 4.26 24.70 ± 2.46 0.683

Diabetes (n [%]) 0.543

  No 18 (100) 31 (91.18)

  Yes 0 3 (8.82)

Coronary heart disease (n [%]) 0.289

  No 14 (77.78) 20 (58.82)

  Yes 4 (22.22) 14 (41.18)

Smoking (n [%]) 1.000

  No 12 (66.67) 24 (70.59)

  Yes 6 (33.33) 10 (29.41)

Preoperative ipsilateral GFR (ml/min, mean ± SD) 24.60 ± 9.72 21.70 ± 11.70 0.349

Preoperative eGFR (ml/min/1.73 m2, mean ± SD) 63.80 ± 26.70 77.80 ± 31.40 0.100

Preoperative SCr (µmol/L, mean ± SD) 140 ± 156 96.70 ± 25.50 0.258

Maximum systolic blood pressure (mmHg, mean ± SD) 169 ± 21.30 179 ± 28.20 0.180

Maximum diastolic blood pressure (mmHg, mean ± SD) 98.80 ± 18.60 98.70 ± 19.50 0.994

Hemoglobin (g/L, mean ± SD) 127 ± 20.00 130 ± 14.40 0.486

Potassium (mmol/L, mean ± SD) 3.95 ± 0.38 3.88 ± 0.56 0.568

Sodium (mmol/L, mean ± SD) 140 ± 2.05 140 ± 1.72 0.546
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and reduce noise interference. Details, such as boundaries, 
streaks, and plaques, were enhanced using image differ-
encing. Therefore, in addition to an analysis of the original 
CT image (X), the post-smoothing (XL) and post-differ-
encing (XH) images were also analyzed. Five categories of 
handcrafted features were extracted based on these three 
types of images: shape, histogram, second-order texture, 
high-order texture, and fractal features, totaling 116.

To improve the comparability of the experimental 
results, guidelines were adopted from the image bio-
marker standardization initiative [26] to standardize the 
feature formulas. Feature extraction was performed using 
MATLAB (version R2022b).

Deep learning feature extraction
A self-supervised learning approach was used to train a 
deep learning network to enhance imaging phenotypes, 

and deep learning features were subsequently extracted 
from the enhanced CT images.

Self-supervised learning allows a network to capture 
profound abstract representations of images using unla-
beled data via a pretext task. This approach is particularly 
suitable for scenarios, such as medical image analysis, 
where data annotation is expensive and time-consuming. 
In this study, the network was guided through a pretext 
task to identify normal abdominal structures using four 
types of randomly degraded CT images. Specifically, the 
network was trained to produce a five-class prediction 
that determined the likelihood of the input image being 
either normal or altered by one of the specific types of 
degradation. Image degradation, including blurring, add-
ing noise, morphological distortion, and position dis-
placement, was computer generated and did not require 
clinical information.

Fig. 2  Association of radiomics features with early outcomes. (a) Volcano plot for renal features; (b) Volcano plot for perirenal adipose features; 
(c) Histogram of AUC for renal features; (d) Histogram of AUC for perirenal adipose features. In the volcano plot, blue dots represent handcrafted 
features, while red dots represent deep learning features
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The deep learning network consisted of four convolu-
tional blocks. Each convolutional block had two convo-
lutional layers, a batch normalization layer, a rectified 
linear unit activation, and a squeeze-and-excitation (SE) 
block. The convolutional layers used 2 × 2 kernels to gen-
erate eight output channels. The SE block enhanced the 
feature map representations through channel attention 
mechanisms. Each convolutional block also incorporated 
a skip connection, employing a 1 × 1 convolutional layer 
to modify the input feature map before merging it with 
the block output. This strategy improved the informa-
tion flow and counteracts the vanishing gradient issue. A 
2 × 2 max pooling followed each block for spatial down-
sampling of the feature map. After the four convolutional 
blocks, the global average pooling condensed the feature 
maps into a one-dimensional vector. A Dropout layer 
reduced the risk of overfitting. Finally, a fully connected 
layer with five outputs, paired with softmax activation, 
translated the network output into a probability distribu-
tion over five classes, identifying whether the input image 
was normal and its specific degradation type. Consider-
ing the classification-oriented architecture of the net-
work, a categorical cross-entropy loss was employed as 
the loss function.

During the network training phase, the unlabeled data-
set was partitioned into training, validation, and test sub-
sets using a 7:1:2 split. From various CT planes, patches of 
abdominal tissue of size 64 × 64 were randomly selected, 
ensuring that there was no patient overlap across the sub-
sets. The learning rate was adjusted dynamically if there 
was no enhancement in the validation performance after 

five epochs. Training was halted if no progress was noted 
over ten successive epochs.

L1-L2 regularization was incorporated within the fully 
connected layer, which led to sparsification of the model 
weights. This approach allows significant feature maps 
to focus on a few nodes. During the subsequent deep 
learning feature extraction, only features from these 
information-dense maps with pronounced weights were 
extracted. In this study, the deep learning features not 
only included the mean values from the original network 
node output but also encompassed the statistical and tex-
tural attributes of the ROI within the feature maps. These 
were quantified using the same handcrafted formulas as 
those employed for the histogram features and second-
order texture features described in the previous section.

Feature selection and model construction
To eliminate differences in dimensions and value ranges 
among the various radiomics features, z-score normali-
zation was employed. Univariate analysis of each feature 
was conducted. Features with a P value < 0.1 were consid-
ered to have potential relevance to early outcomes and 
were retained for the subsequent selection process.

The Spearman correlation coefficient was used to 
quantify feature similarity and the partitioning around 
medoids clustering algorithm was applied to group the 
features into subsets. Through consensus clustering anal-
ysis, both the number of subsets (k) and feature impor-
tance within each subset were determined. This involved 
resampling features at a rate of 50% without replace-
ment, 500 times. The consensus value representing the 

Fig. 3  Radiomics heatmaps for renal features (a) and perirenal adipose features (b). The horizontal axis represents individual patients, 
and the vertical axis represents radiomics features
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probability of each feature being grouped with other fea-
tures in the same subset was recorded. The feature with 
the highest consensus value in each subset was termed 
the medoid feature. The appropriate number of subsets 
(k) were identified by beginning with k = 2 and progres-
sively increasing it, calculating the Spearman correlation 
between each medoid feature and other features within 
its subset. This was continued until all correlations were 
above 0.6, ensuring the retention of all independent 
imaging phenotypes while eliminating redundancy.

Subsequently, the least absolute shrinkage and selec-
tion operator (LASSO) algorithm paired with logistic 
regression (LR) was employed to refine the feature selec-
tion. LASSO utilizes L1 regularization to penalize less 
influential features, thereby progressively identifying the 
most crucial feature combination for prediction. Finally, 
five machine learning models were built and assessed: 
LR, artificial neural network, K-nearest neighbor, RF, and 
support vector machine (SVM). A 10-fold cross-valida-
tion and grid search was employed to finalize the input 
features and determine the optimal hyperparameters for 
each model. Subsequently, the best model for predicting 
early outcomes in patients with severe ARAS was deter-
mined based on the average accuracy from leave-one-out 
cross-validation, which was used for the construction of 
the renal signature and the perirenal adipose signature.

Statistical analysis
The Shapiro-Wilk test was used to assess the normal-
ity of the features. For normally distributed features, an 
independent samples t-test was used to determine the 
differences between the benefit and non-benefit groups. 
Otherwise, the Mann-Whitney U test was used. A P 
value of < 0.05 was deemed statistically significant. Vol-
cano plots and radiomics heatmaps were used to analyze 
the relationship between renal and perirenal adipose CT 
radiomics features and early outcomes in patients with 
ARAS. In addition, principal component analysis (PCA) 
was employed to visually represent the inherent patterns 
within the feature sets.

The predictive power of the features and models for 
early outcomes was evaluated using confusion matrix, 
threshold analysis, and the receiver operating charac-
teristic (ROC) curve. The area under the ROC curve 
(AUC) was calculated. Owing to the limited sample size 
of patients with severe ARAS, leave-one-out cross-vali-
dation was used to ensure a more objective assessment 
of the applicability and generalizability of the radiomics 
signatures. By testing each data sample individually and 
training on the remaining data, this method provides 
a nearly unbiased error estimate for the model within 
the dataset. Additionally, SHapley Additive exPlana-
tions (SHAP) analysis was used [27] to interpret the 

decision-making rationale of radiomics signatures and 
to understand the importance and roles of each feature 
within them.

R software (version 4.2.1) and Python (version 3.9.12) 
were used for data analysis, modeling, and performance 
evaluation in this study.

Results
Clinical characteristics
Based on the follow-up results, 18 patients were catego-
rized into the benefit group and the remaining 34 into 
the non-benefit group. Table 1 summarizes their clinical 
characteristics. Univariate analysis revealed no signifi-
cant differences in the clinical characteristics between the 

Fig. 4  Heatmaps of consensus values for renal features (a) 
and perirenal adipose features (b)
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two groups. A larger sample size may be more conducive 
for identifying predictive indicators. The most promising 
indicator was the pretreatment eGFR: 77.8 ± 31.4 in the 
benefit group and 63.8 ± 26.7 in the non-benefit group.

Renal and perirenal adipose CT radiomics features
From non-contrast CT images, 194 radiomics features 
in the affected renal and perirenal adipose regions were 
extracted. Many features in both regions correlated with 
early outcomes. Notably, the perirenal adipose region 
had a larger number of significant features with P val-
ues < 0.05 (n = 101 vs. n = 14), as shown in the volcano 
plots in Fig. 2a and b. This plot also highlights the pro-
nounced differences in the feature values between the 
two groups for certain highly significant deep learning 
features. Additionally, in Fig. 2c and d, the histogram of 
the AUCs for the perirenal adipose features shows a con-
centration in the high-value area on the right side.

Furthermore, unsupervised clustering was performed 
for both the patients and the above significant features. 
This was visually represented as radiomics heatmaps 
(Fig. 3) to contrast the feature value distribution between 
the benefit and non-benefit groups. The heatmaps of 
both regions showed clusters of patients with analogous 
feature expressions, indicating feature subsets that cor-
related with early outcomes. Notably, the clustering tree 
derived from perirenal adipose features better preserved 
patient distance relationships (cophenetic distances: 
0.791 vs. 0.720) and had a higher correlation with early 
outcomes (adjusted Rand index: 0.363 vs. 0.167).

Feature selection
Consensus clustering analysis based on the Spearman 
correlation coefficient was used to identify the optimal 
number of feature clusters representing independent 
imaging phenotypes. This method resulted in 5 clusters 
for renal features and 11 for perirenal adipose features 
(Fig. 4). Because each cluster displayed consistency in its 
features, only the medoid feature was retained from each, 
which is detailed in Table 2.

To further refine the feature selection, LASSO com-
bined with LR was employed to search for the key fea-
ture combination. The regularization coefficients were 
iteratively adjusted, with the one that yielded the high-
est cross-validation AUC selected. The step-by-step 
LASSO selection for renal and perirenal adipose features 
is shown in Fig. 5. From this process, four renal features 
and six perirenal adipose features were retained, which 
are presented in Table 2.

PCA visualization (Fig.  6) showed that the primary 
components of the selected perirenal adipose features 
effectively differentiated between benefit and non-bene-
fit. Conversely, although the primary components of the 
renal features were effective, there was noticeable overlap 
between the two groups. This suggests that the retained 
renal features contain information that is either irrelevant 
to treatment outcomes or has ambiguous associations.

Model construction and performance analysis
Five machine learning models were trained and their perfor-
mance assessed. During leave-one-out cross-validation, LR 

Table 2  Medoid features and feature selection result

Dx Xth deep learning feature map, H Histogram feature, GLCM Gray-level co-occurrence matrix-based feature, GLRLM Gray-level run length matrix feature, LRHGLE Low 
run high gray-level emphasis

Feature type Feature name P value AUC​ Selected by 
LASSO

Signature input

Renal feature XH_H_uniformity 0.052 0.673 (0.502–0.843) √ √

XL_H_mean_absulute_deviation 0.034 0.675 (0.519–0.830) √

XH_GLCM_correlation 0.013 0.722 (0.573–0.870) √ √

XL_GLRLM_LRHGLE 0.090 0.651 (0.491–0.811)

D1_GLCM_correlation 0.096 0.675 (0.500-0.849) √ √

Perirenal adipose feature XL_H_uniformity 0.005 0.737 (0.578–0.896)

X_GLCM_contrast 0.005 0.740 (0.592–0.889) √

XL_H_krutosis 0.053 0.665 (0.489–0.841)

XL_H_standard_deviation 0.005 0.740 (0.583–0.898)

XH_H_mean < 0.001 0.815 (0.688–0.941) √

XH_GLCM_cluster_shade < 0.001 0.815 (0.689–0.942) √ √

D5_GLCM_homogeneity2 0.006 0.748 (0.595–0.902) √ √

XH_GLCM_correlation 0.070 0.618 (0.440–0.795) √

D1_H_maximum 0.012 0.714 (0.563–0.865)

D5_GLCM_entropy 0.026 0.685 (0.526–0.843)

D1_GLCM_energy 0.004 0.745 (0.585–0.906) √
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achieved the highest accuracy of 0.780 (95%CI: 0.660–0.880) 
with renal features (Fig. 7). Meanwhile, using perirenal adi-
pose features, the radial basis function-kernel SVM yielded 
an accuracy of 0.865 (95%CI: 0.769–0.942). Accordingly, a 
renal signature was developed using LR with three features, 
and a perirenal adipose signature using SVM with two fea-
tures (Table 2). The AUC of the perirenal adipose signature 
was 0.879 (95%CI: 0.759–1.000), which was superior to that 
of the renal signature, 0.829 (95%CI: 0.691–0.967).

The SHAP kernel explainer was used to evaluate fea-
ture attributions by quantifying the individual impact 
of each feature on the predictions of different medical 
signatures. SHAP summary plots were used to visually 

depict the distribution of feature importance for each 
signature’s output, with the features sorted vertically 
based on their global importance. The SHAP values for 
each feature from various patients are represented by 
horizontal dots in Fig. 8a and b. Additionally, Fig. 8c and 
d illustrates the average absolute SHAP value for each 
feature. The results indicate that a deep learning feature 
has the most significant impact on decision-making for 
the perirenal adipose signature, whereas for the renal 
signature, a histogram feature plays the most crucial role.

Then, the SHAP force plot was used to explain how 
individual features influenced the prediction of signa-
tures for a single patient, displaying the direction and 

Fig. 5  LASSO feature selection process for renal features (a, b) and perirenal adipose features (c, d)
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magnitude of each feature’s contribution using blue or 
red arrows. As shown in Fig. 9, when the arrows of each 
feature in the signature are overlaid, if the SHAP value 
is lower than the base value, the signature predicts that 
the patient will benefit from PTRA. Conversely, this 
suggests a significant risk of the patient not benefiting.

To investigate the synergy between renal and perirenal 
adipose signatures, LR was used to integrate them. Each 
signature emerged as a significant independent predic-
tive factor in multivariate analysis, with P values < 0.05 
(renal signature at 0.033 and perirenal adipose signature 
at 0.005). No multicollinearity was detected between 
the signatures, as indicated by variance inflation fac-
tors below 5. As shown in Fig.  10, a threshold analysis 
was used to measure the performance metrics of each 

predictive model as the classification threshold var-
ied from 0 to 1. The ROC curves further revealed that 
the combined model yielded a superior AUC of 0.888 
(95%CI: 0.784–0.992). This implies that merging insights 
from both regions may improve prediction accuracy.

Discussion
This study evaluated the predictive performance of non-
contrast CT-based radiomics for PTRA treatment out-
comes in patients with severe ARAS. The results suggest 
that through the in-depth quantification and integration 
of CT imaging phenotypes, radiomics has the potential 

Fig. 6  The two primary components of the selected renal features 
(a) and perirenal adipose features (b). Red dots represent the benefit 
group, while blue dots represent the non-benefit group Fig. 7  Confusion matrices of the leave-one-out cross-validation 

results. (a) LR with renal features as input; (b) SVM with perirenal 
adipose features as input
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to preoperatively identify patients who are likely to ben-
efit from PTRA. Considering that the prediction process 
can be seamlessly integrated into the regular ARAS diag-
nostic workflow and yield results within minutes, radi-
omics is expected to assist clinicians in determining the 
most suitable candidates for PTRA.

Renal artery revascularization, primarily via PTRA, 
is currently one of the main therapeutic approaches 
for patients with ARAS. However, its efficacy remains 
unclear. Given the diverse and intricate nature of ARAS, 
it is essential to identify the specific phenotypes that 
could benefit most from PTRA. The KDIGO Consensus 
recommends high-grade stenosis as the primary indica-
tion for revascularization [9], supported by a recent pro-
spective cohort study [8]. Therefore, it was hypothesized 
that patients with severe stenosis would be more likely to 
benefit from PTRA. Accordingly, the experiments in this 

study focused on this ARAS subset to explore the feasi-
bility of radiomics in differentiating patients with signifi-
cant renal function improvements.

Several clinical characteristics, such as GFR and SCr 
[28, 29], have been shown to correlate with post-PTRA 
renal function improvement. However, in this study, no 
statistically significant differences in these factors were 
observed between the benefit and non-benefit groups. 
This could be due to the complex recovery mechanisms 
of renal function, which can be influenced by various 
factors including ischemia [30]. Moreover, there are dif-
ferences in the structure and size of the patient cohorts 
between previous studies and the present study. With a 
focus on clinical utility, this study specifically targeted 
patients with severe stenosis who were more likely to 
benefit from renal revascularization. Therefore, the 
discriminative efficacy of these factors may have been 

Fig. 8  SHAP summary plots of the renal signature (a, c) and perirenal adipose signature (b, d). a, b The plots illustrate the Shapley value for each 
feature in every patient; c, d The plots illustrate the average of the absolute SHAP values for each feature
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suppressed in the ARAS subset. Additionally, diabetes 
has been reported to significantly lower the chances of 
renal function improvement in patients with ARAS after 
stenting with optimal medical therapy [25]. However, 
because only three patients with diabetes participated in 
the study, the impact of this factor could not be validated.

To our knowledge, no studies have used AI to predict 
outcomes for patients with ARAS by analyzing preop-
erative medical images. Few studies have explored the 
relationship between preoperative magnetic resonance 
imaging metrics and improvements in renal function 
[31]. In this study, deep learning radiomics signatures 
was developed from routine non-contrast CT scans. 
Notably, the analysis was not limited to the affected renal 
region but also segmented the perirenal adipose tissue 
as an added ROI for feature extraction. The renal paren-
chyma directly reflects renal artery stenosis and ischemia, 
whereas perirenal adipose can indicate the accumulation 
of perirenal inflammatory factors [32]. Therefore, it was 
hypothesized that preoperative imaging phenotypes of 
these two regions would provide valuable information for 
predicting the efficacy of PTRA. This was confirmed by 
the experimental findings, which showed image patterns 
in both regions that possessed predictive potential. Fur-
thermore, the radiomics signature derived from the peri-
renal adipose region showed greater predictive capacity 
than that derived from the renal region.

AI-based medical image analysis has always been con-
strained by the lack of high-quality datasets. By predict-
ing the attributes of the input data itself (e.g., through a 
pretext task), self-supervised learning allows models to 

capture the intrinsic attributes and patterns of the input 
data, generating more diverse and generalizable feature 
representations. This enables models to be effectively 
trained and applied in areas with scarce data, such as 
medicine [33]. In this study, a set of unlabeled abdominal 
CT scans were collected and self-supervised learning was 
conducted on a deep learning network through a pretext 
task, training to derive a deep learning feature extractor. 
The extracted high-dimensional features can more thor-
oughly reveal potential biological patterns in the images, 
thereby improving the predictive accuracy of the radiom-
ics signature [34]. The constructed renal and perirenal 
adipose signatures incorporated deep learning features, 
indicating that these features play a crucial complemen-
tary role to handcrafted features in capturing information 
related to pathological changes and treatment outcomes.

In addition to using a self-supervised learning-based 
network training scheme, multiple techniques were 
adopted in this study to address the challenge of a limited 
sample size, ensuring the enhanced reliability and thor-
oughness of the findings. Through visualization based 
on volcano plots and radiomics heatmaps, we were able 
to intuitively observe the correlations between features 
and their associations with PTRA outcomes. Both renal 
and perirenal adipose features were discovered to con-
tain elements indicative of patient response to treatment, 
showing the potential for constructing predictive models. 
Leveraging unsupervised clustering, we unveiled latent 
patterns in radiomics features, filtering out the most 
representative candidate feature set without the risk of 
overfitting (comprising 5 renal features and 11 perirenal 

Fig. 9  SHAP force plots illustrating the discrimination of the early outcomes for two patients based on radiomics signatures. (a) The renal signature 
identifies a patient who did not benefit from PTRA; (b) The perirenal adipose signature identifies a patient who benefited from PTRA​



Page 13 of 15Fu et al. Visual Computing for Industry, Biomedicine, and Art             (2024) 7:1 	

adipose features). Subsequently, these features were inte-
grated using various machine learning methods. Through 
a series of cross-validations, it was determined that LR 
and SVM exhibited stable performances, making them 
suitable for constructing the radiomics signatures. To 
gain deeper insights into the decision-making process of 
signatures, SHAP values were employed for explainabil-
ity analysis. This approach evaluates the contribution of 
input features to prediction and showed how they posi-
tively or negatively impact prediction outcomes, thereby 
enhancing the transparency and trustworthiness of deci-
sions. This multifaceted analysis was conducted to com-
prehensively investigate the inherent information within 

the data, offering robust references for clinical applica-
tion and future research.

This study has several limitations. First, eGFR and 
SCr are the prevalent indicators used in current clinical 
research on renal artery stenosis for assessing patient 
renal function. In this study, a post-treatment eGFR 
improvement exceeding 20% was considered a benefit 
of PTRA. Considering that SCr is also a commonly used 
baseline indicator in the diagnosis and treatment of renal 
artery stenosis, an evaluation of how the key features and 
signatures of this study correlate with SCr may amplify 
the clinical relevance of the findings. Second, given 
that this study focused on patients with severe ARAS, 

Fig. 10  Threshold analysis for accuracy, sensitivity, specificity, Youden index, and F1 score for the renal signature (a), perirenal adipose signature (b) 
and combined model (c)
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a rigorous data inclusion protocol was implemented, 
resulting in a relatively small sample size. This limita-
tion prevented the allocation of a separate test set. Con-
sequently, to apply radiomics to this unique and critical 
clinical domain and explore its applicability, this study 
employed various techniques, including self-supervised 
learning, cross-validation, visualization, and model inter-
pretation. Future efforts will require more profound vali-
dation via larger-scale multicenter cohorts to facilitate 
the integration of radiomics into clinical practice. Finally, 
current large language models [35] and medical founda-
tion models [36] have been proven to effectively learn 
domain-general knowledge, outperforming previous AI 
techniques across various tasks. This evolution presents 
new avenues for the scaled deployment of AI. By devel-
oping a renal disease foundational model using general 
renal disease data and requiring only a small number 
of specific samples for fine-tuning, specialized models 
can be effectively deployed for downstream tasks. This 
approach promises improved predictive accuracy.

Conclusions
In conclusion, CT-based radiomics features show a 
robust correlation with early outcomes in patients with 
ARAS. Radiomics signatures offer the potential to iden-
tify patients likely to benefit from PTRA prior to treat-
ment and guide the selection of suitable therapeutic 
approaches.
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