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Abstract 

Flipover, an enhanced dropout technique, is introduced to improve the robustness of artificial neural networks. In 
contrast to dropout, which involves randomly removing certain neurons and their connections, flipover randomly 
selects neurons and reverts their outputs using a negative multiplier during training. This approach offers stronger 
regularization than conventional dropout, refining model performance by (1) mitigating overfitting, matching or even 
exceeding the efficacy of dropout; (2) amplifying robustness to noise; and (3) enhancing resilience against adversarial 
attacks. Extensive experiments across various neural networks affirm the effectiveness of flipover in deep learning.
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Introduction
In recent years, deep learning has demonstrated signifi-
cant success across diverse fields, spanning computer 
vision, natural language processing, medical imaging 
and drug design. Properly designed and trained artificial 
neural networks can adeptly model intricate patterns and 
nuances derived from extensive data. However, as model 
complexity grows, challenges emerge, notably ensuring 
the model robustness, particularly under noisy or adver-
sarial conditions.

In deep learning models, robustness is defined by the 
ability to produce consistent and reliable outputs amidst 
shifts and perturbations in the input data. The varia-
tions alter the distribution of the input data from that of 
the training data [1], with the most prevalent case being 
the shift from the training dataset to the testing dataset. 
Model lacking robustness, exemplified by over-fitting, 
may excel on training data but often fails on unseen data, 
resulting in sub-optimal real-world performance [2]. 

Several methods have been proposed to address over-
fitting and other issues, such as refs. [3, 4]. An established 
measure for evaluating model robustness is its ability to 
handle noisy input data. For instance, an image classi-
fier should identify an input image even with added noise 
[5]. Furthermore, robustness indicates resilience against 
adversarial attacks. With the growing use of deep learn-
ing models in critical applications, their susceptibility 
to adversarial attacks has been investigated. Adversarial 
attacks use crafted input data in such a way that they 
mislead the model to make incorrect predictions, while 
being almost indistinguishable from the original data [6]. 
The adversarial defense has emerged as a prominent topic 
in deep learning with multiple strategies [7–9]; however, 
these defenses are often computationally expensive.

Among techniques developed to improve model 
robustness, dropout, introduced by Hinton et  al. [10], 
stands out as an effective yet simple method. Dropout 
introduces randomness into the model by sporadically 
setting a fraction of input units to zero during training. 
This strategic noise incorporation deters neuron co-
adaptation, improving generalization and preventing 
over-fitting. Initially applied on fully connected models, 
dropout has since been expanded to various deep neu-
ral networks, including convolutional neural networks 
(CNNs) and transformers. Modifications to the original 
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dropout method include DropConnect [11], DropBlock 
[12], MaxDropout [13], and spectral dropout [14].

Deep neural networks are increasingly applied to com-
plex tasks, necessitating stronger regularization strategies. 
While dropout is effective in preventing overfitting, it offers 
a limited enhancement of noise and adversarial robustness. 
Specialized adversarial defense algorithms are effective, 
while often incurring computational overhead [15]. Thus, 
algorithms that bolster the comprehensive robustness 
without incurring high computational costs are required. 
Existing research demonstrates that multiplying the model 
weights using Gaussian noise in the form of N (1, σ) , which 
is positive, can outperform standard dropout [16]. Here, 
this study proposes an upgraded version of dropout, named 
‘flipover’, which can improve the model’s robustness from 
new angles. Unlike dropout, flipover does not merely zero 
out certain features. Instead, it employs a bolder approach, 
multiplying a selection of the original features using a nega-
tive factor, for instance, -1. This approach does not merely 
remove features; it introduces opposite features as pertur-
bations, challenging the model to learn from an altered 
feature representation. The preliminary work indicates that 
flipover can (1) prevent over-fitting as effectively as stand-
ard dropout, (2) improve noise robustness, which is not the 
primary focus of dropout, (3) facilitate adversarial defense 
because flipover generates adversarial attacks efficiently. 
While not designed initially for adversarial defense, Wang 
et  al. [17] reported that applying dropout during testing 
enhances model performance under adversarial attacks. 
However, incorporating a large dropout factor during test-
ing can substantially diminish the model’s effectiveness 
on the original dataset. Conversely, our method, when 
employed with appropriate techniques, minimally impacts 
the original model’s performance.

Methods
Algorithm description
Figure 1 illustrates a standard fully-connected network, and 
its modifications with either dropouts or flipovers. Drop-
out randomly removes some neurons such that they do not 
work during the feed-forward or back-propagation pro-
cesses. Conversely, flipover modifies a certain proportion of 
neurons by a negative multiplier in the hope that their nega-
tive effects help robustify the network. This section presents 
the flipover formulation, following the process of dropout 
illustrating flipover as a stronger regularization strategy. The 
subsequent section experimentally establishes the advan-
tages of flipover over dropout in several significant cases.

First, dropout technique is formulated using standard fully-
connected network with L hidden layers. Let y(l) denote the 
output of the lth layer ( l ∈ {1, . . . , L} and y(0) be the inputs). 
The feed forward operation can then be computed as

where f is the activation function and w(l) and b(l) are the 
weights and biases of the lth layer. With dropout, Eq.  (1) 
becomes

where ŷ(l) = r(l) ∗ y(l) and r(l) is a vector of independ-
ent Bernoulli random variables each of which has prob-
ability p of being 1, i.e., r(l)j ∼ Bernoulli(p) [16]. Similarly, 
the forward operation of the flipover method is the simi-
lar to the dropout operation except for ŷ(l) = − 1

α

r(l)

∗ y(l) , 
where α is a factor to control the amplitude of the flipped 
variables. Hence, the elements of ŷ(l) have a probability 
of (1− p) remaining in their original and p to be flipped.
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Fig. 1 Illustration of flipover operations. (a) A standard feedforward network; (b) The network with dropouts; (c) The network with flipovers
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In deep learning, cross-entropy loss and the least square 
(LS) loss are two commonly used loss functions. In the 
following two subsections, the study employs these two 
losses to prove that flipover is a regularization mechanism.

Derivation for cross‑entropy loss
First, cross-entropy loss is considered:

where ti denotes the ground truth for the ith output. If the 
activation function is Sigmoid function, the gradient of 
the standard network’s loss LN concerning w(l+1)

i  can be 
computed as follows:

After applying dropout, the gradient of the dropout 
network’s loss LD becomes:

where ⊙ represents the inner product operation. There-
fore, the effect of dropout is equivalent to applying mask 
r(L) to the gradient of the standard network. Given this 
dropout mask, the gradients during back propagation are 
scaled. This helps to prevent the weights from receiving 
large gradient updates, making them over-reliant on spe-
cific patterns or features in the training data. This has a 
similar effect as weight decay (such as L2 regularization) 
where the magnitudes of the weight updates are con-
strained, although the mechanism is different.

Similarly, the gradient involving flipover is

which is equivalent to applying a mask r(L) that prevents 
large gradient updates and adds perturbations to the 
direction of the gradient. It has been proved that gradient 
noise can be regarded as a smoothing factor, contributing 
to global convergence [18]. Compared to random noise, 
the study flipped the gradient components the opposite 
direction, which had stronger and more targeted effects.

Derivation for LS loss
With simplifications, the LS loss function can precisely 
express the regularization term introduced by filpover 
in its exact form. The losses for the normal network LN 
and dropout network LD can be written as
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where Ii denotes the inputs to a certain layer, and δi ∼ 
Bernoulli(p). δ is equal to 1 with probability p, and 0 oth-
erwise. In this calculation, only consider a linear model 
without activation functions is considered. The gradient 
of the dropout network can be calculated as:

For simplicity, assume w′ = pw . It turns to

The expectation of the gradient of the dropout net-
work can be calculated as

Therefore, dropout can be treated as a regularization 
term for the original loss function. Following this, the 
loss of the flipover network can be expressed as

Here, α is set to 1 for convenient computation. Hence, 
the gradient is

Let w′ = (1− 2p)w , then
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Therefore, flipover can be treated as a stronger regular-
ization strategy than dropout. When α is set to zero, flip-
over reduces to dropout. Overall, two hyper parameters 
exist: the flipover rate, which indicates the proportion of 
neurons that will be flipped, and the flipping amplitude, a 
negative number.

 Results
Experimental settings
Dataset and network structure. The proposed method 
was applied on two different neural network models, 
which yield promising results, demonstrating the effec-
tiveness of the flipover concept across networks of vary-
ing scales. The first model is a small CNN consisting of 
four convolutional layers and two fully connected layers, 
and has been used as a standard model in many previ-
ous work [19–21]. The parameter settings proposed by 
Wang et al. [17] is used, and the model was trained on the 
Modified National Institute of Standards and Technology 
(MNIST) dataset [21]. The second model was ResNet18 
[4], which was trained using CIFAR10 dataset [22].

Implementation details. For the small CNN network, 
a simple flipover between the two fully-connected layers 
is applied, with α set to 1. For ResNet18, since the net-
work is deeper, adding flipover to a single layer is insuf-
ficient. In the PyTorch official documentation, ResNet18 
is divided into four blocks, each containing two basic 
blocks, which consists of convolutional layers, batch nor-
malization layers and down-sampling layers. Flipover 
was applied between the two basic blocks of the fourth 
block. Further, the original single fully-connected layer 
was replaced with two layers and flipover was applied 
between them. In this case, α was set to 0.5. For a fair 
comparison, dropout was applied at the same positions as 
flipover for all networks. First the small CNN was trained 
to demonstrate the effect of flipover on preventing over-
fitting. Subsequently, both networks were trained and 
random noise was added on the test set to demonstrate 
the improvement in noise robustness. Finally, adversarial 
attack were performed on both networks and the accu-
racy under attack was compared among models without 
regularization and with either dropout or flipover.

Results
Overfitting prevention. It was found that flipover was 
effective in preventing overfitting, as evidenced by plot-
ting the training and test losses when training the small 
CNN on the MNIST dataset, as shown in Fig. 2. In the 
absence of any regularization, a clear pattern of overfit-
ting emerged: the training loss consistently declined con-
verging to zero, whereas the test loss initially decreased 
and then stopped at a significant level. When applying 
flipover, the test loss was effectively controlled, and its 

efficacy was directly proportional to the flipover propor-
tion utilized. A flipover proportion of 0.2 outperformed 
the counterpart employing a dropout rate of 0.5. Essen-
tially, the incorporation of flipover serves as a robust 
measure to counteract overfitting, enhancing the model’s 
generalizability and ensuring consistent performance 
across diverse datasets. However, when the flipover rate 
is high, the training loss converged to a relatively large 
value, which may cause a performance drop. Table  1 
shows the test accuracy (ACC) for different regulariza-
tion methods, where the Dropout/Flipover rate repre-
sents the probability that a neuron is dropped or flipped. 
With a flipover rate of 0.2, the model achieved the high-
est accuracy among all the settings.

Noise suppression. Flipover was applied to the small 
CNN and ResNet18 models to evaluate its effect on noise 
suppression. The models were trained on the original 
datasets and tested on noisy datasets generated by add-
ing different types of noise to the original test sets. Three 
common types of noise in images were applied: Gaussian, 
Poisson, and salt-and-pepper. For the MNIST dataset, 
because Poisson noise did not significantly change the 
digital images, only Gaussian noise and salt-and-pepper 
noise were applied. The standard deviation of the Gauss-
ian noise was set to 1.0, and the salt-and-pepper noise 
ratio was set to 0.4. For the CIFAR10 dataset, all three 
types of noise were applied. The standard deviation of the 
Gaussian noise was set to 0.1, the salt-and-pepper noise 
ratio was 0.05, and the scaling factor of the Poisson noise 
was 50 [23]. Figure  3 shows examples of the noisy data 
on the CIFAR10 dataset. Table 2 summarizes the experi-
mental results. The models with flipover significantly 
outperformed the original models without regulariza-
tion or with dropout. The results confirm the efficacy 
of flipover in enhancing the model’s resilience to noise, 
underscoring its potential as a tool for enahncing model 
reliability under noisy conditions.

Adversarial defense. The efficacy of our method for 
adversarial defense is further assessed. The fast gradi-
ent sign method (FGSM) was applied [2] to attack the 
CNN and ResNet18 networks, and the flipover and 
dropout were respectively used for defense. A constant 
attack power of ǫ = 0.25 was maintained throughout the 
testing phase. In  ref. [2], the authors separately set the 
training and test dropout rates from 0 to 0.9 to find the 
best combination of (training rate, test rate). This set-
ting was followed with the flipover rate ranging from 0 
to 0.4. Figure  4 shows the accuracy of the small CNN 
model under adversarial attacks with different combina-
tions of training and test parameters. Table  3 lists the 
best results for flipover and dropout on both networks. 
On both the small CNN and ResNet18 networks, flip-
over achieve a much higher performance under attack 
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than dropout. Furthermore, the flipover method has 
several advantages. Unlike dropout, which requires a 
high dropout rate at the test time for defense, flipover 
can achieve a decent defense effect when applied only 
during training. On ResNet18, dropout had almost no 
use under attack, while flipover still greatly improved 
the defense ability. Generally, the optimal combination 
of the flipover parameters is (0.3, 0.0), and with that set-
tings, the original model accuracy was rather close to 
the vanilla models. By contrast, with the best combina-
tion of dropout parameters (0.7, 0.9), there was a sub-
stantial decrease in the original accuracy. Collectively, 

Fig. 2 Training and test losses concerning different regularization strategies. (a) No regularization; (b)-(d) Flipover at different rates; (e)-(i) Dropout 
at different rates

Table 1 Test accuracy of the small CNN model on MNIST dataset

Method Dropout/Flipover rate ACC (%)

Vanilla - 98.84

Dropout 0.1 98.94

0.2 99.05

0.3 99.07

0.4 99.01

0.5 99.00

Flipover 0.1 99.08

0.2 99.18
0.3 99.00



Page 6 of 9Liang et al. Visual Computing for Industry, Biomedicine, and Art             (2024) 7:4 

these findings underscore flipover’s preeminence in 
boosting adversarial robustness and enhancing the 
defense ability of a network without a concomitant com-
promise in model accuracy associated with dropouts.

Discussion
Positions for flipover and parameter settings. 
Because flipover is a stronger regularization strategy 
than dropout, the positions for implementing flipover 
and its parameters need to be carefully determined for 

optimal model performance, especially for deep neu-
ral networks. For small networks, flipover can be sim-
ply applied before the last few fully-connected layers, 
whereas for large networks more flipover operations 
can be added to ensure effectiveness. In general, flipo-
ver should be applied to the deeper layers of the net-
work to avoid initial information loss. There are two 
parameters of the flipover operation: flipover rate and 
flip amplitude. Both affect the strength of the regulari-
zation. According to the experiments, for the selected 

Fig. 3 Examples of test data before and after adding Gaussian noise for the CIFAR10 dataset. (a) The original data without noise; (b) The data 
with Gaussian noise; (c) The data with Poisson noise; (d) The data with salt-and-pepper noise

Table 2 Noise suppression using the flipover technique

Note: ACC Org stands for the accuracy on the original test set; ACC Gaussian stands for the accuracy on dataset with Gaussian noise; ACC Poisson stands for the 
accuracy on dataset with Poisson noise; ACC salt stands for the accuracy on dataset with salt-and-pepper noise

Model Method ACC Org (%) ACC Gaussian (%) ACC Poisson (%) ACC 
salt (%)

Small CNN [17] Vanilla 98.53 58.31 / 50.49

Dropout 98.60 61.50 / 61.50

Flipover 98.00 68.71 / 69.62
ResNet18 [4] Vanilla 93.63 41.27 46.92 46.71

Dropout 93.31 41.60 43.03 48.00

Flipover 92.37 46.50 49.85 53.49
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network architectures, with the flipover rate of around 
0.3 the model can improve robustness while not harm-
ing its accuracy. However, the flip amplitude can vary 
significantly in different models, and experientially, 
larger models generally prefer smaller amplitudes.

Effectiveness on transformer architecture. Recently, 
the application of transformer-based networks has 
become widespread, surpassing that of traditional deep 
neural networks for various tasks including computer 
vision, natural language processing, and medical imag-
ing. Recognizing the effectiveness of dropout in these 
networks, the potential benefits of implementing flipover 
is explored. A small vision transformer (ViT) model [24]
is selected, which contains six transformer blocks with 
embedding sizes 512 and four heads. The network was 
trained on the CIFAR10 dataset and subjected it to FGSM 
attacks. Since ViT originally contained dropout layers, 
the initial attempt involved the straightforward replace-
ment of the dropout layers with the flipover counterparts 
within the transformer blocks. However, this approach 
did not yield satisfactory results. Different strategies 
for incorporating flipover were explored and the find-
ings compiled in Table  4. Although there was a notable 

Fig. 4 Adversarial defense capabilities of different methods. (a) Original test accuracies with different training and test dropout rates; (b) Test 
accuracies under attack with different training and test dropout rates; (c) Original test accuracies with different training and test flipover rates; (d) 
Test accuracies under attack with different training and test flipover rates

Table 3 Adversarial robustness measures using no regularization, 
dropout, and flipover respectively

Note: ACC Org stands for the accuracy on the original test set; ACC Att for the 
accuracy under adversarial attack; Para Comb for the optimal combination of 
training and test rates

Model Method ACC Org (%) ACC Att (%) Para comb

Small CNN [17] Vanilla 98.53 5.50 /

Dropout 92.43 34.98 (0.7, 0.9)

Flipover 98.00 49.79 (0.3, 0.0)

ResNet18 [4] Vanilla 93.63 23.00 /

Dropout 93.42 23.14 (0.0, 0.3)

Flipover 92.37 40.99 (0.3, 0.0)
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improvement in the model’s accuracy under attack, the 
enhancement was not as significant as that observed for 
small CNN and ResNet architectures. Hypothetically, the 
moderate improvement can be attributed to the sub-opti-
mal current integration of flipover in the transformer. The 
foundational elements of transformers, namely the atten-
tion mechanism [25] and embedding process [26], could 
be pivotal in this context. A more targeted approach, 
involving the introduction of perturbations within these 
core components could magnify the efficacy of flipover in 
defending against adversarial attacks.

Combination with other regularization strategies. 
It was found that flipover could be easily combined with 
other regularization methods. By adding a batch normal-
ization layer to the small CNN model, the accuracy under 
attack reaches 67% coupled with flipover. As an ablation 
study, applying batch normalization only obtained results 
similar to what the vanilla model got (about 20%). This 
demonstrates the compatibility of flipover with other reg-
ularization methods.

Limitations. The proposed flipover method showed 
promising results in the experiments, surpassing the per-
formance of the same models using standard dropout, 
yet the new method has its limitations. First, the decision 
of which layers to apply ‘flipover’ to requires delibera-
tion. While larger networks generally benefit from more 
flipped layers, identifying the optimal strategy requires 
an empirical adjustment, which can be time-consuming. 
The flipover parameters, including the rate and ampli-
tude, were manually determined. These fixed settings 
may not be optimal for other training scenarios. Further 
efforts are needed for optimal performance and general-
izability. Notably, flipover, being a more intense form of 

regularization than dropout, can significantly impact the 
model performance if its strength is too strong. Therefore, 
caution must be exercised when setting a high flipover 
rate, as it may adversely affect the model performance. 
Finally, the use of flipover in large models is another 
interesting topic. For example, to regularize/stabilize a 
transformer architecture, the study hypothesizes that the 
attention mechanism should be the best target to perturb. 
This is currently being worked as a follow-up project.

Conclusions
This study extended dropout to bolster model robust-
ness on multiple fronts. The proposed approach not 
only serves as a more effective regularization technique 
than conventional dropout, mitigating overfitting, but 
also introduces adversarial perturbations to gradients, 
enhancing resilience against adversarial attacks. This 
makes the proposed method particularly suitable for 
challenging scenarios, including those involving noisy 
data, pronounced domain shifts, or direct adversarial 
confrontations. Optimal results requires judicious selec-
tion of positions in the network and network parameters 
for the flipover to maximize the benefits without compro-
mising overall performance. Future research should focus 
on developing parameter selection strategies and tailor-
ing this approach to transformer-based architectures.
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