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Abstract 

Alzheimer’s disease (AD) is a neurological disorder that predominantly affects the brain. In the coming years, it 
is expected to spread rapidly, with limited progress in diagnostic techniques. Various machine learning (ML) and arti-
ficial intelligence (AI) algorithms have been employed to detect AD using single-modality data. However, recent 
developments in ML have enabled the application of these methods to multiple data sources and input modalities 
for AD prediction. In this study, we developed a framework that utilizes multimodal data (tabular data, magnetic reso-
nance imaging (MRI) images, and genetic information) to classify AD. As part of the pre-processing phase, we gener-
ated a knowledge graph from the tabular data and MRI images. We employed graph neural networks for knowledge 
graph creation, and region-based convolutional neural network approach for image-to-knowledge graph generation. 
Additionally, we integrated various explainable AI (XAI) techniques to interpret and elucidate the prediction out-
comes derived from multimodal data. Layer-wise relevance propagation was used to explain the layer-wise outcomes 
in the MRI images. We also incorporated submodular pick local interpretable model-agnostic explanations to inter-
pret the decision-making process based on the tabular data provided. Genetic expression values play a crucial role 
in AD analysis. We used a graphical gene tree to identify genes associated with the disease. Moreover, a dashboard 
was designed to display XAI outcomes, enabling experts and medical professionals to easily comprehend the predic-
tion results.

Keywords Multimodal, Region-based convolutional neural network, Layer-wise relevance propagation, Submodular 
pick local interpretable model-agnostic explanations, Graphical genes tree, Alzheimer’s disease

Introduction
In healthcare systems and clinical practice, an array 
of artificial intelligence (AI) tools and machine learn-
ing (ML) methods has gained popularity among doctors 
and researchers [1]. The application of ML algorithms in 

AI-driven health diagnostics has proven to be efficient 
for early detection and personalized treatment recom-
mendations. However, it is essential to consider multi-
ple data sources and mats to enhance clinical efficiency 
and achieve accurate outcomes from patient health data. 
Through the synergistic integration of AI and ML in 
healthcare, we can unlock the unprecedented potential to 
revolutionize medical decision-making, improve patient 
outcomes, and transform the modern medical landscape.

Researchers have recently turned their attention to 
multimodal data, because clinical and healthcare admin-
istrators require the analysis of complex decision-making 
outcomes across diverse data formats [2–4].
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Typically, doctors and experts rely on a wide range 
of data formats for patient healthcare records, such as 
image data (e.g., magnetic resonance imaging (MRI), 
X-rays, photographs, and computerized tomography 
scans), tabular data (e.g., demographics, medical history, 
and age), and genetic information (e.g., gene expression, 
protein expression, and molecular functionalities) [5–9].

This prompted us to develop a multimodal data frame-
work for Alzheimer’s disease (AD) analysis. AD is a neu-
rological disorder that impairs the human brain [10–12]. 
AD is the most common type of dementia, which results 
in changes in normal behavior, memory shortages, and a 
decline in thinking capabilities. This disease is character-
ized by the abnormal accumulation of amyloid plaques 
and neurofibrillary tangles in the brain in multiple stages. 
Many studies have been conducted to detect the pro-
gression of this disease and identify effective diagnostic 
methods. Alberdi et al. [13] predicted that 11 million to 
16 million elderly people are likely to suffer from AD by 
2050, whereas 7 million patients are already infected with 
AD in the United States as of 2022. Early and accurate 
diagnosis can help mitigate primary brain damage. As 
AD does not have any effective recovery, early detection 
through multimodal data analysis could be considered a 
proactive and timely treatment that can delay the pro-
gression of this disease. Early detection has been consid-
ered an important step in the development of advanced 
treatments for AD [14]. A comprehensive literature 
review was conducted by concentrating on patient data-
sets and effective measurement techniques, including 
ML. Two ML methods, an 18-layer convolutional net-
work, and a 3D convolutional network, were employed 
to forecast the research outcome. Contemporary medical 
tools and healthcare systems can significantly enhance 
patient outcomes [15–18].

Owing to the prevalence and severity of the dis-
ease, current diagnostic tests often struggle to provide 
a detailed understanding or definitive results within a 
patient’s lifetime, relying heavily on a comprehensive 
analysis of the patient’s medical history and information. 
Examining brain tissue changes can aid in the most accu-
rate AD diagnosis; however, collecting samples through 
biopsies poses high risks to patients [19–22]. Neurologi-
cal changes induced by AD can be effectively diagnosed 
using MRI and ML. Deep-learning techniques (deep con-
volution networks) have been applied to analyze medi-
cal images to detect abnormalities, classify diseases, and 
diagnose diseases [23]. Different data decision-making 
processes can be applied to improve and extend the accu-
racy and efficiency of medical image analysis using deep 
convolution networks, thereby strengthening patient 
care. Computer vision and deep learning (DL) methods 
have been effectively used in ref. [24] to accurately detect 

AD, with an accuracy of 97.65%. Convolutional neural 
network (CNN) has been used in DL through meaning-
ful optimization of precious experiences using eight later 
architectures in this particular work. Modern healthcare 
and the use of DL models for early AD detection using 
neuroimaging biomarkers have presented significant 
challenges in AD. Researchers have implemented an Effi-
cientNet-b0 CNN with a novel “fusion of end-to-end and 
transfer learning” approach to classify different stages of 
AD [25].

In addition to the histological examination of MRI 
images, the accurate diagnosis of AD severity depends 
on other data sources, such as demographic and gene 
expression data. Genetic information plays a significant 
role in the diagnosis of AD. Furthermore, a strong cor-
relation has been observed between gene expression data 
and patient demographic information for the diagnosis of 
AD, leading to improved treatment for AD patients [26–
28]. Consequently, recent research has shown a growing 
interest in utilizing multimodal data to detect different 
acute diseases. This study aimed to determine the sever-
ity of AD using multimodal data analysis.

Although multimodal data analysis using various ML 
models has attracted the attention of researchers, these 
ML models, often referred to as “black box” models, can 
be challenging to fully comprehend. Explainable artificial 
intelligence (XAI) approaches can deliver reliable and 
trustworthy medical and clinical data by offering insights 
into prediction models. To interpret image datasets, sev-
eral XAI techniques, such as gradient-weighted class acti-
vation mapping, layer-wise relevance propagation (LRP), 
and concept activation vectors, are employed to explain 
CNN for glaucoma prediction from MRI images [29, 30]. 
Additionally, XAI approaches such as local interpretable 
model-agnostic explanations (LIME) and Shapley addi-
tive explanations (SHAP) are used to explain tabular or 
demographic data.

In this study, we focused on multimodal data to predict 
AD and enhance the explainability and interpretability 
of prediction models. To process the MRI data, we gen-
erated a knowledge graph from the image and applied a 
CNN to predict the severity of AD. CNN is a black box 
method for identifying patients with or without demen-
tia. To increase the reliability of the results predicted by 
the CNN, we employed LRP. The LRP approach explains 
and interprets CNN results. To analyze AD from the 
medical records (tabular data), we used a support vector 
machine (SVM) to classify patients with AD. However, 
SVM is a black  box model; therefore, we utilized LIME 
as the XAI approach to interpret the prediction insights 
for obtaining interpretable outputs. LIME helps identify 
demographic features that significantly contribute to AD. 
We also applied a XAI approach called the graphical gene 
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tree (GGT) to interpret the gene expression data. GGT 
aids in identifying the genes associated with AD.

This research presents two significant results of practi-
cal importance.

1. Enhanced decision-making for personalized treat-
ment: One of the crucial necessities of this research is 
to empower healthcare professionals to make better-
informed decisions regarding personalized treatment 
plans for Alzheimer’s patients. By incorporating an 
interpretable framework using multimodal data, doc-
tors and researchers can gain a deeper understanding 
of the complex factors contributing to the disease, 
including genetic, demographic, and imaging data. 
This comprehensive knowledge enables them to tai-
lor treatments to individual patient needs, ultimately 
improving patient outcomes and quality of life.

2. Encouraging collaborative healthcare innovation: 
The development and application of an interpret-
able framework for Alzheimer’s treatment plan-
ning using multimodal data can foster collaboration 
among different stakeholders in the healthcare eco-
system, including researchers, clinicians, data scien-
tists, and technology developers. Interdisciplinary 
collaboration encourages the exchange of knowledge, 
expertise, and resources, ultimately promoting the 
development of advanced, effective, and accessible 
healthcare solutions. Such collaborative efforts can 
contribute to better healthcare outcomes and drive 
positive societal change by ensuring that patients 
with AD receive the best possible care irrespective of 
their socioeconomic background.

Methods
In the methodology for an interpretable framework 
for multimodal data analysis, we first preprocessed and 
cleaned data from various modalities, such as tabular, 
image, text, and gene expression data. Next, we inte-
grated the data by aligning and connecting features from 
different sources to create a unified dataset. To combine 
the features of these multimodal data, we first used MRI 
to identify brain regions affected by AD and the genes 
responsible for these changes. We then identified the 
corresponding genes for different stages of AD, includ-
ing mild dementia, moderate dementia, non-dementia, 
and very mild dementia. We then applied black  box AI 
models to each modality considering the specific char-
acteristics of the data type. To enhance the interpret-
ability of the results, we utilized XAI techniques tailored 
to each modality, allowing for a better understanding of 
the model’s predictions. Finally, we evaluate the frame-
work’s performance using appropriate metrics to assess 

the accuracy and interpretability of the multimodal data 
analysis.

Datasets
In this study, we analyzed AD using multimodal data. This 
multimodal dataset is open access and comprises three 
different modalities (tabular, image, and gene expression 
data) from four distinct data sources. The open access 
series of imaging studies (OASIS) dataset created by the 
Washington University Alzheimer’s Disease Research 
Center contains patient medical information. These 
medical records were obtained from Kaggle (medical 
record). The OASIS dataset includes information on 416 
patients aged 18–96 years categorized into three different 
years (young, middle-aged, or older adults). This data-
set contains MRI scans of 150 patients aged 60–96 years 
obtained over two or more visits at least one year apart. 
Each participant was scanned three to four times dur-
ing each session. All participants were right-handed and 
included both men and women. Seventy-two people had 
no dementia throughout the study, while 64 had demen-
tia at their first visit and remained, including 51 with 
mild to moderate AD, and the rest aged 18–59 years. 
To analyze the severity of AD, 64000 MRI images were 
sourced from Kaggle (image data), comprising image data 
that included four different Alzheimer’s categories: mild 
dementia, moderate dementia, non-dementia, and very 
mild dementia. Each image was derived from the aggre-
gation of three or four separate T1-weighted MRI scans 
of both male and female subjects. Microarray data were 
obtained from the NCBI Center for Biotechnology Infor-
mation (accession no. GSE174367), which contains 18234 
genes in rows and 104 patients in columns representing 
either AD or non-AD cases [31, 32].

Patient‑centric multimodal data architecture
In this study, we present a method for patient-specific 
multimodal data explainability for AD comprising of 
three stages: data pre-processing, knowledge graph 
generation, and data explainability and interpretability. 
During the data pre-processing phase, we processed the 
collected multimodal datasets. Then, we applied vari-
ous knowledge graph generation approaches (for exam-
ple, Image2Graph and Text2Graph) to the preprocessed 
data to create knowledge graphs. XAI techniques, such as 
LIME, SHAP, local interpretation-driven abstract Bayes-
ian network, and LRP were used to explain the multi-
modal datasets for AD (Fig. 1).

Knowledge graph
A knowledge graph [33] is a directed graph character-
ized by entity categories and descriptions. It is defined 
as a tuple, G = E, R, T, C, D, where E represents a set of 
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entities, R denotes the relationships between entities, T 
is a set of triples, C signifies the entity categories, and D 
refers to the set of entity descriptions. A single tuple, t 
∈ T, takes the form of (ei, rj, ek), where ei, ek ∈ E are the 
top and bottom entities, and rj represents the relationship 
between them.

Knowledge graphs from tabular data
A model that converts tabular data into a knowledge 
graph by extracting features from it was discussed. 
As shown in Fig.  2, we employ a graph neural network 
(GNN) to generate a knowledge graph.

Graph construction with probability adjacency matrix
Given m columns in tabular data, denoted as 
x = {x1, x2, . . . xm} , we represent these columns as an 
embedding matrix, E ∈ Rm×d , to construct a unified 
graph. Each column xj is embedded in the j-th row of the 
embedding matrix E. We compute the probability adja-
cency matrix, A, using the following equation

Here, Wl ,Wr ∈ Rm×m are trainable matrices, σ is the 
activation function, and the sigmoid function normalizes 
the link weights among table columns.

Feature interaction learning
Considering a row for a sample, denoted as 
xi = xi1, x

i
2, . . . x

i
m  , we transform these features into 

a feature embedding matrix, ∈ Rm×d E, where each row 
represents the  features of a sample. This embedding 
matrix E was used to initialize the nodes in the knowl-
edge graph.

We then used a GNN approach to learn feature inter-
actions in the tabular data. The GNN recursively updates 
the node-embedding values for each node by using dif-
ferent internal layers. The k-th convolution layer of the 
GNN is defined as:

(1)A = softmax
(

σ(EW l)σ (EWr)
T
)

∈ Rm×m

Fig. 1 A schematic diagram for interpretable multimodal data analysis

Fig. 2 A schematic diagram to generate knowledge graphs from tabular data
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Eki ∈ Rm×d is the intermediate embedding fea-
ture matrix,  E0i is the initial embedding matrix, and 
Wk ∈ Rd×d is a trainable matrix. The GNN aggregates 
intermediate neighborhood information from the initial 
embedding matrix,  E0.

Node link sampling
We also describe a method for generating the weights of 
the links among the nodes. The number of feature inter-
actions for each row can be defined as

Here, s is the sample size, and the RowSample function 
determines link weights based on the multinomial prob-
ability distribution L=U.

Knowledge graphs from images data
The generation of a knowledge graph from image data, 
which demonstrates the interconnections between dif-
ferent brain regions in AD MRI data, is also discussed. 
As depicted in Fig.  3, the knowledge graph genera-
tion framework involves three primary steps: detecting 
regions of interests (ROIs), determining the relationships 
among ROIs, and creating graphs.

Identifications of ROI
We employed a faster region-based convolutional neu-
ral network (R-CNN) model to identify ROIs within 

(2)Eki = Ek0 + σ

(

AEk − 1iWk
)

(3)Li = RowSample(E[i, :], s) = {(i, j1), ....(i, js)}

the faster R-CNN images [34]. Initially, a complete MRI 
image is processed using a CNN [35], generating features 
specific to the given MRI image. Subsequently, these 
image features were passed through another neural net-
work, the region proposal network [36], which predicts 
the ROIs for the corresponding image along with the 
associated bounding boxes. By mapping these ROIs with 
image features, we can extract specific regions from the 
MRI images based on the identified bounding boxes.

Relations between the ROIs
We explore the relationships between the ROIs that are 
crucial for constructing the graph. The extracted ROIs 
were processed using an R-CNN to establish connections 
among them.

Mathematically, the knowledge graph generation pro-
cess entails estimating the optimal y∗ = maxyP

(

y|I ,BI

)

 
that maximizes the following probability function:

I denotes an MRI image,  BI represents the pro-
posed object boxes, and y is a set of all vari-
ables, including classes (demented and 
non-demented), bounding boxes, and relation-
ships:y = {yclsi , ybboxi , yi→j|i = 1, . . . .n, j = 1, . . . ., j} . Here, 
n refers to the number of proposed boxes, ycls indicates 
the class label, and yi→j represents the predicate between 
the i-th and j-th proposed boxes. We selected the regions 
associated with the highest probability values, P

(

y|I ,BI

)

, 
for the bounding boxes.

(4)

P
((

y|I ,BI

)

=
)

∏

i∈V

∏

j �=i
P
(

yclsi , ybboxi , yi→j|I ,BI

)

Fig. 3 A framework to generate knowledge graphs from Alzheimer’s MRI data
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Construction of knowledge graph
The extracted probability values enabled the construction 
of a knowledge graph. To achieve this, we considered a 
graph with triples.

where x represents an ROI of image I, Px is the Cartesian 
product of the ROI probability values, and α denotes the 
connected weight among the ROIs.

Ultimately, the knowledge graph can be defined as:

Explainable AI Methods for Healthcare Systems
Several healthcare systems based on ML and multi-
modal data are viewed as black boxes because of their 
explainability and interpretability. To achieve trustwor-
thy and interpretable results, we employed various XAI 
approaches to interpret our findings.

GGT approach for XAI
This subsection outlines the XAI approach used to 
identify genes relevant to AD using gene expression 
data. We applied the GGT method to extract biological 
knowledge related to AD. The GGT is an interpreta-
ble approach that helps explain the predictive mecha-
nisms of ML and generates knowledge graphs. The 
GGT framework, depicted in Fig.  4, comprises three 
basic steps: (1) permutation generation, (2) Bayesian 
network learning, and (3) breadth-first search (BFS) to 
find class variables.

Permutation generation
GGT permutes the vector of feature inputs (genes) with 
F = {F1, F2, …, Fn}. Features are permuted using a uniform 
distribution with permutation variance, ϵ, where ϵ ε [0,1]. 
This permutation is performed over the interval Fi − ϵ, 
Fi + ϵ. The goal of the permutation is to investigate how 

(5)
∏

G =

{

(x,Px,α) :
∏

x|Px = α

}

(6)
∑

= {(¬xi∨pxi, 1− αi)/(αi,Px,α)ǫ�G}

permutations affect the prediction of classifiers for differ-
ent combinations.

Bayesian network learning
During the Bayesian network learning phase, GGT cre-
ates a Bayesian network. A Bayesian network is a directed 
acyclic graph in which each node represents a variable 
and each edge represents the direct connectivity from the 
source node to the goal node. Bayesian networks repre-
sent the dependency/independence between features, 
and each node is associated with a conditional probabil-
ity [37]. Bayesian networks calculate the probability chain 
rule in full-join probability theory [38].

Let G be a BN graph of features F1, F2, …, Fn. The prob-
ability of exceeding P over the sample for graph G can be 
expressed using the following equation [39]:

Here, PaFi represents all the parent variables for feature 
Fi. Bayesian networks work together with all variables 
using full joint probability theory for inference.

This Bayesian network has two important parameters: 
a directed acyclic graph G and a set of conditional proba-
bility parameters φ representing the conditional depend-
ency. Given gene expression data d with n observations, 
P (G, φ d) comprises two phases: structure learning and 
parameter learning, as described below [40]:

Here, p (G|d) is structure learning, and P (φ|G, d) is 
parameter learning. Structural learning aims to deter-
mine a directed acyclic graph G by maximizing P (G|d) . 
Parameter learning focuses on the probability parameter 
learning focuses on the probability parameter φ obtained 
from structural learning.

Given the parameter φ with an independent distribu-
tion, the learning process can be described as follows 
[41, 42]:

(7)P(F1, F2, . . . , Fn) =
∏n

i=1
P(Fi|PaFi)

(8)P(G,φ|d) = p(G|d).P(φ|G, d)

Fig. 4 An overall framework to generate knowledge graphs from Alzheimer’s MRI data
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Class variable searching
GGT uses a BFS, a feature selection approach for a spe-
cific class. The BFS identifies the target variables from the 
parents, child, and parent (parent of a child) of the target 
variable. GGT identifies interconnected genes that are 
directly associated with the target variables.

XAI approach: LRP
Next, we introduce LRP [43] to explain the outcomes of 
the CNN approach for AD class prediction from image 
data. The main idea of the LRP algorithm is to compute 
the relevance score of the features for individual MRI 
images and track the contribution of the final output 
through layer-by-layer operations. In the LRP algorithm, 
each node in layer l contributes to the activation node j in 
the immediate following layer l + 1 receives a relevance 
score Rj

l+1.
The total relevance score of layer l was determined by 

summing all the relevance scores for neuron i. The over-
all relevance score can be defined as

Here, 
∑

i R
i→j
l,l+1 is the overall relevance score.

Explainability using submodular pick‑LIME
To demonstrate the interpretability of tabular data from 
patients with AD, an experiment was developed using 
the LIME approach with the variant called submodular 
pick LIME (SP-LIME) [44], which shows how a particu-
lar decision is made concerning the associated medical 
features. SP-LIME is a global interpretation model and 
extended framework of the LIME process. The SP-LIME 
formalism is as follows:

Let X be the space of Alzheimer’s patients’ medical fea-
tures and x be an instance of tabular data. LIME was used 
to explain the predictive models. LIME has two main 
components: explanation (f ) and black box model (p). 
For this explanation, LIME uses an interpretable function 
as follows (Eq. 11):

Where exp(x) represents the interpretable features 
explained by LIME, the loss function θ(p, f, λx), p denotes 
the black box model (i.e., decision tree), f signifies the 
explanator, and λx is the similarity measure between data 
points x. The penalty for the complexity of model f is 
represented by Ω. We solved Eq.  12 using the provided 

(9)P(φ|G, d) =
∏

i
P
(

φFi |
∏

Fi, d
)

(10)
∑

i
R
i→j
l,l+1 = Ri

l+1

(11)exp(x) = argminf ∈Fθ
(

p, f , �x
)

+�(f )

HR data, and LIME locally explained the job satisfaction 
characteristics.

The feature set V is defined by SP-LIME for the entirety 
as follows:

Here, B is the total number of explanations that the 
user is willing to consider, W is the explanation matrix 
on n × d, where n is the sample size and d is the set of 
patient medical features. The global importance across 
the explanation space is denoted by Ij, V represents the 
features that are explained, and C(V, W, I) is the overall 
importance rating of the features.

Results and Discussion
In this section, we present the outcomes of AD analysis 
in terms of explainability and interpretability for mul-
timodal data analysis. First, we describe the XAI out-
comes for AD medical records, followed by subsections 
addressing the XAI outcome analysis of images and gene 
expression data. We combined all XAI outcomes on a 
dashboard for doctors and experts.

We compared traditional CNN [25] and VGG16 mod-
els for disease identification. We plotted receiver operat-
ing characteristic (ROC) curves and calculated the ROC 
area under the curve (AUC) for both models (Fig. 5). This 
shows how well each model distinguished between AD 
and non-AD samples at different decision thresholds. We 
found that VGG16 (AUC: 0.98) was more accurate than 
the traditional CNN (AUC: 0.96), because it is deeper, 
has more features in the higher layers, and its weights are 
trained on a large dataset. We also plotted ROC curves 
for the different classifiers using gene expression data 
(Fig.  6). To assess the accuracy of our predictions, we 
divided the data into two sets: 75% for training and 25% 
for testing. The goal was to train the model on one set 
and evaluate its performance on another. The best results 
were achieved with a split of 75% training data and 25% 
testing data.

XAI outcomes using SP‑LIME
SP-LIME is an AI approach for explaining the predictive 
outcomes of Alzheimer’s medical records. The results of 
the XAI approach were made available to doctors and 
experts for better understanding and interpretation. 
The outcomes of interpretable approaches have shown 
improvements in trustworthy classifiers or predictors. 
We used SP-LIME to enhance the interpretability of tab-
ular data processing. SP-LIME was employed to identify 
the key features of AD and evaluate the features or fac-
tors using probability values.

(12)C(V ,W , I) =
∑d

j=1

[

∃i ∈ V : Wij

]

Ij
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In the left part of Fig.  7, which represents the AD 
classes (demented and non-demented) based on prob-
ability values with prioritized factors, SP-LIME identifies 

the most important factors for satisfaction analysis. The 
age, normalized brain volume, and clinical dementia 
were highly significant factors for patients with dementia, 

Fig. 5 ROC curve to compare the predicted outcomes between two CNN models using MRI images

Fig. 6 ROC curve to compare the predicted outcomes between different classifiers using gene expression data
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whereas sex, mental state, and intracranial volume were 
highly significant factors for non-demented patients with 
AD, as shown in Fig. 7.

XAI outcomes using LRP
In this subsection, we discuss the LRP outcomes for dif-
ferent layers. LRP outcomes help explain the layer-wise 
operation of a CNN for AD MRI images. These layer-
wise MRI explanations interpret the prediction outcomes 
and provide reliable and interpretable results for doctors 
and experts. The LRP explains the layer operations based 
on a heatmap. We illustrated the convolution and pooling 
layers of the CNN using pixel density heat maps.

Figure  8a shows the convolution layer outcome 
obtained using a heatmap. In the convolution layer, we 
used 24 × 24 images and generated relevance scores for 
the ROIs. These relevance scores were passed through 
the pooling layers that predicted the Alzheimer’s region. 
Figure 8b shows a heat map of the brain region (top-left 
portion). LRP explains features based on relevance scores 
and identifies ROIs. We also analyzed the pixel intensity 
using a histogram for both the convolution and pooling 
layer outcomes (Fig. 8c and d).

XAI outcomes for gene expression data
In this subsection, we describe the explainable and inter-
pretable processes for gene expression data. Figure  9 
shows the genes that were strongly associated with AD 
in the test patient class. As shown in Fig. 9, based on the 
conditional independence, CTAGE6, F8A2, and SAMD7 
were the three associated genes for prediction. CTAGE6 
(CTAGE Family Member 6) is a protein-coding gene 
associated with gene ontology annotations and nucleo-
tide binding. F8A2 (coagulation factor VIII-associated 2) 
is a protein-coding gene associated with Waisman syn-
drome. SAMD7 (sterile alpha motif domain containing 7) 
is a protein-coding gene associated with hereditary kera-
titis and retinitis pigmentosa.

This study offers a practical overview of interpretable 
methods for predicting AD with an emphasis on data 
diversity. This study used multimodal data from various 
sources including images, demographic data, and gene 
expression data. In this study, SP-LIME, LRP, and GGT 
delivered robust explanatory outcomes for multimodal 
AD analysis. These explanatory results will assist experts 
and doctors in understanding the features and genes that 
contribute to AD.

Fig. 7 Submodular pick-LIME outcomes for the Alzheimer’s disease classification from tabular data
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We evaluated the effectiveness of conventional CNN 
and VGG16 in identifying infected areas on MRI images. 
Using an ROC curve, we found that VGG16 outper-
formed the conventional CNN because of its deeper fea-
ture analysis (Fig. 5). We also compared the performance 
of using the ROC curve for different classifiers to identify 
patients with AD from gene expression data (Fig. 6).

We mainly emphasized the analysis of features such as 
age, clinical dementia, and mental status of patients with 
AD. Figure  7 demonstrates that age, normalized brain 
volume, and clinical dementia were highly significant 
factors for patients with dementia, whereas sex, mental 
state, and intracranial volume were important features 
for non-demented Alzheimer’s patients. In this study, 

Fig. 8 Explaining layer wise outcomes of MRI images for (a) convolution layer, here red color portion indicted the infected regions 
of the Alzheimer’s patients. (b) Pooling layer, where red color represents the more specific infected regions. (c) Pixel density heatmap analysis 
for three different color channels for convolution layer (d) pixel density heatmap analysis for pooling layer

Fig. 9 Genes associated with AD
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XAI methods concentrated on identifying brain regions 
and how CNN predict AD using MRI images. Figure  8 
displays the convolution layer outcome using a heat map 
and analyzes the pixel density for various CNN layers 
(Fig. 8c and d). This heatmap helps visualize brain regions 
that are affected by AD. The severity of the affected 
regions varies depending on the stage of the AD (mild, 
moderate, non-dementia, and very mild). XAI methods 
reveal biological information among patients. CTAGE6, 
F8A2, and SAMD7 were most significantly associated 
with AD (Fig. 9). Using this biological analysis, we identi-
fied important genes associated with AD and the infected 
areas shown on the MRI images.

Conclusions
XAI approaches applied to multimodal data have sig-
nificantly enhanced trustworthy explanations for AD 
analysis. Experiments were conducted using multiple 
types of patient data, including tabular, imaging, and 
gene expression data. We used the SP-LIME, LRP, and 
GGT approaches for reliable interpretation. SP-LIME 
interprets the features of AD (for example, age, mental 
status, and clinical dementia). LRP identifies significant 
brain ROIs for AD patients, which are crucial for dis-
ease severity analysis. By examining these ROIs, it is 
easier to understand which brain regions are responsi-
ble for specific types of ADs. Doctors and experts can 
readily determine the ROIs that are significant for AD. 
Additionally, we used GGT to identify the biology of 
patients with AD. These biological interpretation out-
comes will help experts to understand the genes that 
play a substantial role in AD. Gene analysis is vital for 
treatment and prescription of medication.

The use of XAI methods has led to reliable and eas-
ily understandable results for doctors and researchers, 
empowering them to create early stage and accurate 
treatment plans for patients. Consequently, this con-
tributes to a more supportive environment in soci-
ety, ensuring a better diagnosis of AD for all patients, 
regardless of their socioeconomic background. This 
inclusive approach can play a crucial role in bridging 
healthcare disparities and promoting equitable access 
to quality care for patients with AD. In this study, our 
primary focus was on examining the interpretability 
and explainability of XAI methods. However, in future 
research, we plan to shift our attention towards inves-
tigating the counterfactual properties of these XAI 
methods.
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