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Abstract 

Cardiovascular disease, primarily caused by atherosclerotic plaque formation, is a significant health concern. The 
early detection of these plaques is crucial for targeted therapies and reducing the risk of cardiovascular diseases. This 
study presents PlaqueNet, a solution for segmenting coronary artery plaques from coronary computed tomography 
angiography (CCTA) images. For feature extraction, the advanced residual net module was utilized, which integrates 
a deepwise residual optimization module into network branches, enhances feature extraction capabilities, avoid-
ing information loss, and addresses gradient issues during training. To improve segmentation accuracy, a depthwise 
atrous spatial pyramid pooling based on bicubic efficient channel attention (DASPP-BICECA) module is introduced. 
The BICECA component amplifies the local feature sensitivity, whereas the DASPP component expands the network’s 
information-gathering scope, resulting in elevated segmentation accuracy. Additionally, BINet, a module for joint 
network loss evaluation, is proposed. It optimizes the segmentation model without affecting the segmentation 
results. When combined with the DASPP-BICECA module, BINet enhances overall efficiency. The CCTA segmenta-
tion algorithm proposed in this study outperformed the other three comparative algorithms, achieving an intersec-
tion over Union of 87.37%, Dice of 93.26%, accuracy of 93.12%, mean intersection over Union of 93.68%, mean Dice 
of 96.63%, and mean pixel accuracy value of 96.55%.
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Introduction
Coronary artery plaque, is a prevalent cardiovascular 
disease that cause various significant health issues. The 
development of these plaques leads to a narrowing of 
the carotid artery, which disrupts the blood supply to 
the brain. This can result in transient interruptions in 
blood flow, potentially causing unpredictable damage to 
the brain. Consequently, carotid plaque segmentation 
research is crucial for advancing carotid atherosclerosis 
diagnosis and treatment. Disease severity can be evalu-
ated with greater precision by achieving precise seg-
mentation and localization of carotid plaques, providing 
a foundation for more effective treatment strategies. In 
cardiovascular disease treatment, early identification and 
segmentation timely interventions, ultimately reduce 
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disease-related mortality [1]. Consequently, this study is 
significant because it may enhance patient outcomes and 
improve the overall management of carotid atherosclero-
sis, thereby contributing to a healthier and more resilient 
population.

Medical image segmentation, which combines the 
power of medical imaging with advanced deep  learn-
ing techniques, provides a highly effective and intuitive 
means of precisely delineating areas of interest, par-
ticularly in the context of lesion detection [2]. Medi-
cal image segmentation can be broadly categorized into 
two distinct approaches: traditional algorithm-based and 
deep learning-based [3]. However, when dealing with 
the inherent complexity of medical images, traditional 
segmentation methods may fall short and often require 
supplementary algorithms [4]. However, this can com-
promise the accuracy of the segmentation results. To 
address these challenges, a robust deep learning segmen-
tation model based on neural networks has emerged as 
a superior alternative [5, 6]. These models can learn and 
leverage critical feature information for segmentation 
tasks, thereby significantly improving the accuracy and 
efficiency of the segmentation process. Consequently, 
they consistently outperformed traditional algorithms. In 
recent years, several prominent deep-learning segmenta-
tion methods have risen to the forefront of medical image 
analysis. Notably, models such as FCN, Deeplabv3, and 
Deeplab3plus have gained recognition for their excep-
tional performance and have become the go-to solutions 
in this evolving field [7–9]. These innovative approaches 
are poised to revolutionize medical image segmentation, 
enabling more precise diagnostics and treatment plan-
ning for a wide range of medical conditions.

In medical image segmentation, the development of a 
segmentation network model is a complex and multifac-
eted task that requires a nuanced understanding of medi-
cal images and their associated parameters [10, 11]. This 
underscores the need for a segmentation network that 
can handle the intricacies of medical imagery, while pro-
ducing precise mask outputs. PlaqueNet introduced an 
innovative approach that employs a multi-path parallel 
residual optimization network for medical image feature 
extraction. By leveraging the multi-path parallel residual 
structure of ResNet, the robust deep-level information 
extraction capabilities can be harnessed [12, 13].

The proposed approach involves enhancing the net-
work by incorporating a pooling mapping function 
along with the original parallel residual mapping func-
tion. This deepens the network’ architecture, resulting 
in more effective feature extraction. The pooling map-
ping function mitigates the feature information loss that 
often occurs in deeper networks, thereby preserving the 
overall feature information. To improve the accuracy of 

the segmented areas further, this study proposes imple-
menting of a deep bicubic attention-space separable 
convolution module. The proposed method capital-
izes on deep separable atrous convolution to capture a 
more comprehensive range of pixel information while 
avoiding information loss in the network output seg-
ment. Additionally, the bicubic attention mechanism 
augments the network’s capacity to identify local infor-
mation, thereby enhancing the overall accuracy of the 
segmented regions. This study also introduces a novel 
technique designed to enhance the accuracy of medical 
image segmentation. It introduces a bilinear reflection 
filling upsampling network that incorporates reflection 
filling into the bilinear upsampling network. This, in con-
junction with the depth bicubic sampling attention space 
separable convolution module, jointly evaluates the loss 
function, leading to an overall improvement in the net-
work’s segmentation accuracy. However, the proposed 
algorithm has certain limitations. This research primar-
ily focused on the segmentation of vascular plaques in 
two-dimensional images, neglecting the segmentation of 
three-dimensional images. Consequently, the process of 
segmentation visualization overlooks the corresponding 
three-dimensional information structure, and the result-
ing two-dimensional structure fails to capture the com-
plete three-dimensional characteristics of the vascular 
plaques. Future study will focus on three-dimensional 
image vascular plaque segmentation.

In summary, this study made four main contributions.

(1)	 The introduction of PlaqueNet for coronary artery 
plaque segmentation not only enhances the net-
work’s feature extraction capabilities but also uti-
lizes a joint evaluation loss function to significantly 
improve both efficiency and accuracy.

(2)	 The advanced residual net (AResNet) module, 
which excels at extracting input feature informa-
tion, ensuring the retention of global information 
during the depth-based feature extraction process.

(3)	 The depthwise atrous spatial pyramid pooling based 
on bicubic efficient channel attention (DASPP-
BICECA) module expands the perceptual field 
range of feature information, reinforces local infor-
mation connections, and increases the sensitivity of 
the network to feature information.

(4)	 The BINet module was designed to simultaneously 
assess network output loss and elevate the overall 
network’ segmentation performance.

With the increasing global prevalence of cardiovascu-
lar diseases, it is crucial to recognize that the primary 
catalyst underlying these conditions is the rupture of car-
diovascular atherosclerotic plaques. Such ruptures can 
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trigger a series of sudden and often devastating brain dis-
eases with high mortality and disability rates, including 
strokes, cerebral infarctions, and cerebral hemorrhages 
[14]. The early detection of atherosclerotic plaques has 
the potential to significantly reduce the incidence of 
these brain-related diseases; and timely intervention 
following detection can help avert these sudden health 
crises [15]. Currently, deep learning-based medical and 
image processing techniques are key to precisely seg-
menting plaques. Extensive research has been conducted 
in the field of medical image segmentation. Xu et al. [16] 
proposed an automatic segmentation method for arte-
rial vessel walls and plaques that would be beneficial 
for quantifying arterial morphology in magnetic reso-
nance imaging, using the convolutional neural network 
VWISegNet model to extract features from MRVWI 
images and compute the class of each pixel to facilitate 
the segmentation of the vessel walls. Xu and Zhu [17] 
developed a semantic segmentation algorithm based on 
convolutional neural networks focusing on edge seg-
mentation to segment arterial vessel walls and plaques 
to facilitate the quantitative assessment of plaques in 
patients with is chemic stroke.

A novel MSFA-U-Net segmentation method was intro-
duced in the context of local radiotherapy for the thy-
roid segmentation of CT images. This method enhances 
the traditional U-Net model by incorporating multiple 
parallel channels, thereby enabling the fusion of feature 
information across different image resolutions. This 
strategic feature fusion approach prevents the genera-
tion of single-resolution information in U-Net during 
the downsampling process, thereby enhancing the accu-
racy and effectiveness of thyroid segmentation [18]. For 
the diagnosis and treatment of cancer, one of the key 
challenges lies in accurately delineating prostate sites 
from histopathological images obtained through cell 
puncturing. To address this issue, a BSP U-Net model 
is proposed to achieve precise prostate contour extrac-
tion. BSP U-Net builds upon the traditional U-Net net-
work structure by incorporating prior knowledge of the 
prostate shape, resulting in more accurate and reliable 
prostate site localization [19, 20]. A pivotal step in auto-
matic lung disease analysis is the accurate identification 
and segmentation of lung regions. To address this chal-
lenge, the VI-FCN algorithm was introduced to identify 
and segment the lung regions in frontal and lateral chest 
radiographs. This innovation is a critical contribution to 
the field of lung-disease analysis, aiding in the early diag-
nosis and treatment of such conditions [21]. Moreover, 
in the face detection domain, existing detectors often 
struggle to extract sufficient features, particularly from 
small-scale faces, which may result in missing detection 
data. To mitigate this issue, the R-FCN algorithm was 

proposed for small-scale face detection, offering a more 
robust solution for capturing facial features, even in chal-
lenging scenarios [22]. In diabetic retinopathy detection, 
which can be accurately identified through retinal fundus 
images, an enhanced object-detection algorithm basted 
on the R-FCN is introduced. This innovative approach 
incorporates a feature pyramid network and improved 
region structure, thereby bolstering the ability to recog-
nize small-area objects with greater precision [23]. Posi-
tion emission tomography imaging is one of the most 
effective methods for diagnosing malignant tumors. To 
alleviate the substantial workload on radiologists, a novel 
approach leveraging a multi-scale Mask R-CNN has been 
proposed, which significantly streamlines the diagnostic 
process [24]. In the domain of recognizing protein mac-
romolecule crystallization, there has been a concerted 
effort to enhance the accuracy of classification algo-
rithms. To achieve this, a groundbreaking strategy is pre-
sented: the application of the Mask R-CNN model to the 
detection of protein macromolecule crystallization. This 
innovative methodology also incorporates adaptive his-
togram techniques into Mask R-CNNs to mitigate issues, 
such as backlighting and precipitation effects, further 
refining the recognition process [25].

Many existing recognition algorithms overlook varia-
tions in spatial information within different perception 
fields. Some networks do not consider the relationships 
between the edge pixels in the target area, leading to 
misclassification and recognition errors. To mitigate this 
issue, the MR R-CNN addresses the problem by adjust-
ing the step size of the region of interest alignment [26]. 
Deeplabv3plus is highly regarded as an exceptional seg-
mentation algorithm in image segmentation, owing to its 
remarkable ability to effectively extract multi-scale infor-
mation [27]. To pursue cerebrovascular and cranial nerve 
segmentation in medical images, an extended version 
of the Deeplabv3 algorithm was introduced. This exten-
sion incorporates a feature extraction module within the 
encoder structure and a shrinking pyramid pooling mod-
ule into the decoder structure [28]. For the segmentation 
of glioblastoma tumor subregions, normal tissues, and 
the background, a novel algorithm named DeepNet was 
proposed. It leverages the structure of Deeplabv3plus and 
utilizes a predictively trained Resnet18 for weight initiali-
zation, resulting in more accurate and reliable segmenta-
tion results [29].

To circumvent the risk of early glaucoma-related visual 
impairment, the Deeplabv3plus architecture was har-
nessed for optic disc segmentation in the initial screen-
ings with the specific aim of achieving accurate detection. 
This involves substituting multiple encoder modules in 
Deeplabv3plus with convolutional layers to enhance seg-
mentation performance [30]. In thyroid segmentation 
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in ultrasound images, a novel approach capitalizes on 
spatiotemporal recurrent deep learning networks that 
incorporate time series information. Specifically, it lev-
erages an LSTM model based on Deeplabv3plus to con-
duct semantic segmentation, thereby facilitating the 
automatic identification of thyroid components [31]. For 
the real-time segmentation of bladder lesions in cystog-
raphy, a range of neural network models were employed 
during the training phase. The results demonstrated that 
the PAN model outperformed the other models, thereby 
demonstrating its superior performance in this context 
[32]. To enhance the precision of pressure sore diagno-
sis and overcome the limitations of manually marking 
feature points in traditional machine learning, a novel 
superpixel-assisted classification image-labeling method 
rooted in a regional organization was introduced [33]. 
To address the need for more accurate eye detection 
and segmentation, an enhanced Deeplabv3plus net-
work architecture was proposed [34]. In prostate cancer 
screening, where efficiency and precision are paramount, 
a deep learning-based approach for swift and accurate 
detection of abnormal cells was proposed [35]. For early 
pneumonia diagnosis using lung X-rays, a segmenta-
tion model based ResNet was developed to reduce the 
error rates associated with traditional methods [36]. In 
the domain of brain tumor detection, a modified ResNet 
architecture was presented to augment the watershed 
model, distinguishing it from conventional machine 
learning techniques [37]. Furthermore, in the pursuit 
of improved diagnostic tools for pneumonia detection, 
an automated pneumonia detection and diagnostic tool 
based on a pre-trained deep learning CNN architecture 
was introduced [38].

Methods
The PlaqueNet architecture introduced in this study fea-
tures a multi-path parallel residual network structure, 
complemented by a deep-pooling mapping function to 
enhance feature extraction. This deep-pooling mapping 
function was seamlessly integrated into each residual 
structure within the multi-path parallel residual network, 
thereby maintaining the integrity of the feature informa-
tion during the transmission of pixel data. This approach 
enables the model to gain more valuable insights from 
the input data. In the final stages of the segmentation 
mask output, the innovation includes the introduction 
of a deep bicubic attention space separable convolution 
module. This module leverages deep separable dilated 
convolution to expand the scope of feature information 
capture and effectively minimize information loss. Simul-
taneously, the bicubic attention mechanism augments 
the relevance of the local information, resulting in the 
generation of more contiguous segmented regions. To 

further augment the network segmentation performance, 
an auxiliary prediction network loss module was intro-
duced. This module combines the bilinear reflection-fill-
ing up sampling network with the deep bicubic attention 
space-separable convolution module, and collaboratively 
address the network’s segmentation loss function. This 
comprehensive approach significantly enhances the accu-
racy and effectiveness of the segmentation process.

Deepwise parallel residual optimization module
 Enhancing the computational prowess of a neural net-
work model for processing input data typically involves 
augmenting or modifying the depth and width of the 
network. However, such operations place significant 
demands on the network’s design and computing capac-
ity. The Resnet network comprises a series of identical 
residual mapping functions structured in parallel, with 
all the residual blocks sharing the same topological 
configuration. In total, there are 32 identical residual 
structures. This study introduces the AResNet network, 
which builds on the Resnet architecture by incorporat-
ing a deep residual optimization structure within each 
residual mapping component (Fig.  1). This structural 
feature is referred to as the deep parallel residual map-
ping optimization function, denoted by Y (x) . Y (x)com-
prises two key components: the initial feature point 
extraction result Gi(x) , which is derived from the feature 
extraction module, and the optimization information 
Hi(x) obtained through the deep residual optimization 
structure. Gi(x) represents the initial outcome of the 
feature point extraction, whereasHi(x) maps, filters, 
and extracts feature information from the initial resid-
ual results, thereby effectively eliminating redundant 
information during dimension reduction. This process 
ensures that edge information is accurately extracted for 
the target region.

The structure denoted by Hi(x) comprises several 
key components: an average pooling layer, a convolu-
tional layer, a batch normalization (BN) layer, and an 
activation function. This structural composition fur-
ther extracts and optimizes feature information for 
each residual structure. By considering feature points 
from adjacent areas and computing their averages, the 
average pooling layer contributes to the preservation 
of the background in medical images. This preserved 
background served as a valuable reference point for 
comparing segmentation results and facilitating disease 
diagnosis. The combination of the convolutional and 
BN layers mitigates the training challenges associated 
with the depth of the residual structure. It effectively 
addresses issues such as gradient disappearance and 
explosion, which can hinder the model’s performance 
during the training process.
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Additionally, the activation layer enhances the adapt-
ability of the feature information, making it easier for 
the segmentation result to fit the data. Moreover, it 
helps reduce the number of model parameters, thereby 
optimizing the feature extraction module.
Hi(x) is the result of Deepwise residual optimization 

structure.

Where xi represents the input feature information, kci 
represents the convolution kernel of the convolution 
layer, kAPi represents the convolution kernel of the aver-
age pooling layer, bi represents the bias function, Relu 
represents the activation function, and M represents 
the number of convolutional layers.
Yx is the result of Deepwise parallel residual optimiza-

tion functions.

whereGi(x) represents the convolutional result in the 
parallel residual network structure, Hi(x) represents the 
result of the depthwise pooling feature extraction func-
tion, and C represents the cardinality in the parallel map-
ping residual network.

DASPP‑BICECA module
The DASPP-BICECA module plays a pivotal role in pre-
dicting the segmentation output stage. DASPP, which 
employs deep atrous convolution operations with varying 

(1)Hi(x) = Relu
M

i=1

(kcixi + kAPixi)+ bi

(2)Yx =
C
∑

i=1

(Gi(x)+Hi(x))+ x

atrous convolution rates, extends the scope of regional 
information perception during convolution. Deepwise 
separable convolution effectively segregates the regional 
input information from the channel convolution points, 
thereby reducing the number of parameters during 
model transmission. The integration of BICECA fur-
ther enhanced the preservation of feature information 
throughout the sampling process, resulting in outstand-
ing segmentation outcomes.

 The network architecture for forecasting the output 
of the carotid plaque segmentation region is illustrated 
in Fig. 2. In this structure, the input image undergoes an 
initial convolution at various dilation rates through the 
atrous convolution layer. Subsequently, depthwise con-
volution and pointwise convolution employing depthwise 
separable convolution techniques were applied to fine-
tune the model parameters. The target region is obtained 
through bicubic interpolation, yielding a high-resolution 
segmentation region.

The DASPP module reduces the number of network 
parameters during model training. ASPP through hole con-
volution effectively extends the perceptual field range by 
processing the input image with various atrous convolution 
rates. This process divided the features sampled at each 
unique hole convolution rate into separate branches for sub-
sequent processing. By employing different atrous rates, the 
model can capture a broader context of image information 
while avoiding adverse effects on image resolution that may 
result from large step sizes during convolution. Equation 3 
defines the ASPP hole pooling process, where Q(c, d) repre-
sents the output outcome of the hole convolution in coordi-
nates (c, d) . Given that depthwise separable convolution 

Fig. 1  AResNet network module
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varies its convolution kernels based on the different chan-
nels of the input network, the convolution process is bifur-
cated into two segments. The depthwise convolution 
operation is expressed in Eq.  4, followed by the pointwise 
convolution operation in Eq. 5. Equation 6 encapsulates the 
ultimate output result of depthwise separable convolution. 
Here, DConv(βd ,Q)(i,j)  denotes the output of depthwise 
convolution, PConv(βp,Q)

(i,j) stands for the output of 
pointwise convolution, and DSConv(βd ,βp,Q)

(i,j)  repre-
sents the output of the depthwise separable convolution.

where q is the input information, e is the rate of atrous 
convolution, k is the filter, and 

(

i, j
)

 is the location of 
the atrous convolution layer where the convolution is 
performed.

whereQ represents the input information; βd represents 
the convolutional layer weight of the channel convolu-
tion; βp represents the convolutional layer weight of the 
point convolution; M and Nrepresent the dimensions of 
the convolutional layer, respectively; and V  represents the 
point convolution of a channel.

(3)Q(c,d)=
∑

i,j

q
(

c+ e · i,d+ e · j
)

·k
(

i,j
)

(4)

DConv(βd ,Q)(i,j) =
M,N
∑

m,n
βd(m, n)Q

(

i +m, j + n
)

(5)PConv
(

βp,Q
)

(i,j)
=

V
∑

v
βp(v)Q

(

i, j
)

(6)
DSConv

(

βd ,βp ,Q
)

(i,j)
= PConv

(

βp ,Q
)

(i,j)

(

βp ,DConv(βd ,Q)(i,j)

)

To increase the model’s sensitivity to the feature 
points within the target region, BICECA was intro-
duced into the prediction mask output segment. This 
attention mechanism safeguards critical information 
during the convolution process by allocating distinct 
weight coefficients to the input feature regions, and 
subsequently selecting the region information to be 
segmented. ECA employs dynamic convolution ker-
nels, treating a one-dimensional convolution as a non-
fully connected layer, with each convolution operation 
affecting only a fraction of the convolution layers.

The input data pass through a global average pooling 
layer with activation, converting two-dimensional convo-
lution into a one-dimensional counterpart, as expressed 
in Eq. 7. The local cross-channel interaction operation of 
the one-dimensional convolution, detailed in Eqs. 8 and 
9, combines the input information to derive the atten-
tion factor. This attention factor is then integrated with 
the two-dimensional input information through the acti-
vation function to yield the attention channel output, 
denoted byQ(H∗W∗C)

(i,j)  , as shown in Eq. 10. Bicubic inter-
polation leverages the grayscale values surrounding the 
sampled pixel points for interpolation. It fits the grayscale 
influence of 16 neighboring pixel points in an adjacent 
area and determines the pixel value of the target pixel 
through a weighted summation of the surrounding pixel 
values. Equation 11 outlines the dual-cubic interpolation 
process, where G(x, y) is the output of the dual-cubic lin-
ear function.

(7)q
(1∗1∗C)

avg(i,j)
=

∑

i,j

F
(

Relu
(

GAPavg

(

DSConv(Q)(H∗W∗C)
)))

(i,j)

Fig. 2  Network output prediction using the DASPP-BICECA module
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where q(1∗1∗C)
avg(i,j)

 is the one-dimensional output after a 
global average pooling function, φ(1∗1∗C)

c(i,j)
 is the output 

after a local cross-channel interaction operation, α is the 
sigmoid function, η(H∗W∗C)

A(i,j)
 expresses the attention fac-

tor, and Relu is the activation function.

where Q(i,j) is the input information and δ(xi) and δ
(

yj
)

 
are the interpolation weighting factors in the horizontal 
and vertical directions, respectively.

Joint assessment of network loss module
BINet is introduced as a collaborative evaluation-loss 
module for PlaqueNet. It uses the feature information 
extracted by AResNet and employs it to predict the 

(8)φ
(1∗1∗C)

c(i,j)
=

∑

i,j

α

(

LCCI
(

q
(1∗1∗C)

avg(i,j)

))

(i,j)

(9)η
(H∗W∗C)

A(i,j)
=

∑

i,j

(

φ1∗1∗C
c(i,j)

⊗ DSConv(Q)(H∗W∗C)
)

(i,j)

(10)Q
(H∗W∗C)

(i,j)
=

∑

i,j

Relu
(

η
(H∗W∗C)
A ⊕ DSConv(Q)(H∗W∗C)

)

(i,j)

(11)G
(

x, y
)

=

3
∑

i

3
∑

j

Q(i,j)δ
(

y− yj
)

δ(x − xi)

segmentation mask area without affecting the final model 
output. The difference between the predicted and actual 
mask areas served as the basis for calculating the loss.

 This loss value was then combined with the loss 
derived from the DASPP-BICECA network to form a 
comprehensive loss function. This refined function pro-
vides a more accurate representation of the gap between 
the predicted and actual values, resulting in an enhanced 
segmentation model, as illustrated in Fig. 3.

Equation  12 illustrates the output following the reflec-
tion-filled convolution operation, whereas Eq. 13 shows the 
results after the BINet upsampling of the output. Here, rN
denotes the output of the reflection-filled convolution layer, 
and Rn represents the output of the upsampling module.

where N  is the number of convolutional layers, 
r
(

x + i, y+ i
)

 is the pixel value at 
(

x + i, y+ i
)

 , and avg is 
a pooling function.

BINet incorporates a reflective filling convolution oper-
ation combined with bilinear upsampling. This method 
ensures the consistency of the nearest-neighbor interpo-
lation throughout the upsampling procedure, effectively 
preventing any disruptions in the prediction mask within 
the segmentation region.

(12)rN =

N
∑

1

(

K−1
∑

i

K−1
∑

j

r
(

x + i, y+ i
)

k(i,j)

)

(13)Rn
= FAvg

(

(1− αx)
(

1− αy
)

rN−1
(m,n) + αx

(

1− αy
)

rN−1
(m+1,n) + (1− αx)αyr

N−1
(m,n+1) + αxαyr

N−1
(m+1,n+1)

)

Fig. 3  Loss of BINet network joint assessment model
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Algorithm 1 is used as an example to offer an intuitive 
depiction of the process of jointly evaluating PlaqueNet’s 
loss function.

Algorithm 1 Joint evaluation of cross-entropy loss function

Results
The goal was to extract and convert these slices into 
planar images for segmentation and recognition. The 
research dataset included 742 images, divided into a 
training set of 519 images and a test set of 223 images. 
The PlaqueNet segmentation model we trained using 
these two-dimensional slice images of the vascular 
plaque model. In addition, three established segmenta-
tion algorithms (FCN, Deeplabv3, and Deeplabv3plus) 
were evaluated by considering their parameter configu-
rations and segmentation results to assess the perfor-
mance of PlaqueNet.

 Four control experiments were conducted using the 
dataset presented in this study, focusing on FCN, Dee-
plabv3, Deeplabv3plus, and PlaqueNet. The results are 
shown in Fig. 4, with rows one to four representing the 
employed segmentation algorithms and columns one 
to nine displaying the outcomes produced by these 
algorithms. FCN’s segmentation results revealed sub-
stantial discontinuous segmentation regions. Deep-
labv3 exhibits both discontinuous and over-segmented 
results. Deeplabv3plus’s results suffer from excessive 
segmentation. In contrast, PlaqueNet’s segmentation 
results surpassed those of the previous three segmenta-
tion algorithms. There were no discontinuous or over 

segmented areas, and the entire segmented region 
effectively covered the target area.

In this study, the segmentation results generated by 
the four different algorithms were evaluated using six 
key evaluation metrics: intersection over Union (IoU), 
Dice, accuracy, mean IoU (mIoU), mean Dice (mDice) 

Fig. 4   Comparison of four segmentation algorithms, each 
represented by a row, and the columns display the segmentation 
result plots. The first row corresponds to the FCN algorithm, 
which exhibited noticeable segmentation gaps. The second row 
represents the Deeplabv3 algorithm, which shown a significant 
over-segmentation in its results. The third row showcases 
the Deeplabv3plus algorithm, which demonstrates a lower degree 
of over-segmentation. The fourth row presents the PlaqueNet 
algorithm proposed in this study
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and mean pixel accuracy (MPA). The Dice, which is a 
pixel-level similarity measure, is commonly employed 
to assess segmentation performance, with higher val-
ues indicating more accurate segmentation. The IoU 
indicates the degree of overlap between segmented and 
actual regions. The accuracy, a measure of model accu-
racy, quantifies the proportion of correct classifications 
in the entire dataset, offering insights into the model’s 
quality. The mIoU, which is the average intersection 
ratio, provides an overview of the IoU across the entire 
dataset and represent the average IoU across all catego-
ries. Similarly, the mDice was computed by averaging 
the Dice coefficients across all dataset categories. MPA 
is an improvement in pixel accuracy. It calculates the 
proportion of correctly classified pixels in each class, 
and then calculates the average of all classes. Table  1 
illustrates that PlaqueNet outperformed the other three 
segmentation algorithms across all evaluation metrics, 
underscoring the enhancement in segmentation accu-
racy achieved by PlaqueNet.

To further validate the segmentation performance of 
PlaqueNet as presented in this study, ten experiments 
were conducted to compare FCN, Deeplabv3, Deeplab-
v3plus, and PlaqueNet. The evaluation metrics included 
accuracy, Dice, IoU, and precision. Figure  5 clearly 
demonstrates that PlaqueNet’s segmentation perfor-
mance surpasses that of the other three algorithms. 
To confirm the superior performance of the proposed 
AResNet structure in image segmentation compared to 
other residual structures, five common residual struc-
tures were selected for comparison. Their performances 
were evaluated using metrics such as precision, recall, 
F1score, and loss. As indicated in Table 2, AResNet out-
performed all of the five structures.

 To illustrate the influence of joint evaluation net-
work loss on segmentation performance, experiments 
were conducted using PlaqueNet and compare its 
performance with and without the inclusion of joint 
evaluation loss. As shown in Fig. 6, the incorporation 
of the joint evaluation loss into the segmentation algo-
rithm significantly improved its overall performance.

Discussion
This study focused on the two-dimensional image seg-
mentation of coronary artery plaques. To solve this prob-
lem, PlaqueNet, which segments coronary artery plaques 
from CCTA images, was introduced. In the initial stage 
of feature information extraction, a multi-path, parallel 
residual structure was introduced. This innovative struc-
ture significantly bolsters the feature extraction capacity 
of segmentation networks. This is accomplished by lever-
aging both the pooling mapping function and the original 
residual mapping function. Notably, this design mitigates 
the issue of gradient disappearance that often occurs in 
deep networks.

To further enhance the ability of segmentation network 
to capture feature information and minimize data loss, 
DASPP-BICECA module was presented. The BICECA 
component amplifies local feature sensitivity by address-
ing potential shortcomings of the network output seg-
mentation, whereas the DASPP component expands the 
network’s information-gathering scope. Additionally, 
BINet for joint network loss evaluation was introduced. It 
optimizes the segmentation model and enhances its over-
all efficiency when used in conjunction with the DASPP-
BICECA module.

Vascular plaques have diverse shapes and sizes across 
various scales. To effectively capture the feature infor-
mation at different scales, a multi-scale module was 
employed in the algorithm used in this study. This 
module enables the model to accurately locate detailed 
information about plaques while maintaining robust seg-
mentation performance under different scales and trans-
formation conditions. The multi-scale module is designed 
to extract and incorporate features from multiple scales 
during segmentation. By considering information from 
different scales, the model effectively captures the intri-
cate details of vascular plaques, regardless of their vary-
ing sizes and shapes. This capability enhances the ability 

Table 1  Comparison of segmentation performance of different residual networks

Algorithm IoU (%) Dice (%) Accuracy (%) mIoU (%) mDice (%)

FCN 61.72 ± 5.24 76.33 ± 4.22 67.86 ± 7.32 80.88 ± 2.63 88.15 ± 2.11

Deeplabv3 69.04 ± 5.87 81.66 ± 6.11 77.32 ± 6.57 84.49 ± 2.94 90.83 ± 2.23

Deeplabv3plus 72.87 ± 4.49 84.31 ± 3.07 78.52 ± 4.33 86.42 ± 2.25 92.14 ± 1.54

PlaqueNet 87.37 ± 10.38 93.26 ± 8.36 93.12 ± 10.66 93.68 ± 5.20 96.63 ± 4.19

Table 2  Comparison of evaluation metrics for the six segmentation 
algorithms

Algorithm Precision (%) Recall (%) F1score (%)

ResNet 89.943 ± 5.146 76.330 ± 4.479 67.860 ± 3.075

ResNest 89.992 ± 2.875 71.399 ± 10.525 79.305 ± 8.558

ResNetVC 89.081 ± 3.944 80.586 ± 4.429 84.797 ± 3.512

ResNetVD 88.717 ± 3.944 80.185 ± 3.124 84.800 ± 3.844

ResNext 90.200 ± 3.818 70.123 ± 9.483 79.407 ± 8.896

AResNet 93.423 ± 1.936 90.623 ± 1.918 92.354 ± 1.452
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of the model to accurately segment plaques across differ-
ent scales and under different transformation conditions. 
The integration of the multi-scale module into the algo-
rithm ensures that the model can effectively adapt to the 
variability in vascular plaque characteristics. This adapta-
bility is essential for achieving reliable and consistent seg-
mentation results, because plaque morphology can vary 
significantly across different patients, imaging modalities, 
and acquisition techniques. By leveraging the multi-scale 
module, the algorithm demonstrated improved perfor-
mance in accurately locating and segmenting vascular 
plaques across a range of scales. These advancements 
have contributed to the development of more precise and 
clinically relevant techniques for diagnosing and treat-
ing of vascular diseases. The advantages of employing 

PlaqueNet for detecting coronary artery plaques are sub-
stantial. This enables the early detection of these plaques 
through image segmentation, thus facilitating proac-
tive treatment and reducing the risk of cardiovascular 
diseases. The proposed segmentation algorithm offers 
precise segmentation of coronary artery plaques. This 
information assists healthcare professionals in evaluating 
disease progression and conducting personalized plaque 
analyses. This sets the stage for the development of more 
tailored clinical treatment plans.

This study has several limitations: Owing to its focus 
on two-dimensional image segmentation of coronary 
artery plaques, this approach omits critical three-dimen-
sional structural information, which can provide a more 
comprehensive view of these plaques. The selected two-
dimensional slices may not fully represent the entire 
spectrum of characteristics and intricate details of the 
plaques. Future studies will explore the real-time three-
dimensional segmentation of medical data format 
images, with a specific focus on coronary artery plaques.

Conclusions
This study introduced PlaqueNet, a novel approach 
to carotid plaque segmentation. PlaqueNet’s feature 
extraction component employs a deep parallel resid-
ual optimization mapping network that integrates a 
deep residual optimization structure into each residual 
structure in ResNet. This optimization helps main-
tain global information in the input feature point field, 
addressing issues such as gradient disappearance and 
explosion caused by the network depth.

Fig. 5  Analysis of segmentation evaluation metrics for algorithms

Fig. 6   Joint assessment of the impact of network loss 
on segmentation performance
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The DASPP-BICECA module was used in the pre-
diction mask output component of PlaqueNet. This 
module employs depth separable spatial convolution 
pyramid operations to expand the receptive field range 
of the target area during information upsampling. By 
initially conducting channel convolution followed by 
point convolution, the model training process reduces 
the parameter count. The BICECA module enhanced 
the network’s sensitivity to feature points in the target 
area and mitigated losses during training. Bicubic inter-
polation helps prevent discontinuous segmentation of 
adjacent feature-point areas.

Furthermore, the BINet fitting evaluation network loss 
module collaborates with the DASPP-BICECA module 
to optimize the segmentation network model. The pro-
posed segmentation algorithm was compared with three 
others. The experimental results demonstrate that the 
proposed method achieves impressive metrics: an IoU 
value of 87.37%, a Dice value of 93.26%, an accuracy value 
of 93.12%, an mIoU value of 93.68%, an mDice value of 
96.63%, and an MPA value of 96.55%. The proposed algo-
rithm outperforms the others in terms of segmentation 
accuracy, avoids discontinuous or over segmented areas, 
and demonstrates robust segmentation performance.
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