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Abstract 

This study proposes an image-based three-dimensional (3D) vector reconstruction of industrial parts that can gener-
ate non-uniform rational B-splines (NURBS) surfaces with high fidelity and flexibility. The contributions of this study 
include three parts: first, a dataset of two-dimensional images is constructed for typical industrial parts, including hex-
agonal head bolts, cylindrical gears, shoulder rings, hexagonal nuts, and cylindrical roller bearings; second, a deep 
learning algorithm is developed for parameter extraction of 3D industrial parts, which can determine the final 3D 
parameters and pose information of the reconstructed model using two new nets, CAD-ClassNet and CAD-ReconNet; 
and finally, a 3D vector shape reconstruction of mechanical parts is presented to generate NURBS from the obtained 
shape parameters. The final reconstructed models show that the proposed approach is highly accurate, efficient, 
and practical.
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Introduction
With the development of intelligent manufacturing, 
mechanical product production has gradually become 
increasingly automated, flexible, intelligent, and highly 
integrated. Thus, artificial intelligence, including three-
dimensional (3D) reconstruction and sample data 
acquisition, is inevitably used. For instance, when manip-
ulators are used for automatic loading and unloading, it 
is necessary to obtain the 3D data of parts (3D recon-
struction) from an image to grasp the object. For parts 
with irregular surfaces and features that are difficult to 
measure directly, it is necessary to perform a reverse 
reconstruction to obtain the size parameters. Current 
3D reconstruction methods mostly obtain point cloud 

data through 3D scanning and thereafter achieve shape 
reconstruction by post-processing the point cloud. How-
ever, it is difficult to achieve real-time performance and 
vector reconstruction using this approach. This study 
proposes an image-based 3D vector reconstruction of 
typical mechanical products that is highly efficient and 
can achieve non-uniform rational B-splines (NURBS) 
based reconstruction with high fidelity, simplicity, and 
inexpensive consumer cameras.

In the Standard for the Exchange of Product Model 
Data issued by the International Organization for Stand-
ardization, NUBRS is the only mathematical method 
used to define the geometric shapes of industrial prod-
ucts. In digital manufacturing [1], all industrial parts have 
a unified mathematical expression known as NUBRS [2]. 
In the design and manufacturing processes, NURBS is 
used not only for computer aided design (CAD) but also 
for data exchange. For industrial parts, the generation 
of CAD models depends on the corresponding param-
eters, such as tooth number, modulus, and tooth width 
of gears. In general, the parameters depend on the clas-
sification of the industrial parts, and the only difference 
is the value of each parameter (Fig.  1). Therefore, when 
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the type of industrial part is determined, it is possible to 
reconstruct an accurate 3D model of the part based on 
NURBS in case its parameters are obtained.

In this study, the research interest was the 3D recon-
struction of industrial parts. The contributions of this 
study are as follows: (1) A dataset of two-dimensional 
(2D) images of typical industrial parts is constructed, 
including hexagonal head bolts, cylindrical gears, shoul-
der rings, hexagon nuts, and cylindrical roller bearings. 
(2) A deep learning algorithm for parameter extraction 
of 3D industrial parts that can determine the final 3D 
parameters and pose information of the reconstructed 
model using two new nets is developed: a class prediction 
net (CAD-ClassNet) and a reconstruction prediction net 
(CAD-ReconNet). CAD-ClassNet was used to determine 
the type of reconstructed part, and the part parameters 
were predicted using CAD-ReconNet. (3) A NURBS-
based 3D reconstruction of the parts from the parame-
ters obtained by deep learning is presented.

3D reconstruction is classical in computer vision and is 
widely used in the fields of automatic driving and intel-
ligent robots. Current 3D reconstruction methods based 
on 2D images can be classified into traditional multiple 
view geometry approaches [3–5] and deep learning-
based methods [6–17]. The former primarily uses a ste-
reo-matching algorithm to recover the 3D structure from 
a series of 2D images from multiple views obtained by a 

camera. However, they cannot recover 3D shapes from a 
single view. Deep learning-based methods could encode 
prior knowledge into the network such that they are able 
to reconstruct the 3D model from a single image. Since 
AlexNet was first proposed [18], the architecture of 
deep learning networks has been continuously develop-
ing [19–23]. Deep learning has a strong learning ability 
and good portability, making it easy to achieve excellent 
results in image classification [20, 21], target detection 
[19], and image denoising [22]. Deep learning-based sin-
gle-view 3D stereo methods exhibit better performance 
than traditional approaches.

Researchers have reconstructed 3D models based 
mainly on the 2D information fusion of two or mul-
tiple views. Jia et  al. [7] proposed a dual-view network, 
DV-NET, which fuses point clouds with two different 
views using a point-cloud fusion network. Soltani et  al. 
[12] trained data using a depth map and a contour map 
of multiple views and generated 3D shapes with more 
details to achieve high-fidelity modeling. Multiple-view-
based 3D reconstruction methods have achieved better 
results; however, it is more challenging to reconstruct 
3D shapes from a single image. Single-view-based 3D 
reconstruction has been applied to buildings [13], fur-
niture [15], human bodies [16], porous media [17], and 
other structures, particularly indoor furniture. However, 
they are not applicable to vector model reconstruction, 

Fig. 1 Parameters of different industrial parts
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particularly in intelligent manufacturing and mechanical 
areas.

The learning ability of a deep learning network relies 
mainly on a large amount of data. Current 3D recon-
struction methods use ShapeNet [24], ObjectNet3D [25], 
and Pix3D [26] for training. For the aforementioned data-
sets, the 2D images were aligned with the 3D model using 
marked points, and different alignment methods were 
used to improve the reconstruction accuracy. However, 
it is difficult to fundamentally remove alignment devia-
tions using these methods. Based on MarrNet [11], Sun 
et al. [26] proposed an approach for shape reconstruction 
and pose estimation using a 2D–3D alignment dataset. 
However, these reconstruction methods rely on highly 
accurate datasets, and it is difficult or expensive to obtain 
related sample data. Moreover, for shape reconstruction, 
voxels [27], point clouds [28], and grids [29] have been 
used to represent reconstructed 3D objects. Although 
these representations transmit 3D models in a neural 
network, the final results are not sufficiently accurate 
without semantic information, and the computation is 
expensive. Based on NURBS, a unique mathematical rep-
resentation of industrial products, this study obtained a 
3D vector reconstruction of typical industrial parts from 
a single image. The proposed approach was more effi-
cient, and the final results achieved high accuracy.

Methods
Industrial part dataset generation
For deep learning, its excellent ‘learning’ ability is mostly 
owing to the training of a large number of samples [30–
32]. In practical applications, industry-related historical 
data can be used to construct training datasets. However, 
additional industrial sample data are difficult to obtain 
because of sample acquisition and statistics in additional 
industries, which hardly meet the large amount of train-
ing data required for deep learning. Therefore, obtaining 
sample sets is closely related to the application of deep 
learning in industry.

In this study, a 2D image dataset of industrial parts 
of different sizes and views was constructed, which can 
be used to construct a feature library of reconstruction 
parameters. However, it is tedious to obtain a 2D dataset 
by actual photography, and the accuracy of the camera 
influences the quality of the sample data, or even the effi-
ciency and accuracy of the final 3D reconstruction. Con-
sidering the limitations of actual photography, a CAD 
model omnidirectional photography approach that can 
automatically obtain an image dataset of industrial parts 
with different sizes and poses is proposed in this study.

The size of the input images influences the accuracy 
of 3D reconstruction and the feasibility of data training 
in deep learning. The sample sizes are as follows: In this 

study, the basic idea of 3D reconstruction was to extract 
the features of sample images through the employed neu-
ral network, and thereafter obtain the 3D parameters 
through a new algorithm by feature analysis. The rela-
tionships between these parameters are as follows:

where s denotes the size of the parts, 0.5 is the proportion 
of the model in the image, a denotes the accuracy of the 
parameters, and n denotes the resolution of the image.

The high resolution of sample images will lead to 
‘explosion’ of the equipment in data training, and it is dif-
ficult for the network to train and fit. Herein, the accu-
racy of the 3D reconstruction is set to 0.1 mm, and the 
analysis accuracy of the network is expected to be at the 
pixel level; thus, the resolution of the input image was 
200 × 200 by Eq.  (1) when the model size was 10  mm. 
The resolution of the input image was 256 × 256 pix-
els. Therefore, the size of the original images was set to 
256 × 256 pixels. Additionally, a method to automatically 
implement the omnidirectional photography of indus-
trial models and successfully obtain a large number of 2D 
images with a white background is presented. Thereaf-
ter, a construction approach for image datasets of indus-
trial parts that is adequate for deep learning in industrial 
fields is proposed.

To illustrate this further, five typical industrial parts 
(Table 1) were selected, and each type had ten sizes and 
336 poses. Finally, the number of 2D images of the indus-
trial parts dataset was 336 × 5 × 10 = 16,800, where the 
total shooting points were 7 × 8 × 6 = 336, associated with 
seven latitude lines, eight longitude lines, and six cus-
tomary shooting points in the virtual photography space 
(Fig. 2).

Using the aforementioned parameters and a stand-
ard white background, a 2D dataset associated with five 
typical industrial parts for 3D reconstruction was con-
structed, as shown in Fig.  3. In this figure, the abscissa 
axis is sampled from 336 poses of every part, and the ver-
tical axis is sampled from five typical parts, each with 10 
sizes. Specifically, “One-Hot” labels are used in the sam-
ple image to complete the construction of the dataset. 
Finally, the dataset is divided into three parts: training, 
validation, and testing data with ratios of 81%, 9%, and 
10%, respectively.

NURBS‑based shape reconstruction
This subsection discusses the reconstruction of a 3D 
shape from a single image and proposes a vector shape 
reconstruction approach for industrial parts. The pro-
posed method mainly comprises three parts: First, a clas-
sification recognition network to distinguish the classes 
of industrial parts is designed; Second, CAD-ClassNet 

(1)n = s/(0.5× a)
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and CAD-ReconNet are proposed for industrial parts; 
Finally, based on CAD-ReconNet, the feature standard 
library of poses is derived, and the parameters of poses 
and sizes are obtained from feature analysis.

In conclusion, the proposed net comprises two parts: 
class and reconstruction prediction, where CAD-Class-
Net is used to determine the type of the reconstructed 
part, and the model dimensions can be predicted using 
CAD-ReconNet.

CAD‑ClassNet
To determine the type of reconstructed part, a new net-
work, CAD-ClassNet, was designed, whose structure is 

shown in Fig.  4. Five convolution layers and four maxi-
mum pooling layers were used to extract image features. 
The convolution kernel of the five convolution layers was 
3 × 3 and the channel numbers were 64, 64, 128, 256, and 
512, respectively. The pool size of the four pooling layers 
was 2 × 2. Thereafter, the 2D output to a one-dimensional 
vector was flattened and three dense layers were used to 
complete the classification of the industrial parts.

In CAD-ClassNet and CAD-ReconNet, the softmax 
activation function in the last layer and the ReLU func-
tion in the other convolution layers and full connection 
layers were used. In particular, the cross-entropy cost 
function shown in Eq. (2) was used as follows:

Table 1 Five typical industrial parts

where i = 1, 2, ……, 10

Industrial parts Parameters Parameter values

Hexagon head bolt [length] Type1 = [15.00]
Typei =  Type1 + [1.00] × (i - 1)

Cylindrical gear [modulus; tooth width] Type1 = [1.50, 7.50]
Typei =  Type1 + [0.10, 0.50] × (i - 1)

Shoulder ring [external diameter; thickness] Type1 = [22.00, 3.25]
Typei =  Type1 + [1.00, 0.15] × (i - 1)

Hexagon nut [nominal diameter; height] Type1 = [11.00, 8.40]
Typei =  Type1 + [1.00, 0.76] × (i - 1)

Cylindrical roller bearing [external diameter; thickness] Type1 = [30.00, 10.00]
Typei =  Type1 + [1.00, 0.33] × (i - 1)

Fig. 2 Virtual photography of industrial parts
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Fig. 3 Standard dataset of five typical parts

Fig. 4 Structure of CAD-ClassNet
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where x denotes the input sample, y denotes the actual 
label, a denotes the predicted label, and n denotes the 
total number of samples.

Extraction of poses
Gears are used as an example to represent the concept of 
shape reconstruction, as shown in Fig. 5. Each class of the 
five typical industrial parts in this study contains 3360 2D 
images. The net training and testing processes were com-
pleted using this dataset.

The pose determination of parts of 2D images can be 
regarded as a multiclassification problem. VGGNet and 
ResNet are often used as feature extractors and classi-
fiers; however, these architectures did not work well on 
the dataset used in this study. A new network was con-
structed, CAD-ReconNet (Fig.  5), for pose recognition, 
in which there are several dense and batch normalization 
layers. In particular, the net is divided into two parts, a 
feature extraction block and a feature comparison block, 
which are described in detail as follows:

Feature extraction block: It comprises seven con-
volution layers with 3 × 3 convolution kernels and six 
maximum pooling layers with a stride of two. Among 
the seven convolutional layers, the channel number of 
the first two layers was 64, and that of the subsequent 

(2)C = −
1

n
x

y ln a+ 1− y ln (1− a)
convolutional layers increased by a ratio of two. In 
this step, 2048 feature maps with a size of 4 × 4 were 
extracted.

Feature compared block: In the second step, the 
obtained 32,768 dimensional vectors were compressed 
into 2048, 1024, and 512 dimensional one through one, 
two, and four full connection layers, respectively. Finally, 
the input images were classified into 336 poses. In this 
process, the feature vectors in five different dimensional 
spaces (32,768, 2048, 1024, 512, and 336) were used as 
unique features for different poses, and they were also 
used for pose comparison among different images.

NURBS‑based reconstruction
Based on CAD-ReconNet, it is possible to extract the fea-
tures of the standard dataset of industrial parts and there-
after construct the standard feature library used in pose 
prediction. The basic idea behind obtaining the dimen-
sions is as follows: (1) Extract the pose feature of the 
reconstructed 2D image; (2) Compare the pose feature 
map extracted from the input image with the feature map 
in the standard feature library and determine the pose 
information contained in the 2D image; (3) Calculate the 
similarity between the input image and standard image 
in the same pose, and thereafter predict the dimensions 
of the parts according to the similarity. To evaluate the 
similarity between images, the cosine similarity strategy 
computed using Eq. (3) was used as follows:

Fig. 5 Extraction of parameters and reconstruction of gears
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where A and B denote the image feature vectors. The 
pose vector dimension is 336.

Two poses from the images associated with the high-
est similarity were selected as the primary positions. 

(3)cos (θ) =

n
∑

i=1

(Ai × Bi)

√

n
∑

i=1

(Ai)
2
×

√

n
∑

i=1

(Bi)
2

Thereafter, a subset of standard images with the same 
position but of different sizes were obtained. By selecting 
the two sample images associated with the highest simi-
larity, the part size that needed to be 3D reconstructed 
was predicted. The interpolation coefficients were calcu-
lated using Eq. (4), and the final predicted results for the 
part dimensions were obtained via linear interpolation.

(4)Simi =
(1−cos (θ2−i))
∑

i (1−cos (θi))
(i = 1, 2)

Fig. 6 Scale transformation with same knot vector

Fig. 7 Accuracy of CAD-ReconNet
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where cos (θi) denotes the cosine similarity between images. 
Furthermore, if the part type is determined, its correspond-
ing control points can be obtained by scale transformation 
based on the dimension (Fig. 6) and standard model of typi-
cal parts. The 3D reconstruction model of the part can be 
defined using the control points and the same knot vector.

Results and Discussion
Class prediction
To improve the accuracy of class recognition, ran-
dom rotation, clipping, and bright transformation were 
applied to the part images for data enhancement. The 
proposed network has strong convergence and classifi-
cation ability and achieves good generalization results. 
Through the testing dataset, the results demonstrate that 
the classification accuracy of industrial parts is 100%.

Pose prediction
Each part class has its own standard dataset. In the data-
set, there are 336 different poses, and each pose has 10 

different sizes. In other words, there were several clas-
sifications in the dataset, but the number of samples in 
each classification was relatively small. Batch normaliza-
tion was used to accelerate the convergence. Strategies 
for learning the rate gradient decline were used, and the 
initial value was set to 0.001. A total of 100 epochs were 
iterated, and the learning rate was changed to 35 and 70 
epochs at a ratio of 0.1. The results obtained for this net 
structure and parameters are shown in Fig. 7.

It is possible to infer that the net loss and accuracy first 
have large fluctuations because the initial learning rate is 
set to a larger value (Fig. 7). As the learning rate decreased, 
the net fluctuation decreased and the net tended to con-
verge. During training and testing, the accuracy and loss of 
information for each part were monitored (Table 2).

The maximum testing accuracy of the hexagonal nut 
is slightly higher than 80%, whereas those of the other 
parts are close to or higher than 90% (Table 2). The strong 
structural symmetry and small size differences in each 
direction may explain the low reconstruction accuracy 

Table 2 Performance of CAD-ReconNet training and testing

Parameters Minimum training 
loss

Maximum training 
accuracy

Minimum 
verification loss

Maximum verification 
accuracy

Maximum 
testing 
accuracy

Hexagon head bolt 0.1146 96.91% 0.0704 97.69% 97.92%

Cylindrical gear 0.2161 94.60% 0.2239 91.75% 89.29%

Shoulder ring 0.1164 97.50% 0.0444 99.34% 99.70%

Hexagon nut 0.1373 96.95% 0.3928 87.46% 81.85%

Cylindrical roller bearing 0.0782 98.49% 0.0968 97.36% 95.24%

Table 3 Comparison of CAD-ReconNet and other networks

Network Parameters Maximum training 
accuracy

Maximum verification 
accuracy

Maximum 
testing 
accuracy

CAD-ReconNet Hexagon head bolt 96.91% 97.69% 97.92%

Cylindrical gear 94.60% 91.75% 89.29%

Shoulder ring 97.50% 99.34% 99.70%

Hexagon nut 96.95% 87.46% 81.85%

Cylindrical roller bearing 98.49% 97.36% 95.24%

ResNet-18 Hexagon head bolt 94.56% 94.72% 92.56%

Cylindrical gear 91.25% 77.89% 84.52%

Shoulder ring 85.63% 84.16% 85.12%

Hexagon nut 86.40% 73.93% 78.27%

Cylindrical roller bearing 95.11% 91.09% 87.50%

ResNet-34 Hexagon head bolt 98.31% 96.70% 95.54%

Cylindrical gear 92.65% 83.83% 82.44%

Shoulder ring 98.57% 92.74% 92.86%

Hexagon nut 93.01% 83.83% 82.14%

Cylindrical roller bearing 95.33% 93.07% 87.20%
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of the hexagonal nut. Overall, it is possible to infer that 
CAD-ReconNet achieves good results and generalization 
performance.

CAD-ReconNet was compared with ResNet-18 (batch 
size = 20) and ResNet-34 (batch size = 10). Table  3 sum-
marizes the results, and it can be observed that the pro-
posed network converged better. In other words, the 
features extracted using the proposed network were 
highly reliable.

Dimension analysis
For industrial parts, the key problem in 3D reconstruction 
is obtaining the model dimensions, and its accuracy directly 
affects the validity of the final shape results. Therefore, the 
accuracy of the size prediction is at the core of net train-
ing and testing. For each part, two test sizes (Table 1) were 
selected and a test set (672 images) was constructed to ver-
ify the effectiveness of the proposed method. The proposed 
approach achieves a better result in size prediction for every 
typical part (Table 4).

Table 4 Accuracy of the 3D reconstruction (percentages of every relative error interval)

Relative error industrial parts 0%–0.05% 0.05%–0.1% 0.1%–0.5% 0.5%–1.0%  > 1.0%

Hexagon head bolt 14.73 12.50 51.04 8.78 12.95

Cylindrical gear 42.26 25.74 18.30 1.19 12.50

Shoulder ring 30.06 14.29 52.64 0.15 3.87

Hexagon nut 1.19 2.23 73.36 2.23 20.37

Cylindrical roller bearing 8.78 26.34 46.58 9.38 8.93

Fig. 8 Parameter prediction and 3D reconstruction
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From the predicted reconstruction parameters of the 
typical parts, it is possible to complete the 3D recon-
struction based on NURBS from a single image (Fig. 8). 
To further verify the feasibility of the vector shape recon-
struction method, testing images captured from real 
industrial parts and reconstructed 3D models with high 
accuracy were used (Fig. 9). Before testing, images from 
the cameras in the natural scene were preprocessed using 
background culling and regularization.

According to the results in Figs.  8 and 9, the accu-
racy of shape reconstruction is less than 0.1  mm from 
a single image. The proposed system takes an average 
of 19–20  s to complete the reconstruction of an image 
with a “NVIDIA GeForce RTX 3070” GPU, an “Intel 
Core i5-10400F @ 2.90  GHz” CPU, and “16  GB” mem-
ory size. Additionally, it outputs the NURBS control 
points required to define a mechanical part. Thereafter, 
3D reconstruction was achieved using geometric mod-
eling based on NURBS. Figure  10 shows the control 
points and CAD model of the shoulder ring. From these Fig. 10 NURBS-based geometric modeling of a shoulder ring

Fig. 9 3D reconstruction of real parts
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experiments, the proposed approach can reconstruct 
industrial parts with high accuracy and efficiency using 
a single image. Each type of part has known control point 
structures. Given a model, it is possible to only scale the 
control edges to fit them to the real dimensions of the 
part.

Conclusions
In this study, a 3D reconstruction system for indus-
trial parts based on NURBS was constructed, which 
can achieve the intelligent computation of param-
eters. Using the predicted parameters, it is possible to 
reconstruct the corresponding 3D shapes of the indus-
trial parts, which achieves vector reconstruction from 
a single image. The main contributions of this study 
are as follows: first, a dataset of 2D images for typical 
industrial parts is constructed, including hexagon head 
bolts, cylindrical gears, shoulder rings, hexagon nuts, 
and cylindrical roller bearings; second, a deep learning 
algorithm for the parameter extraction of 3D industrial 
parts is developed using two new nets: CAD-ClassNet 
and CAD-ReconNet; finally, the 3D shape reconstruc-
tion of parts based on NURBS is presented. Examples 
were provided to illustrate the accuracy and efficiency 
of the proposed reconstruction approach.

Abbreviations
3D  Three-dimensional
2D  Two-dimensional
CAD  Computer aided design
NURBS  Non-uniform rational B-splines
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