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Automated analysis of pectoralis major o

thickness in pec-fly exercises: evolving
from manual measurement to deep learning
techniques
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Abstract

This study addresses a limitation of prior research on pectoralis major (PMaj) thickness changes during the pecto-
ralis fly exercise using a wearable ultrasound imaging setup. Although previous studies used manual measurement
and subjective evaluation, it is important to acknowledge the subsequent limitations of automating widespread
applications. We then employed a deep learning model for image segmentation and automated measurement

to solve the problem and study the additional quantitative supplementary information that could be provided. Our
results revealed increased PMaj thickness changes in the coronal plane within the probe detection region when real-
time ultrasound imaging (RUSI) visual biofeedback was incorporated, regardless of load intensity (50% or 80%

of one-repetition maximum). Additionally, participants showed uniform thickness changes in the PMaj in response
to enhanced RUSI biofeedback. Notably, the differences in PMaj thickness changes between load intensities were
reduced by RUSI biofeedback, suggesting altered muscle activation strategies. We identified the optimal measure-
ment location for the maximal PMaj thickness close to the rib end and emphasized the lightweight applicability

of our model for fitness training and muscle assessment. Further studies can refine load intensities, investigate diverse
parameters, and employ different network models to enhance accuracy. This study contributes to our understanding
of the effects of muscle physiology and exercise training.

Keywords B-mode ultrasound, Deep learning, Exercise training, Pectoralis major, Wearable ultrasound-imaging
biofeedback

Introduction

Skeletal muscle training is crucial for enhancing athletic
performance and the overall quality of life [1-4]. Real-
time visual biofeedback, particularly real-time ultra-
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Our team recently developed a portable ultrasonog-
raphy-based RUSI visual biofeedback system for pec-
toralis major (PMaj) exercises (pec-fly) in a cohort of
25 athletes [9]. The system significantly enhanced the
PMaj exercise effectiveness, as revealed by the RUSI
probe in the area between the third intercostal space
and the midclavicular line on the left side (Fig. 1a).
However, the thickness measurement procedure still
involves manual operations [9], such as manually
selecting both the location and line segment for thick-
ness determination.

Advancements in deep learning have improved the
automatic extraction of tissue contours using ultrasound
imagery. Examples include the UNet model proposed by
Ronneberger et al. [12], breast ultrasound image segmen-
tation with an extended UNet architecture proposed by
Guo et al. [13], multiscale feature-aggregated UNet for
intravascular ultrasound image segmentation by Xia et al.
[14], and recent advancements in ultrasound image seg-
mentation using the transformer model [15-18]. Despite
recent developments, the UNet model is still preferred
because of its lightweight deployment capabilities [19].
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This study aimed to develop a portable and lightweight
ultrasound-based RUSI biofeedback system. To achieve
this, we propose using a deep learning model for frame-
by-frame segmentation of the ultrasound image stream.
This method promises automated and precise analysis
of PMaj thickness variations, offering a detailed view
of changes in the coronal plane that could improve the
intelligence and efficiency of current systems [9]. In addi-
tion, this study can clarify or confirm certain phenomena
in biomedical research by examining variations in PMaj
thickness.

The remainder of this paper is organized as follows.
Methods section firstly outlines the material used in this
study, including system specifications, diagnostic data,
and data volumes; secondly a comprehensive exposi-
tion of the deep learning models employed is presented,
delineating the motion estimation and image segmenta-
tion branches thirdly, we elaborate on our methodology
for evaluating the PMaj thickness of segmentation results
and discuss the findings therein; finally, we evaluate mod-
ifications applied to the model, including disintegration
experiments performed on the RNN components and

Fig. 1 Experiment setup for probe location and data processing. a Schematic diagram of the experiment [11]; b Left, proposed probe placement
in the anatomy: the red cross indicates the probe location. Right, representative ultrasound frames of PMaj, two frames represent the start frame
and end frame (scanning depth is 55 mm and each small segment is 5 mm). The ground truth with manually labeled highlights
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enhancements made to the UNet network. Results sec-
tion presents the results, highlighting the model’s opti-
mization and performance evaluations, coupled with
comparative analyses of diverse model outcomes. In Dis-
cussion section, a comprehensive analysis is conducted
to assess the variances in thickness among different
condition groups, along with the changes across differ-
ent measurement locations of the maximum thickness.
Finally, we engage in a discussion of our research findings
and their potential physiological significance.

Methods

Materials

The RUSI biofeedback system and its training con-
figuration are illustrated in Fig. 2. This system com-
prises two main components: (a) a bespoke ultrasound
image-acquisition unit and (b) a mobile terminal
(Fig. 1). Specifically, the image acquisition unit includes
a custom-designed ultrasound probe measuring
4.5 cmx0.7 cm, a signal cable, and a control box with
dimensions of 15.6 cmXx6 cm X2 cm. The weight of the
probe is approximately 350 g, making it lightweight and
easily maneuverable during operation. Operating at an
ultrasound frequency of 7.5 MHz with a 35% bandwidth,
the probe is appropriate for superficial muscle imag-
ing based on previous research [8]. Its scanning depth
ranges from 20 mm to 55 mm, allowing for versatile
applications across various muscle groups and anatomi-
cal structures. The control box contains the components
for signal processing and data transmission. This unit
utilizes 5G Wi-Fi technology for seamless transmission
of ultrasound images between the ultrasound probe and
the mobile terminal, ensuring a stable connection with
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a theoretical maximum speed of 450 Mbps. This high-
speed connection, coupled with the system’s support for
the 802.11 g Wi-Fi standard operating at a 20 MHz fre-
quency, provides reliable data transmission while main-
taining compatibility with modern smartphone devices.
An application installed on a smartphone displayed these
B-mode ultrasound images, with the system achieving 18
frames per second.

The experimental design and participant selection cri-
teria used in our research were based on previous meth-
odologies [9]. We enrolled 25 healthy young men and
used a repeated measures design. The inclusion criteria
for the study were as follows: individuals without a his-
tory of chest, spine, or upper limb surgery; those who
have not faced recent orthopedic or neurological issues;
participants without significant chronic medical condi-
tions; and subjects with no previous experience in RUSI
feedback training. Additionally, the participants were
required to refrain from any upper-body resistance
training for a minimum of 48 h before the experiment.
The subjects were aged from 18 to 35 years. Before the
study, the participants were thoroughly informed of the
objectives and procedures of the experiment. All partici-
pants were required to sign a consent form. This study
received ethical approval from the Hong Kong Poly-
technic University Ethical Review Board (No. HSEARS
20180418002).

A meticulous image labeling process was performed to
enable comprehensive and automated measurement of
the PMaj thickness in the coronal plane within the detec-
tion area of the probe. This approach effectively over-
comes the limitations associated with previous manual
measurement methods for the number of processable

Fig. 2 Wearable RUSI biofeedback system: ultrasound image acquisition unit wirelessly connected to the matched smartphone-based application
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images and measurement locations. Under the guidance
of a medical professional, the labelers used the Labelme
image annotation tool [20] to annotate the selected
frames from the PMaj ultrasound video. The annotations
focused on the contour of the PMaj muscle within the
probe detection region in the coronal plane, including
the start and end frames (Fig. 1b). The resulting dataset
comprised 13,640 images and 1,136 annotations.

Proposed model

Our approach utilizes a deep-learning model to meas-
ure the PMaj thickness of the processed data (Fig. 3).
The model employs a deep learning optical flow motion
estimation model to detect motion patterns and applies
these findings to motion compensation and artifact
removal in medical imaging. In addition, a segmenta-
tion model was employed to isolate and analyze features
from the designated regions. Our methodology resulted
in a joint learning approach that combined the outputs
of both the motion estimation and segmentation models.
The details of each branch are as follows:

(1) The Siamese-style multiscale recurrent motion esti-
mation branch (based on the work proposed by Qin
et al. [21]). In our implementation, we replace the
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recurrent neural network (RNN) [22] component
with two convolutional layers.

(2) For the segmentation branch, we employed a UNet
segmentation network. Unlike the approach pro-
posed by Qin et al. [21], in which the weights were
shared, we treated the motion estimation results as
the ground truth for segmentation. This is comple-
mented by adopting a deep supervision strategy to
ensure the preservation of multiscale information
in the segmentation results.

The effectiveness of this integration was measured
using the Dice coefficients from Eq. (1) as the key perfor-
mance metric [21]. To guarantee the stability and reliabil-
ity of the results, a fivefold cross-validation method was
implemented.

. ynp|
Dice = rypp (1)

where Y denotes the ground truth and P denotes the
model output.

Methodology for PMaj thickness measurement
The experimental protocol used in this study was based
on the methodology established in our previous manual
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Fig. 3 Deep learning models were used in this research. The model is comprised of a motion estimation branch and an image segmentation
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measurement studies [9]. The complete training pro-
tocol is illustrated in Fig. 4. Data collection included
exercises under varying load conditions, specifically
low-moderate and high loads. These values were quan-
tified as 50% and 80% of the one-repetition maximum
(1-RM) [23], respectively. For each intensity level, the
participants performed the pec-fly exercise twice,
once without RUSI biofeedback, and once with RUSI
biofeedback. Before the experimental sessions, we
recorded the baseline thickness of the PMaj in a relaxed
state without any resistance. Our approach differs from
traditional methods that visually estimate the PMaj
thickness by identifying the point of maximum distance
between the inferior border tip and superior border-
bottom. Rather, we utilized an automated system to
calculate the PMaj thickness throughout the probe
detection region. This method enhances the accuracy
and comprehensiveness of the measurements. Mus-
cle activation levels were measured using the muscle
thickness change (%) [24—28]. This was defined as the
percentage difference in PMaj thickness between the
resting state and maximum contraction and was calcu-
lated using Eq. (2).

Baseline
assessment

Manual
method

Resting thickness ‘

|

Maximally

Resting thickness contracted thickness
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Musclethickness — change(%) =
Maximallycontractedthickness—Restingthickness x 100% (2)
Restingthickness 0

Evaluating model modifications: an ablation study

We conducted ablation experiments on the key com-
ponents of a deep learning model to validate the effec-
tiveness of our modifications. We focused on two main
aspects: modifying the RNN component in the motion
estimation branch and applying the UNet network in the
segmentation branch.

The transition from RNN to convolutional layers: In
the motion estimation branch, as detailed in Fig. 3, the
original RNN component was replaced with two convo-
lutional layers. We evaluated the impact of this change
by comparing the model’s parameter count and per-
formance in both the original and modified states. The
performance evaluation focused on the accuracy of the
model in capturing motion patterns and compensating
for motion for medical image processing.

We employ a UNet network in the segmentation
branch, diverging from the weight-sharing scheme pro-
posed by Qin et al. [21]. We used the motion estima-
tion outcomes as ground-truth data for segmentation,

The condition

with RUSI biofeedback
5 mins

rest

[50% of 1-RM | 80% of 1-RM|

Maximally
contracted thickness

Maximally
contracted thickness

4

Fig. 4 Method outline: Participants were instructed to remain still for approximately 30 s to establish a baseline assessment. This was followed
by four experimental conditions of PMaj resistance training. The training session consisted of two assigned load training intensities (50% of 1-RM
and 80% of 1-RM), with the conditions without RUSI biofeedback continuously being performed before the condition with RUSI biofeedback.
One set of three repetitions was performed in each experimental condition. Our methodology employs a comprehensive automated approach
for calculating PMaj thickness across the entire probe detection region (scanning depth is 55 mm and each small segment is 5 mm), in contrast

to manual measurement methods [9]



Cai et al. Visual Computing for Industry, Biomedicine, and Art

incorporating a deep supervision approach to preserve
multiscale information in the segmentation results. To
establish the superiority of the UNet network, we com-
pared it with UNet++ [29] and the latest EGE-UNet [30]
in terms of the parameter count and model performance.

The ablation experiments were designed to pre-
cisely quantify the contribution of each modification
to the overall model performance. These experiments
were designed to validate the effectiveness of the pro-
posed model for measuring PMaj thickness, confirming
the stability and reliability of the results using fivefold
cross-validation.

Results

To optimize the model, we replaced the RNN component
with a two-layer convolutional neural network (CNN).
This modification aimed to assess whether a simpler
and more computationally efficient architecture could
maintain or enhance the model performance. The com-
parison results are presented in Table 1. While the two-
layer CNN model improved computational efficiency, it
showed a minor reduction in motion estimation accu-
racy. This outcome suggests that while simplification
of the model architecture can lead to faster processing
times, it may reduce the precision in certain aspects of
performance.

A comparative analysis of UNet, UNet++, and EGE-
UNet revealed that each model had similar segmenta-
tion effectiveness, as reflected by their Dice coefficients.
However, variations were noted in their BCEFocalLoss
performances, with EGE-UNet scoring the highest, sug-
gesting potential limitations when generalizing new
datasets. UNet++features dense convolutional blocks
and deep supervision, enhancing feature extraction and
learning accuracy but at the cost of increased param-
eters. In contrast, while EGE-UNet prioritizes parameter
efficiency, it achieves a halved parameter count without
a proportional gain in computational speed. Therefore,
UNet emerged as a balanced choice for our segmentation
requirements because of its optimal blend of complexity
and efficiency. Further details are presented in Table 2.

In this study, we chose a combination of a two-layer
CNN and UNet as the appropriate model. This was to
ensure an optimal balance between maintaining a swift
response speed and achieving high model performance.
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Table 2 Comparative analysis of UNet, UNet++, and EGE-UNet

Dice coefficient Segmentation loss Computational

speed
UNet [12] 0.938+0.033 0.110£0.046 97.5ms
UNet++[29]  0.938+0.041 0.108+0.035 102.5 ms
EGE-UNet [30] 0.938+0.047 0.324+0.016 92.5ms

Computational speed: the time taken by each model to process a single image,
measured from input to output

The integration of a two-layer CNN with UNet provided
a computationally efficient model that captured the
detailed features necessary for accurate segmentation.
This combination was effective and did not compromise
the rapid processing capabilities required for our analysis.

The performance of the tailored model was evaluated.
By training the proposed model, we achieved an average
Dice coefficient of 0.94 across each fold of the optimal
model. We calculated the change in the PMaj thickness
within the probe detection region (located at the inter-
section of the third intercostal space and the midcla-
vicular line on the left side of the body) under various
experimental scenarios using Eq. (2). The study included
training intensities at low-moderate (50% of 1-RM) and
high (80% of 1-RM) loads, each further categorized
based on the pec-fly exercise performed with or with-
out RUSI biofeedback. Additionally, we documented the
PMaj thickness at rest, which was denoted as the resting
group. Line graphs were used to depict the PMaj thick-
ness change trends, providing visualizing the variations
across different load intensities and biofeedback condi-
tions (with and without biofeedback) at each specified
load intensity.

Previous research [9] demonstrated the effectiveness
of RUSI visual biofeedback in enhancing PMaj thick-
ness changes through manual measurements at manu-
ally selected locations. Our study expands on this using
automated measurements to cover the entire transverse
region of the PMaj thickness change in the probe-detec-
tion region. This study examined the impact of RUSI vis-
ual biofeedback on changes in the thickness of the entire
transverse region of the PMaj in the probe detection
region at two different training intensities. The results are
shown in Fig. 5.

Table 1 Performance comparison of RNN and two-layer CNN models

Smooth loss

RNN (LSTM) [22]
Two-layer CNN (our)

0.1004+0.0004
0.1005+0.0001

MSE loss Model parameter size
0.0016+0.0004 21,223,410
0.0015+0.0002 21,210,289

Model parameter size: the total number of trainable parameters within the model
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Fig. 5 PMaj thickness change for the same load training intensity at two different biofeedback conditions (with and without RUSI biofeedback)
(n=25). In graphs, the curves represent the average values of the PMaj thickness change, while the envelope areas represent the standard
deviation of the PMaj thickness change. (a) represents the PMaj thickness change with different biofeedback conditions at the low-moderate
load training intensity (50% of 1-RM); (b) represents the PMaj thickness change with different biofeedback conditions at the high load training
intensity (80% of 1-RM). For the assigned load training intensity with RUSI biofeedback (on), the PMaj thickness change was significantly increased
for low-moderate training intensity as well as for high-intensity training compared to the corresponding load training intensity without RUSI
biofeedback (off). This emphasizes the important role of RUSI visual biofeedback in the process of muscle thickness change

After receiving RUSI biofeedback, the PMaj thickness
increased at both training intensities (n=25). Figure 5
shows that the standard deviations of the PMaj thickness
change are significantly larger on the right-hand side of
the graphs. However, the average values of PMaj thick-
ness change were not significantly different between the
two intensities.
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Furthermore, we analyzed PMaj thickness variations
at different load training intensities within the same
biofeedback condition. The findings presented in Fig. 6
reveal that without RUSI biofeedback, PMaj thickness
changes were more pronounced at 80% 1-RM than at
50% 1-RM, particularly in the middle part of Fig. 6a,
with less variation at the ends. In contrast, with RUSI
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Fig. 6 PMaj thickness change for two different load training intensities at the same biofeedback condition (with or without RUSI biofeedback)
(n=25).The curves represent the average values of the PMaj thickness change, while the envelope areas represent the standard deviation

of the PMaj thickness change. (a) represents PMaj thickness change without RUSI biofeedback at different load training intensities; (b) represents
PMaj thickness change with RUSI biofeedback at different load training intensities. It is shown in (a) and (b) that differences in the PMaj thickness

change distribution between them
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biofeedback, the differences in PMaj thickness changes
between the two intensities were less distinct, as shown
in Fig. 6b. In other words, the data distribution in
Fig. 6b does not exhibit the corresponding character-
istics (larger differences in the middle part of the graph
and smaller differences at both ends) in Fig. 6a.

Finally, we review the data analysis of a previous
study on the selection and measurement of the maxi-
mum thickness of the PMaj. To objectively determine
the optimal site for measuring peak PMaj thickness,
our goal was to pinpoint the location where PMaj thick-
ness is at its maximum. We revisited the data analysis
method used in a previous study to determine the max-
imum thickness change in PMaj under different experi-
mental conditions [9]. Considering the potential impact
of boundary effects during image processing [31] that
may result from overly narrow spacing, we subdivided
the region into five equidistant intervals as much as
possible, as illustrated in Fig. 7.
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The analysis shows that the maximum thickness change
in PMaj was mostly located in the rightmost interval of
Fig. 7 under various experimental conditions. This sug-
gests that the measurement locations for the maximal
change in PMaj thickness were frequently closer to the
rib end on the left side of the body. Differences in experi-
mental procedures or individual participant character-
istics could account for variations in PMaj thickness at
other locations.

In general, our research confirmed the significant
impact of RUSI biofeedback on PMaj exercises based on
previous studies [9]. The observations were broadened to
cover the entire probe detection area. We discovered that
training with wearable RUSI biofeedback devices at 50%
and 80% 1-RM loads significantly increased the PMaj
thickness compared with training without these devices.

Additionally, we observed notable differences in the
PMaj thickness changes between 50% and 80% of the
1-RM loads when conducted without RUSI biofeed-
back. These variations were less distinct when the RUSI
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Fig. 7 Distribution of the measurement locations of the PMaj maximum thickness change for different experimental conditions (n=25). (a)
represents the 50% of 1-RM without RUSI biofeedback; (b) represents the 50% of 1-RM with RUSI biofeedback; (c) represents the 80% of 1-RM
without RUSI biofeedback; (d) represents the 80% of 1-RM with RUSI biofeedback. We found that the PMaj maximum thickness occurrences had

the highest ratio within the rightmost interval of the graph
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biofeedback was used. Furthermore, the maximum thick-
ness change in PMaj was predominantly observed near
the rib end on the left side within the detection area, spe-
cifically in the rightmost interval (Fig. 7). These findings
highlight the impact of RUSI biofeedback on changes
in PMaj thickness and improve our understanding of
its role in muscle training. This will contribute to more
precise and effective training guidelines for practical
applications.

Discussion

To address the limitations of subjective manual meas-
urements in previous research [9], we utilized a deep
learning model to segment the ultrasound images and
calculate the PMaj thickness. The segmentation results
of the model achieved a DSC of 0.938 +0.033, achieving
acceptable accuracy and reliability. This method could
improve the flexibility and convenience of wearable RUSI
systems for real-time monitoring and facilitate a thor-
ough and quantitative analysis of the entire probe detec-
tion region.

First, our findings showed an increase in the PMaj
thickness in the coronal plane with the incorporation of
RUSI visual biofeedback, regardless of training inten-
sity. This aligns with prior research [9] and expands the
measurement scope to include the entire probe detec-
tion region. After integrating RUSI biofeedback into the
pec-fly exercises, we observed adaptive changes in PMaj
thickness. The standard deviation was notably higher
near the rib end than at the clavicular end (»=25), indi-
cating individual differences in PMaj thickness.

Second, significant variations in the PMaj thickness
were observed between 50% and 80% of the 1-RM loads,
particularly in the central region, with smaller differences
towards the edges. These findings are objective and based
on the data collected, without any subjective evaluations.
These disparities were considerably reduced by the RUSI
biofeedback, indicating a possible alteration in the mus-
cle activation strategies of the participants. This phenom-
enon, potentially linked to different muscle contraction
patterns, has been observed in other muscle training
studies [32—34], and it may be linked to different muscle
contraction patterns. Further investigation is warranted
for the PMaj exercises.

Third, our study aimed to identify the optimal site for
measuring the peak PMaj thickness based on prior data
[9]. The results showed that the peak PMaj thickness
measurements predominantly occurred near the rib end
within the probe detection area, suggesting that this is
the ideal location for such measurements. This insight
could be utilized in future research to accurately deter-
mine the peak PMaj thickness measurement locations,
particularly near the rib end.
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In addition, our findings suggest that the division of
training intensities into 50% and 80% 1-RM may have
been inadequate, resulting in ambiguous data. Future
studies should refine these intensities and collect more
data to achieve a more accurate analysis of the RUSI bio-
feedback effects. Although this requires more data, using
automated measurements reduces the additional pro-
cessing time and cost.

Finally, our model is efficient and can function on a
standard personal computer without requiring a GPU
[35]. This makes it a practical addition to previously
proposed portable ultrasound systems for fitness train-
ing [9]. Furthermore, we provided guidelines for accu-
rately selecting measurement locations for the maximum
thickness of PMaj within the detection area of the probe.
Future studies should investigate the effects of various
parameters and training methods on changes in the PMaj
thickness during exercise. These findings enhance our
understanding of muscle physiology and the effects of
exercise training.

Conclusions

This study used a deep learning model to comprehen-
sively analyze changes in PMaj thickness during pec-fly
exercises using a wearable ultrasound imaging setup.
We provide quantitative insights into PMaj thickness
alterations in the coronal plane within the entire probe
detection region, overcoming the limitations of man-
ual measurements. We found that incorporating RUSI
visual biofeedback resulted in augmented PMaj thick-
ness changes, regardless of load intensity. Furthermore,
biofeedback has been used to mitigate load-dependent
differences, resulting in improved muscle activation
strategies. The optimal site for measuring peak PMaj
thickness near the rib end was pinpointed. While addi-
tional research is needed to fine-tune load intensities
and improve segmentation techniques, our streamlined
model provides valuable application in fitness training
contexts. This study contributes to the understanding of
muscle physiology and lays the foundation for exploring
various training approaches.

Abbreviations

PMaj  Pectoralis major

RUSI  Real-time ultrasound imaging
1-RM  One-repetition maximum
CNN  Convolutional neural network
RNN Recurrent neural network
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