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Abstract 

This study addresses a limitation of prior research on pectoralis major (PMaj) thickness changes during the pecto-
ralis fly exercise using a wearable ultrasound imaging setup. Although previous studies used manual measurement 
and subjective evaluation, it is important to acknowledge the subsequent limitations of automating widespread 
applications. We then employed a deep learning model for image segmentation and automated measurement 
to solve the problem and study the additional quantitative supplementary information that could be provided. Our 
results revealed increased PMaj thickness changes in the coronal plane within the probe detection region when real-
time ultrasound imaging (RUSI) visual biofeedback was incorporated, regardless of load intensity (50% or 80% 
of one-repetition maximum). Additionally, participants showed uniform thickness changes in the PMaj in response 
to enhanced RUSI biofeedback. Notably, the differences in PMaj thickness changes between load intensities were 
reduced by RUSI biofeedback, suggesting altered muscle activation strategies. We identified the optimal measure-
ment location for the maximal PMaj thickness close to the rib end and emphasized the lightweight applicability 
of our model for fitness training and muscle assessment. Further studies can refine load intensities, investigate diverse 
parameters, and employ different network models to enhance accuracy. This study contributes to our understanding 
of the effects of muscle physiology and exercise training.

Keywords B-mode ultrasound, Deep learning, Exercise training, Pectoralis major, Wearable ultrasound-imaging 
biofeedback

Introduction
Skeletal muscle training is crucial for enhancing athletic 
performance and the overall quality of life [1–4]. Real-
time visual biofeedback, particularly real-time ultra-
sound imaging (RUSI), has made significant progress 
in sports medicine and rehabilitation. It provides non-
invasive, instantaneous, and detailed insights into the 
human body [5–7]. RUSI, a type of visual biofeedback, is 
exceptionally useful for real-time monitoring of skeletal 
muscles [8–10]. For example, Henry and Westervelt [6] 
demonstrated in their research that abdominal contrac-
tion training is more effective when supplemented with 
RUSI visual biofeedback.
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Our team recently developed a portable ultrasonog-
raphy-based RUSI visual biofeedback system for pec-
toralis major (PMaj) exercises (pec-fly) in a cohort of 
25 athletes [9]. The system significantly enhanced the 
PMaj exercise effectiveness, as revealed by the RUSI 
probe in the area between the third intercostal space 
and the midclavicular line on the left side (Fig.  1a). 
However, the thickness measurement procedure still 
involves manual operations [9], such as manually 
selecting both the location and line segment for thick-
ness determination.

Advancements in deep learning have improved the 
automatic extraction of tissue contours using ultrasound 
imagery. Examples include the UNet model proposed by 
Ronneberger et al. [12], breast ultrasound image segmen-
tation with an extended UNet architecture proposed by 
Guo et  al. [13], multiscale feature-aggregated UNet for 
intravascular ultrasound image segmentation by Xia et al. 
[14], and recent advancements in ultrasound image seg-
mentation using the transformer model [15–18]. Despite 
recent developments, the UNet model is still preferred 
because of its lightweight deployment capabilities [19].

This study aimed to develop a portable and lightweight 
ultrasound-based RUSI biofeedback system. To achieve 
this, we propose using a deep learning model for frame-
by-frame segmentation of the ultrasound image stream. 
This method promises automated and precise analysis 
of PMaj thickness variations, offering a detailed view 
of changes in the coronal plane that could improve the 
intelligence and efficiency of current systems [9]. In addi-
tion, this study can clarify or confirm certain phenomena 
in biomedical research by examining variations in PMaj 
thickness.

The remainder of this paper is organized as follows. 
Methods section  firstly outlines the material used in this 
study, including system specifications, diagnostic data, 
and data volumes; secondly a comprehensive exposi-
tion of the deep learning models employed is presented, 
delineating the motion estimation and image segmenta-
tion branches thirdly, we elaborate on our methodology 
for evaluating the PMaj thickness of segmentation results 
and discuss the findings therein; finally, we evaluate mod-
ifications applied to the model, including disintegration 
experiments performed on the RNN components and 

Fig. 1 Experiment setup for probe location and data processing. a Schematic diagram of the experiment [11]; b Left, proposed probe placement 
in the anatomy: the red cross indicates the probe location. Right, representative ultrasound frames of PMaj, two frames represent the start frame 
and end frame (scanning depth is 55 mm and each small segment is 5 mm). The ground truth with manually labeled highlights
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enhancements made to the UNet network. Results  sec-
tion   presents the results, highlighting the model’s opti-
mization and performance evaluations, coupled with 
comparative analyses of diverse model outcomes. In Dis-
cussion section, a comprehensive analysis is conducted 
to assess the variances in thickness among different 
condition groups, along with the changes across differ-
ent measurement locations of the maximum thickness. 
Finally, we engage in a discussion of our research findings 
and their potential physiological significance.

Methods
Materials
The RUSI biofeedback system and its training con-
figuration are illustrated in Fig.  2. This system com-
prises two main components: (a) a bespoke ultrasound 
image-acquisition unit and (b) a mobile terminal 
(Fig.  1). Specifically, the image acquisition unit includes 
a custom-designed ultrasound probe measuring 
4.5  cm × 0.7  cm, a signal cable, and a control box with 
dimensions of 15.6 cm × 6 cm × 2 cm. The weight of the 
probe is approximately 350 g, making it lightweight and 
easily maneuverable during operation. Operating at an 
ultrasound frequency of 7.5 MHz with a 35% bandwidth, 
the probe is appropriate for superficial muscle imag-
ing based on previous research [8]. Its scanning depth 
ranges from 20 mm  to 55  mm, allowing for versatile 
applications across various muscle groups and anatomi-
cal structures. The control box contains the components 
for signal processing and data transmission. This unit 
utilizes 5G Wi-Fi technology for seamless transmission 
of ultrasound images between the ultrasound probe and 
the mobile terminal, ensuring a stable connection with 

a theoretical maximum speed of 450 Mbps. This high-
speed connection, coupled with the system’s support for 
the 802.11 g Wi-Fi standard operating at a 20 MHz fre-
quency, provides reliable data transmission while main-
taining compatibility with modern smartphone devices. 
An application installed on a smartphone displayed these 
B-mode ultrasound images, with the system achieving 18 
frames per second.

The experimental design and participant selection cri-
teria used in our research were based on previous meth-
odologies [9]. We enrolled 25 healthy young men and 
used a repeated measures design. The inclusion criteria 
for the study were as follows: individuals without a his-
tory of chest, spine, or upper limb surgery; those who 
have not faced recent orthopedic or neurological issues; 
participants without significant chronic medical condi-
tions; and subjects with no previous experience in RUSI 
feedback training. Additionally, the participants were 
required to refrain from any upper-body resistance 
training for a minimum of 48  h before the experiment. 
The subjects were aged from 18 to 35  years. Before the 
study, the participants were thoroughly informed of the 
objectives and procedures of the experiment. All partici-
pants were required to sign a consent form. This study 
received ethical approval from the Hong Kong Poly-
technic University Ethical Review Board (No. HSEARS 
20180418002).

A meticulous image labeling process was performed to 
enable comprehensive and automated measurement of 
the PMaj thickness in the coronal plane within the detec-
tion area of the probe. This approach effectively over-
comes the limitations associated with previous manual 
measurement methods for the number of processable 

Fig. 2 Wearable RUSI biofeedback system: ultrasound image acquisition unit wirelessly connected to the matched smartphone-based application
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images and measurement locations. Under the guidance 
of a medical professional, the labelers used the Labelme 
image annotation tool [20] to annotate the selected 
frames from the PMaj ultrasound video. The annotations 
focused on the contour of the PMaj muscle within the 
probe detection region in the coronal plane, including 
the start and end frames (Fig. 1b). The resulting dataset 
comprised 13,640 images and 1,136 annotations.

Proposed model
Our approach utilizes a deep-learning model to meas-
ure the PMaj thickness of the processed data (Fig.  3). 
The model employs a deep learning optical flow motion 
estimation model to detect motion patterns and applies 
these findings to motion compensation and artifact 
removal in medical imaging. In addition, a segmenta-
tion model was employed to isolate and analyze features 
from the designated regions. Our methodology resulted 
in a joint learning approach that combined the outputs 
of both the motion estimation and segmentation models. 
The details of each branch are as follows:

(1) The Siamese-style multiscale recurrent motion esti-
mation branch (based on the work proposed by Qin 
et  al. [21]). In our implementation, we replace the 

recurrent neural network (RNN) [22] component 
with two convolutional layers.

(2) For the segmentation branch, we employed a UNet 
segmentation network. Unlike the approach pro-
posed by Qin et al. [21], in which the weights were 
shared, we treated the motion estimation results as 
the ground truth for segmentation. This is comple-
mented by adopting a deep supervision strategy to 
ensure the preservation of multiscale information 
in the segmentation results.

The effectiveness of this integration was measured 
using the Dice coefficients from Eq. (1) as the key perfor-
mance metric [21]. To guarantee the stability and reliabil-
ity of the results, a fivefold cross-validation method was 
implemented.

where Y denotes the ground truth and P denotes the 
model output.

Methodology for PMaj thickness measurement
The experimental protocol used in this study was based 
on the methodology established in our previous manual 

(1)Dice = |Y∩P|
|Y |∪|P|

Fig. 3 Deep learning models were used in this research. The model is comprised of a motion estimation branch and an image segmentation 
branch
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measurement studies [9]. The complete training pro-
tocol is illustrated in Fig.  4. Data collection included 
exercises under varying load conditions, specifically 
low-moderate and high loads. These values were quan-
tified as 50% and 80% of the one-repetition maximum 
(1-RM) [23], respectively. For each intensity level, the 
participants performed the pec-fly exercise twice, 
once without RUSI biofeedback, and once with RUSI 
biofeedback. Before the experimental sessions, we 
recorded the baseline thickness of the PMaj in a relaxed 
state without any resistance. Our approach differs from 
traditional methods that visually estimate the PMaj 
thickness by identifying the point of maximum distance 
between the inferior border tip and superior border-
bottom. Rather, we utilized an automated system to 
calculate the PMaj thickness throughout the probe 
detection region. This method enhances the accuracy 
and comprehensiveness of the measurements. Mus-
cle activation levels were measured using the muscle 
thickness change (%) [24–28]. This was defined as the 
percentage difference in PMaj thickness between the 
resting state and maximum contraction and was calcu-
lated using Eq. (2).

Evaluating model modifications: an ablation study
We conducted ablation experiments on the key com-
ponents of a deep learning model to validate the effec-
tiveness of our modifications. We focused on two main 
aspects: modifying the RNN component in the motion 
estimation branch and applying the UNet network in the 
segmentation branch.

The transition from RNN to convolutional layers: In 
the motion estimation branch, as detailed in Fig.  3, the 
original RNN component was replaced with two convo-
lutional layers. We evaluated the impact of this change 
by comparing the model’s parameter count and per-
formance in both the original and modified states. The 
performance evaluation focused on the accuracy of the 
model in capturing motion patterns and compensating 
for motion for medical image processing.

We employ a UNet network in the segmentation 
branch, diverging from the weight-sharing scheme pro-
posed by Qin et  al. [21]. We used the motion estima-
tion outcomes as ground-truth data for segmentation, 

(2)
Musclethickness − change(%) =

Maximallycontractedthickness−Restingthickness
Restingthickness

× 100%

Fig. 4 Method outline: Participants were instructed to remain still for approximately 30 s to establish a baseline assessment. This was followed 
by four experimental conditions of PMaj resistance training. The training session consisted of two assigned load training intensities (50% of 1-RM 
and 80% of 1-RM), with the conditions without RUSI biofeedback continuously being performed before the condition with RUSI biofeedback. 
One set of three repetitions was performed in each experimental condition. Our methodology employs a comprehensive automated approach 
for calculating PMaj thickness across the entire probe detection region (scanning depth is 55 mm and each small segment is 5 mm), in contrast 
to manual measurement methods [9]
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incorporating a deep supervision approach to preserve 
multiscale information in the segmentation results. To 
establish the superiority of the UNet network, we com-
pared it with UNet++ [29] and the latest EGE-UNet [30] 
in terms of the parameter count and model performance.

The ablation experiments were designed to pre-
cisely quantify the contribution of each modification 
to the overall model performance. These experiments 
were designed to validate the effectiveness of the pro-
posed model for measuring PMaj thickness, confirming 
the stability and reliability of the results using fivefold 
cross-validation.

Results
To optimize the model, we replaced the RNN component 
with a two-layer convolutional neural network (CNN). 
This modification aimed to assess whether a simpler 
and more computationally efficient architecture could 
maintain or enhance the model performance. The com-
parison results are presented in Table 1. While the two-
layer CNN model improved computational efficiency, it 
showed a minor reduction in motion estimation accu-
racy. This outcome suggests that while simplification 
of the model architecture can lead to faster processing 
times, it may reduce the precision in certain aspects of 
performance.

A comparative analysis of UNet, UNet++ , and EGE-
UNet revealed that each model had similar segmenta-
tion effectiveness, as reflected by their Dice coefficients. 
However, variations were noted in their BCEFocalLoss 
performances, with EGE-UNet scoring the highest, sug-
gesting potential limitations when generalizing new 
datasets. UNet++ features dense convolutional blocks 
and deep supervision, enhancing feature extraction and 
learning accuracy but at the cost of increased param-
eters. In contrast, while EGE-UNet prioritizes parameter 
efficiency, it achieves a halved parameter count without 
a proportional gain in computational speed. Therefore, 
UNet emerged as a balanced choice for our segmentation 
requirements because of its optimal blend of complexity 
and efficiency. Further details are presented in Table 2.

In this study, we chose a combination of a two-layer 
CNN and UNet as the appropriate model. This was to 
ensure an optimal balance between maintaining a swift 
response speed and achieving high model performance. 

The integration of a two-layer CNN with UNet provided 
a computationally efficient model that captured the 
detailed features necessary for accurate segmentation. 
This combination was effective and did not compromise 
the rapid processing capabilities required for our analysis.

The performance of the tailored model was evaluated. 
By training the proposed model, we achieved an average 
Dice coefficient of 0.94 across each fold of the optimal 
model. We calculated the change in the PMaj thickness 
within the probe detection region (located at the inter-
section of the third intercostal space and the midcla-
vicular line on the left side of the body) under various 
experimental scenarios using Eq. (2). The study included 
training intensities at low-moderate (50% of 1-RM) and 
high (80% of 1-RM) loads, each further categorized 
based on the pec-fly exercise performed with or with-
out RUSI biofeedback. Additionally, we documented the 
PMaj thickness at rest, which was denoted as the resting 
group. Line graphs were used to depict the PMaj thick-
ness change trends, providing visualizing the variations 
across different load intensities and biofeedback condi-
tions (with and without biofeedback) at each specified 
load intensity.

Previous research [9] demonstrated the effectiveness 
of RUSI visual biofeedback in enhancing PMaj thick-
ness changes through manual measurements at manu-
ally selected locations. Our study expands on this using 
automated measurements to cover the entire transverse 
region of the PMaj thickness change in the probe-detec-
tion region. This study examined the impact of RUSI vis-
ual biofeedback on changes in the thickness of the entire 
transverse region of the PMaj in the probe detection 
region at two different training intensities. The results are 
shown in Fig. 5.

Table 1 Performance comparison of RNN and two-layer CNN models

Model parameter size: the total number of trainable parameters within the model

Smooth loss MSE loss Model parameter size

RNN (LSTM) [22] 0.1004 ± 0.0004 0.0016 ± 0.0004 21,223,410

Two-layer CNN (our) 0.1005 ± 0.0001 0.0015 ± 0.0002 21,210,289

Table 2 Comparative analysis of UNet, UNet++ , and EGE-UNet

Computational speed: the time taken by each model to process a single image, 
measured from input to output

Dice coefficient Segmentation loss Computational 
speed

UNet [12] 0.938 ± 0.033 0.110 ± 0.046 97.5 ms

UNet++ [29] 0.938 ± 0.041 0.108 ± 0.035 102.5 ms

EGE-UNet [30] 0.938 ± 0.047 0.324 ± 0.016 92.5 ms
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After receiving RUSI biofeedback, the PMaj thickness 
increased at both training intensities (n = 25). Figure  5 
shows that the standard deviations of the PMaj thickness 
change are significantly larger on the right-hand side of 
the graphs. However, the average values of PMaj thick-
ness change were not significantly different between the 
two intensities.

Furthermore, we analyzed PMaj thickness variations 
at different load training intensities within the same 
biofeedback condition. The findings presented in Fig. 6 
reveal that without RUSI biofeedback, PMaj thickness 
changes were more pronounced at 80% 1-RM than at 
50% 1-RM, particularly in the middle part of Fig.  6a, 
with less variation at the ends. In contrast, with RUSI 

Fig. 5 PMaj thickness change for the same load training intensity at two different biofeedback conditions (with and without RUSI biofeedback) 
(n = 25). In graphs, the curves represent the average values of the PMaj thickness change, while the envelope areas represent the standard 
deviation of the PMaj thickness change. (a) represents the PMaj thickness change with different biofeedback conditions at the low-moderate 
load training intensity (50% of 1-RM); (b) represents the PMaj thickness change with different biofeedback conditions at the high load training 
intensity (80% of 1-RM). For the assigned load training intensity with RUSI biofeedback (on), the PMaj thickness change was significantly increased 
for low-moderate training intensity as well as for high-intensity training compared to the corresponding load training intensity without RUSI 
biofeedback (off ). This emphasizes the important role of RUSI visual biofeedback in the process of muscle thickness change

Fig. 6 PMaj thickness change for two different load training intensities at the same biofeedback condition (with or without RUSI biofeedback) 
(n = 25). The curves represent the average values of the PMaj thickness change, while the envelope areas represent the standard deviation 
of the PMaj thickness change. (a) represents PMaj thickness change without RUSI biofeedback at different load training intensities; (b) represents 
PMaj thickness change with RUSI biofeedback at different load training intensities. It is shown in (a) and (b) that differences in the PMaj thickness 
change distribution between them



Page 8 of 11Cai et al. Visual Computing for Industry, Biomedicine, and Art             (2024) 7:8 

biofeedback, the differences in PMaj thickness changes 
between the two intensities were less distinct, as shown 
in Fig.  6b. In other words, the data distribution in 
Fig.  6b does not exhibit the corresponding character-
istics (larger differences in the middle part of the graph 
and smaller differences at both ends) in Fig. 6a.

Finally, we review the data analysis of a previous 
study on the selection and measurement of the maxi-
mum thickness of the PMaj. To objectively determine 
the optimal site for measuring peak PMaj thickness, 
our goal was to pinpoint the location where PMaj thick-
ness is at its maximum. We revisited the data analysis 
method used in a previous study to determine the max-
imum thickness change in PMaj under different experi-
mental conditions [9]. Considering the potential impact 
of boundary effects during image processing [31] that 
may result from overly narrow spacing, we subdivided 
the region into five equidistant intervals as much as 
possible, as illustrated in Fig. 7.

The analysis shows that the maximum thickness change 
in PMaj was mostly located in the rightmost interval of 
Fig.  7 under various experimental conditions. This sug-
gests that the measurement locations for the maximal 
change in PMaj thickness were frequently closer to the 
rib end on the left side of the body. Differences in experi-
mental procedures or individual participant character-
istics could account for variations in PMaj thickness at 
other locations.

In general, our research confirmed the significant 
impact of RUSI biofeedback on PMaj exercises based on 
previous studies [9]. The observations were broadened to 
cover the entire probe detection area. We discovered that 
training with wearable RUSI biofeedback devices at 50% 
and 80% 1-RM loads significantly increased the PMaj 
thickness compared with training without these devices.

Additionally, we observed notable differences in the 
PMaj thickness changes between 50% and 80% of the 
1-RM loads when conducted without RUSI biofeed-
back. These variations were less distinct when the RUSI 

Fig. 7 Distribution of the measurement locations of the PMaj maximum thickness change for different experimental conditions (n = 25). (a) 
represents the 50% of 1-RM without RUSI biofeedback; (b) represents the 50% of 1-RM with RUSI biofeedback; (c) represents the 80% of 1-RM 
without RUSI biofeedback; (d) represents the 80% of 1-RM with RUSI biofeedback. We found that the PMaj maximum thickness occurrences had 
the highest ratio within the rightmost interval of the graph
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biofeedback was used. Furthermore, the maximum thick-
ness change in PMaj was predominantly observed near 
the rib end on the left side within the detection area, spe-
cifically in the rightmost interval (Fig. 7). These findings 
highlight the impact of RUSI biofeedback on changes 
in PMaj thickness and improve our understanding of 
its role in muscle training. This will contribute to more 
precise and effective training guidelines for practical 
applications.

Discussion
To address the limitations of subjective manual meas-
urements in previous research [9], we utilized a deep 
learning model to segment the ultrasound images and 
calculate the PMaj thickness. The segmentation results 
of the model achieved a DSC of 0.938 ± 0.033, achieving 
acceptable accuracy and reliability. This method could 
improve the flexibility and convenience of wearable RUSI 
systems for real-time monitoring and facilitate a thor-
ough and quantitative analysis of the entire probe detec-
tion region.

First, our findings showed an increase in the PMaj 
thickness in the coronal plane with the incorporation of 
RUSI visual biofeedback, regardless of training inten-
sity. This aligns with prior research [9] and expands the 
measurement scope to include the entire probe detec-
tion region. After integrating RUSI biofeedback into the 
pec-fly exercises, we observed adaptive changes in PMaj 
thickness. The standard deviation was notably higher 
near the rib end than at the clavicular end (n = 25), indi-
cating individual differences in PMaj thickness.

Second, significant variations in the PMaj thickness 
were observed between 50% and 80% of the 1-RM loads, 
particularly in the central region, with smaller differences 
towards the edges. These findings are objective and based 
on the data collected, without any subjective evaluations. 
These disparities were considerably reduced by the RUSI 
biofeedback, indicating a possible alteration in the mus-
cle activation strategies of the participants. This phenom-
enon, potentially linked to different muscle contraction 
patterns, has been observed in other muscle training 
studies [32–34], and it may be linked to different muscle 
contraction patterns. Further investigation is warranted 
for the PMaj exercises.

Third, our study aimed to identify the optimal site for 
measuring the peak PMaj thickness based on prior data 
[9]. The results showed that the peak PMaj thickness 
measurements predominantly occurred near the rib end 
within the probe detection area, suggesting that this is 
the ideal location for such measurements. This insight 
could be utilized in future research to accurately deter-
mine the peak PMaj thickness measurement locations, 
particularly near the rib end.

In addition, our findings suggest that the division of 
training intensities into 50% and 80% 1-RM may have 
been inadequate, resulting in ambiguous data. Future 
studies should refine these intensities and collect more 
data to achieve a more accurate analysis of the RUSI bio-
feedback effects. Although this requires more data, using 
automated measurements reduces the additional pro-
cessing time and cost.

Finally, our model is efficient and can function on a 
standard personal computer without requiring a GPU 
[35]. This makes it a practical addition to previously 
proposed portable ultrasound systems for fitness train-
ing [9]. Furthermore, we provided guidelines for accu-
rately selecting measurement locations for the maximum 
thickness of PMaj within the detection area of the probe. 
Future studies should investigate the effects of various 
parameters and training methods on changes in the PMaj 
thickness during exercise. These findings enhance our 
understanding of muscle physiology and the effects of 
exercise training.

Conclusions
This study used a deep learning model to comprehen-
sively analyze changes in PMaj thickness during pec-fly 
exercises using a wearable ultrasound imaging setup. 
We provide quantitative insights into PMaj thickness 
alterations in the coronal plane within the entire probe 
detection region, overcoming the limitations of man-
ual measurements. We found that incorporating RUSI 
visual biofeedback resulted in augmented PMaj thick-
ness changes, regardless of load intensity. Furthermore, 
biofeedback has been used to mitigate load-dependent 
differences, resulting in improved muscle activation 
strategies. The optimal site for measuring peak PMaj 
thickness near the rib end was pinpointed. While addi-
tional research is needed to fine-tune load intensities 
and improve segmentation techniques, our streamlined 
model provides valuable application in fitness training 
contexts. This study contributes to the understanding of 
muscle physiology and lays the foundation for exploring 
various training approaches.
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