
Zhang et al. 
Visual Computing for Industry, Biomedicine, and Art             (2024) 7:9  
https://doi.org/10.1186/s42492-024-00160-z

ORIGINAL ARTICLE

Dual modality prompt learning for visual 
question-grounded answering in robotic 
surgery
Yue Zhang1, Wanshu Fan1*  , Peixi Peng1, Xin Yang2, Dongsheng Zhou1,2 and Xiaopeng Wei2 

Abstract 

With recent advancements in robotic surgery, notable strides have been made in visual question answering (VQA). 
Existing VQA systems typically generate textual answers to questions but fail to indicate the location of the relevant 
content within the image. This limitation restricts the interpretative capacity of the VQA models and their abil-
ity to explore specific image regions. To address this issue, this study proposes a grounded VQA model for robotic 
surgery, capable of localizing a specific region during answer prediction. Drawing inspiration from prompt learning 
in language models, a dual-modality prompt model was developed to enhance precise multimodal information 
interactions. Specifically, two complementary prompters were introduced to effectively integrate visual and textual 
prompts into the encoding process of the model. A visual complementary prompter merges visual prompt knowl-
edge with visual information features to guide accurate localization. The textual complementary prompter aligns vis-
ual information with textual prompt knowledge and textual information, guiding textual information towards a more 
accurate inference of the answer. Additionally, a multiple iterative fusion strategy was adopted for comprehensive 
answer reasoning, to ensure high-quality generation of textual and grounded answers. The experimental results vali-
date the effectiveness of the model, demonstrating its superiority over existing methods on the EndoVis-18 and End-
oVis-17 datasets.
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Introduction
Visual question answering (VQA) has emerged as a piv-
otal multimodal task in recent years, seamlessly inte-
grating visual and language components. With the 
development of deep learning, the VQA system has the 
potential to serve as an auxiliary tool with extensive 
applications in the healthcare domain, offering valuable 
assistance to physicians in diagnosis and decision-making 

[1–3]. Most existing deep-learning-based VQA models 
primarily generate and validate these textual responses 
[4–6]. However, such a validation mechanism is too sim-
ple to ensure that the model correctly answers questions 
based on visual content. Consequently, research efforts 
have been dedicated to enhancing answer validation 
mechanisms for a more reliable VQA system [7–10].

Recently, some datasets in the field of VQA have 
incorporated a grounded answer validation mecha-
nism [11–13]. This verification process involves the 
accurate identification of specific regions in the image 
corresponding to the textual answers, thereby enhanc-
ing both the accuracy (ACC) and interpretability of the 
answers. These developments have increased the fea-
sibility of developing secure and reliable VQA models 
for medical applications. Subsequently, some works 
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[14–16] introduced visual question-grounded answer-
ing (VQGA) specifically for robotic surgery, to establish 
a correspondence between the answers and the spatial 
location of objects within the surgical scene. Bai et  al. 
[15] proposed the co-attention gated vision-language 
embedding (CAT-ViL) and surgical-visual question 
localized-answering (surgical-VQLA) [14] models to 
enhance the embedding of multimodal information. 
This enhancement facilitates the generation of text and 
corresponding foundational answers, thereby enabling 
a better understanding of the surgical scene. Similarly, 
the CS-VQLA [16] model attempts to address the prob-
lem of continuous model learning in complex surgical 
scenes through distillation, providing more accurate 
and localized answers.

Although these models effectively integrate problems 
and image information to improve system ACC, their 
dependence on the visual and textual prompts from the 
current surgical scenario hampers their ability to com-
prehensively address diverse instances within the same 
surgical context in answering relevant questions. Conse-
quently, augmenting the VQGA model’s understanding 
of global knowledge is imperative for refining the precise 
localization of local information. This refinement is cru-
cial for meeting the stringent demands of real-time deci-
sion-making and ACC in surgical operations.

In this study, we propose a framework that combines 
prompt learning and pre-training models for VQGA in 
robotic surgery, enabling the model to attend to global 
information based on the prompted knowledge. To bet-
ter utilize the knowledge in the prompts and supple-
ment the visual and semantic information of each image, 
we designed a cross-modal prompt interaction mecha-
nism that integrates the prompted knowledge into the 
encoding end of the CAT-ViL [15] model through cross 
attention, focusing the model attention on capturing fine-
grained information for subsequent matching instances, 
grounding the answers on images and text. Specifically, 
two simple and lightweight prompt fusion modules were 
proposed to insert into the encoding end of the base 
model. The visual complementary prompter (VCP) inte-
grates visual box prompt features with the original image 
encoding, whereas the text complementary prompter 
(TCP) module fuses visual box prompt features with 
the original question encoding and labels the features 
of the prompt. This combination allows the model to 
absorb rich visual and semantic information by prompt-
ing knowledge at the encoding end. Notably, an iterative 
fusion strategy was adopted to hierarchically superim-
pose and interact with different information, aiming to 
promote better alignment and fusion between different 
modal and question prompt features. The contributions 
of this study are summarized as follows:

1) A VQGA framework based on dual-modality prompt 
learning is proposed to effectively explore the 
prompted knowledge in robotic surgery tasks for bet-
ter grounded answer generation.

2) Two prompters are proposed to complement visual 
and textual information, whereby a multiple iterative 
fusion strategy is adopted to encode the knowledge 
in prompts and multimodal features, which facili-
tates the aggregation of complementary information 
across multiple feature levels.

3) Using the proposed model, state-of-the-art perfor-
mance was obtained on two challenging datasets, 
surpassing the achievements of previous studies by a 
considerable margin.

Explainable VQA systems have proven to be reliable in 
the medical field [9, 11, 12]. With the medical artificial 
intelligence field flourishing [7, 17], VQA systems based 
on robotic surgery have been extensively developed and 
applied. VQA systems can answer questions about spe-
cific visual elements in surgical videos or images [8, 16]. 
For example, surgeons can ask the system questions 
about certain aspects of the surgical field, such as iden-
tifying specific tissues, organs, and surgical tools. How-
ever, a key problem with robotic surgery-based VQA 
systems is their lack of interpretability. Although these 
systems can provide textual answers to questions, they 
cannot highlight the relevant regions of the image corre-
sponding to the textual answers. Surgical scenarios often 
involve various instruments and actions that can confuse 
the questioner. To help questioners deal with this confu-
sion, researchers [14, 17] proposed the establishment of a 
VQGA system to effectively learn and understand surgi-
cal scenes.

The surgical-VQLA [14] model combines a visual 
transformer with a gating visual-linguistic embedding 
system to accurately locate specific surgical areas dur-
ing answer prediction. The CAT-ViL model proposed by 
Bai et al. [15] achieves answer grounding by emphasizing 
the effective integration of multimodal inputs. The latest 
CS-VQLA [16] model utilizes distillation to achieve con-
tinuous learning, resulting in more accurate textual and 
grounded answers. Both studies emphasize the impor-
tance of integrating visual and language data in robotic 
surgery to improve the ACC and efficiency of answers. 
However, to enhance their practical applicability, these 
models must achieve higher ACC levels and utilize the 
rich visual and semantic information inherent in the 
images and text more effectively.

In recent years, there has been rapid development in 
the field of multimodal pre-training of large-scale mod-
els. Researchers often use fine-tuning to leverage pre-
trained large models for downstream tasks. This method 
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is often inefficient in terms of parameters, usually requir-
ing numerous copies specific to each task and substan-
tial storage for each version of the fully pretrained model. 
Recently, the emergence of prompt learning as a new 
paradigm has drastically improved the performance of 
various downstream natural language processing tasks 
[18, 19], and has been effective in several computer 
vision tasks. For example, the Visual  Prompt Tuning 
model proposed by Jia et al. [20] adds a set of learnable 
parameters to transformer encoders and has been dem-
onstrated superior to complete fine-tuning in 20 down-
stream recognition tasks. The AdaptFormer network 
introduced by Chen et  al. [21] integrates lightweight 
modules into the vision transformer, achieving better 
results than fully fine-tuned models in action recognition 
benchmarks. The convolutional bypass model proposed 
by Jie and Deng [22] utilizes convolutional bypasses in 
pretrained vision transformers for prompt learning. The 
designs of these prompts often strategically utilize prior 
knowledge and capabilities of the model to direct atten-
tion or provide explanations for the expected results. The 

effectiveness of prompt learning largely depends on the 
architecture of the underlying model and training on rel-
evant datasets. Inspired by this, we introduced prompt 
learning into the VQGA system for further exploration, 
incorporating dual-modality prompt knowledge from 
both visual and textual sources. A novel prompt-learning 
framework specifically tailored for VQGA was developed 
to better utilize the potential knowledge contained in 
each modality prompt. To the best of our knowledge, this 
is the first study to apply prompt learning to VQGA sys-
tems for robotic surgery.

Methods
Architectural overview
As shown in Fig.  1a, we propose a VQGA framework 
based on bimodal prompts. Initially, the framework 
utilizes the pretrained CAT-ViL [15] model to extract 
prompts for visual and textual knowledge, referred to 
as box and label prompt features, respectively. CAT-ViL 
is a model trained for the VQLA task and can directly 
obtain prompt features by configuration. The questions 

Fig. 1 Overall architecture of the proposed DMPL. a Dual modality prompt learning (DMPL) network; b VCP; c TCP
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and images are input into the model, whereby the model 
outputs information on three localized visual features 
and corresponding three label features. These serve as 
the prompt features in our model. To better utilize the 
prompt knowledge from both modalities, we designed 
complementary visual and text prompters. These are 
integrated with the existing pretrained model through a 
layered iterative fusion approach using the prompt infor-
mation to guide the interaction and fusion of multimodal 
information.

The overall architecture of DMPL for VQGA in robotic 
surgery is presented in Fig.  1. The proposed network 
components include the VCP and TCP. The pretrained 
CAT-ViL model [15] is leveraged to extract prompt fea-
tures for visual box prompt and textual label prompt 
features. The VCP integrates visual prompt and visual 
features through a cross-attention mechanism, aiming 
to guide the localization of visual features using the fea-
tures of visual prompts. TCP aligns questions and visual 
features using the attentional feature fusion (AFF) mod-
ule [23], subsequently aligning these with label prompt 
features to synchronize the three types of information 
before guiding them through cross-attention. The goal 
is to generate the correct answer by jointly guiding tex-
tual information with label prompt and visual features. 
Six fusion iterations are performed between the prompt 
features and extracted original features, as indicated by 
the blue box in Fig. 1a, to ensure more effective guidance. 
Subsequently, the refined visual and textual data obtained 
through complex reasoning are merged using the stacked 
iterative attentional feature fusion (iAFF) module [23]. 
The combined data are then decoded along with the post-
reasoning visual and textual prompt features. Finally, the 
model generates the final textual answers and grounded 
answers through a dedicated classification head and an 
object detection head.

To enhance the utilization of these bimodal prompt 
systems, separate generators were designed for the vis-
ual and textual supplementary prompts. These genera-
tors were integrated with the original pretrained model 
using a layered iterative fusion approach. This method 
employs prompts to direct the interaction and fusion of 
multimodal information, thereby enabling more precise 
generation of textual answers and localization of visu-
ally grounded answers. The proposed architecture also 
enhances the utilization of local visual regions. The TCP 
incorporates the features of visual regions and aligns 
them with both textual and text prompt features. This 
alignment guides the textual information through vis-
ual information, thereby mitigating the language bias in 
VQA models to generate textual answers through rea-
soning based on visual information. To strengthen the 
interaction between the different modalities, textual 

information features are also input into the guided atten-
tion module under the guidance of the text-complemen-
tary prompt module. This further guides the localization 
of the visual region information, enabling the model to 
generate more accurate textual and grounded localized 
visual answers. Subsequently, the visual and textual data 
refined through layered reasoning are amalgamated using 
a sophisticated stacked attention mechanism. These 
combined data are then cohesively encoded alongside 
visual and textual feature prompts using a data-efficient 
image transformer (DeiT) [24] encoding. The model was 
trained using a hybrid loss function that combines cross-
entropy loss, L1-norm, and generalized intersection loss, 
to ensure a comprehensive learning process. Ultimately, 
this framework culminates in the generation of the final 
textual and visual referential answers achieved through 
a dedicated classification head and an object detection 
head, respectively.

VCP
This paper proposes a method of visual complementarity 
to enhance multimodal visually related information for a 
more accurate inference of ground truth answers through 
more effective utilization of visual prompting knowledge.

First, as shown in Fig. 1b, both the box prompt features 
obtained from the pretrained model and visual features 
encoded through the image encoder are independently 
encoded using the self-attention mechanism to obtain 
the prompt features Bs and image encoding Vs, thereby 
enhancing the internal relationships between each fea-
ture. The encoded box prompt features are then down-
sampled to restrict the range of relevant information. 
Next, the image features Vs are applied using spatial soft-
max, performing smoothing across all spatial dimensions 
and employing channel-wise spatial attention to generate 
the enhanced embedded image features Vm based on the 
following formula:

Second, the prompt features Bs after downsampling, 
are effectively integrated with the visual features Vm. 
Drawing inspiration from the segment anything model, 
two cross-attention fusion modules are used to amal-
gamate the enhanced visual information features with 
prompt features. The feature Vc is obtained through 
cross-attention from the prompt (as a query) directed 
to the embedded image. In contrast, prompt features Bc 
are obtained through cross-attention from the embed-
ded image (as a query) directed to the prompts. These 
two cross-attention mechanisms facilitate the learning 

(1)Vm = Vs ⊙
exp V

[:,i,j]
s

exp V
[:,i,j]
s

�
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of the dependencies between prompt knowledge and 
visual features. The formulae are as follows:

where T represents the matrix transpose operation, and 
Bd is obtained after downsampling Bs.

Third, to better guide the localization of the correct 
answer position with prompt and textual information, 
visual features Mi are obtained by passing Bc through 
a residual structure and text-guided attention mecha-
nism [15].

Finally, an iterative fusion strategy is adopted to 
repeat the process described above, integrating valuable 
insights by adjusting the prompt and visual informa-
tion of the instances. Thus, a wealth of details relevant 
to the domains of both visual and textual features are 
retained throughout the dynamic process of informa-
tion exchange. The visual features Oi and prompt fea-
tures Yi are then used as new adjusted visual features 
and box prompt features, which are continuously input 
into the VCP for iterative updates. This yields the final 
prompt features and visual features Y6. The formula is 
as follows:

where Ψ represents the operation of the VCP presented 
above, and i represents the number of iterations.

TCP
To effectively extract information from the comparison 
of features and label prompts across different modalities, 
this study introduces a text-complementary prompter. 
As illustrated in Fig. 1c, the label prompt features are ini-
tially encoded alongside text information features using 
a self-attention mechanism, resulting in features denoted 
as Ls (for label prompts) and Qs (for text information). 
Subsequently, label-prompt features Ls undergo upsam-
pling. Drawing inspiration from AFF [23], the positional 
information of the visual input is projected into two joint 
feature spaces. This projection is performed alongside the 
labeling of prompt features and text information using 
the AFF module, thereby aligning multimodal knowledge 
and enhancing the interaction of information. The spe-
cific formula is as follows:

(2)Bc = softmax

(

VmBd
T

√

dk

)

Bd

(3)Yi = softmax

(

BdVm
T

√

dk

)

Vm

(4)Oi = Vm ⊕ Bc

(5)�Oi+1,Yi+1� = ��Oi,Yi�(i ≤ 5)

where ΓAFF represents the AFF operation; β represents 
the upsampling operation; Vs represents input image 
features.

To derive more meaningful multimodal knowledge 
prompts from the visual and textual alignment features, 
the learned multimodal prompts are incrementally 
integrated into the text feature space using a residual 
approach. This process utilizes two cross-attention fusion 
modules in merging the text and prompt features. The 
text features Ri are acquired by applying cross attention 
to the prompts (serving as the query) for text encoding. 
Conversely, prompt features Gi are obtained by apply-
ing cross attention to the text encoding (serving as the 
query) for the prompts. The formula for this process is as 
follows:

where T represents the matrix transpose operation; Ri 
represents the visually guided text features; and Gi rep-
resents the multimodal information guided prompt 
features.

As shown in Fig.  1, to avoid excessive guidance from 
visual information and maintain balance during the six 
iterations, visual feature information Vi is added only in 
the first iteration. In subsequent iterations, the prompt 
multimodal features Ci replace Vi as the input to the 
module. Throughout the iterations, features Ci inter-
act repeatedly with features Ri and Gi through cross-
attention, aiming to guide textual information based 
on prompt information. This results in the refined text 
prompt feature G6 and text information feature R6. The 
formula is as follows:

where i is an integer that represents the number of itera-
tions, and Φ represents the text complementary prompt 
module. To infer instance boundaries and answers rel-
evant to the question from text features Ri and visual 
features Mi guided by prompt knowledge, we devised 
a cross-modal feature integration mechanism. This 
involves the integration of R6 and M6 through a fusion 
module composed of two iAFF modules [23], resulting in 
the generation of a fused embedding Fi:

(6)Qa = ŴAFF [Qs,Vs]

(7)Ci = ŴAFF [β(Ls),Qa]

(8)Ri = softmax

(

QaQi
T

√

dk

)

Qi

(9)Gi = softmax

(

CiLi
T

√

dk

)

Li

(10)�Ci+1,Ri+1,Gi+1� = ��Ci,Ri,Gi�(i ≤ 5)
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The fused feature Fi is input into the pretrained DeiT-
base [24] module, and through residual connections, Fi 
is merged with Y6 and G6, further refining the relation-
ships between the features within each domain. Finally, 
the classification from DeiT is run on the feedforward 
network, to predict instance bounding boxes and answers 
relevant to the question.

Results
Datasets and evaluation metrics
Experiments were conducted on the EndoVis-2018 [25] 
and EndoVis-2017 [26] datasets. The EndoVis-2018 com-
prises video sequences from 14 robotic surgeries [27], 
with the training set consisting of 1560 frames and 9014 
question–answer pairs and the test set comprising 447 
frames and 2769 question–answer pairs. The question–
answer pairs cover 18 answer categories encompassing 
various single-word answers related to organs, surgical 
instruments, and interactions between instruments and 
organs. For questions involving the interaction between 
organs and instruments, the bounding box incorporates 
both the organ and instrument. Each example video 
contains multiple question–answer pairs along with 
their corresponding bounding box annotations [14]. The 
EndoVis-2017 dataset includes video sequences from 
10 robotic surgeries with 97 frames containing 472 QA 
pairs. This dataset was utilized solely for external valida-
tion and not as part of the training set.

PSI-AVA dataset, specifically designed for robot-
assisted radical prostatectomy surgeries, significantly 
contributes to the field of surgical scene understanding. 
PSI-AVA-VQA is an innovative dataset featuring QA 
pairs derived from critical surgical instances across eight 
cases from a comprehensive PSI-AVA surgical scene 
collection. These QA pairs were carefully created from 
annotations related to surgical phases, steps, and loca-
tions within the PSI-AVA collection. With 10,291 QA 
pairs, the PSI-AVA-VQA dataset encompasses 35 distinct 
answer categories, including four locations, 11 phases of 
surgery, and 20 distinct surgical steps. Annotations cat-
egorize the QA pairs into three groups: location, phase, 
and step, adhering to the original PSI-AVA dataset’s 
fold-1 training/test division methodology.

The reasoning performance of the model was evalu-
ated using the ACC of the text answers and precision of 
the grounded answer. For grounding answer evaluation, 
the similarity between each bounding box annotation 
and ground truth was measured using Intersection over 
Union (IoU), computing the mean IoU (mIoU) scores for 
all the test examples. The textual answers were evaluated 
using two metrics: ACC and F-score.

(11)Fi = ŴiAFF {M6,ŴiAFF [M6,R6]}
Implementation details
The proposed model was trained under cross-entropy 
loss, L1-norm, and generalized IoU loss using the Adam 
[28] optimizer, with initial learning rates of 1e-5 for all 
parameters. The proposed model was trained on the End-
oVis-18 training set, with the performance evaluated on 
the EndoVis-18 validation set, using EndoVis-17 as an 
external validation dataset to test the model’s generaliza-
tion ability. The experiments were conducted using the 
Python PyTorch framework on a server equipped with an 
NVIDIA Tesla A100 GPU.

Comparison results
The proposed DMPL model was compared with previ-
ous studies on the EndoVis-18 [25] and EndoVis-17 [26] 
datasets, and the results are reported in Table  1, based 
on the answering and bounding box metrics. The pro-
posed model surpassed previous advanced methods in 
most scenarios. Specifically, regarding ACC, F-score, and 
mIoU score, DMPL outperformed CAT-ViL DeiT [15] 
by 5.01%, 18.16%, and 1.22% on the EndoVis-18 dataset, 
and 4.66%, 0.95%, and 1.14% on the EndoVis-17 dataset, 
respectively. The experimental results indicate that the 
proposed DMPL achieves superior performance in terms 
of VQA while maintaining clinical alignment between the 
answer and related visual instances. This improvement in 
performance is mainly due to the incorporation of visual 
and textual supplementary prompts through the two pro-
posed prompters, which assist the model in filtering valid 
multidomain information.

To further evaluate the robustness of the model, quan-
titative experiments were conducted to assess perfor-
mance degradation of the model when confronted with 
corrupted images. Following the ref. [37], we selected 
15 corruption types prevalent in the real world for our 
experiments and set five levels of corruption for each 
type. As shown in Fig. 2, the performance of all the mod-
els is directly proportional to image quality. However, 
compared with advanced models, such as VisualBERT 
[29], VisualBERT ResMLP [30], and CAT-ViL DeiT [15], 
the proposed DMPL achieves the best performance 
across all levels of image corruption. This indicates 
that the proposed model has the capability to maintain 
robustness when dealing with previously unseen cor-
rupted images, which can be attributed to the prompt 
knowledge introduced.

To further validate the generalizability of the pro-
posed model, we trained and tested it on the PSI-AVA 
dataset. As shown in Table  2, compared to the latest 
models, the proposed model exhibits higher ACC and 
recall rates on this dataset but lower precision and 
F-scores. These results suggest that the model can 
identify most positive samples, indicating a certain 
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level of generalizability. However, many negative sam-
ples are misclassified as positive. This issue may arise 
from the model optimization process not being suf-
ficiently detailed too leniently labeling the samples 
as positive. Addressing this issue will be the focus of 
future work.

Discussion
Ablation studies
It would be pertinent to explore the efficacy of each 
prompter within the proposed model. Thus, an ablation 
study was conducted, focusing on three configurations: 
incorporating VCP alone, TCP alone, and a combination 

Table 1 Evaluations of different models on EndoVis-18 [25] and EndoVis-17 [26] datasets

Models VisualFeature EndoVis-18 EndoVis-17

Detection Inference speed ACC F-score mIoU ACC F-score mIoU

VisualBERT [29] 0.5973 0.3223 0.7340 0.4382 0.3743 0.6822

VisualBERT R [30] 0.6064 0.3226 0.7305 0.4267 0.3506 0.6947

MCAN [31] 0.6084 0.3428 0.7257 0.4258 0.3035 0.6832

VQA-DeiT [24] FRCNN [32] 55.28 ms 0.6049 0.3238 0.7217 0.4492 0.3213 0.7134

MUTAN [33] 0.6049 0.3238 0.7217 0.4364 0.3206 0.6870

MFH [34] 0.6179 0.3158 0.7227 0.3729 0.2048 0.7183
BlockTucker [35] 0.6067 0.3414 0.7313 0.4364 0.3210 0.6825

CAT-ViL DeiT [15] 0.6192 0.3521 0.7482 0.4555 0.3676 0.7049

DMPL (Ours) 0.6461 0.4930 0.7620 0.4760 0.3800 0.7138 

VisualBERT [29] 0.6268 0.3329 0.7391 0.4005 0.3381 0.7073

VisualBERT R [30] 0.6301 0.3390 0.7352 0.4190 0.3370 0.7137

MCAN [31] 0.6285 0.3338 0.7526 0.4137 0.2932 0.7029

VQA-DeiT [24] ResNet18 [36] 6.64 ms 0.6104 0.3156 0.7341 0.3797 0.2858 0.6909

MUTAN [33] 0.6283 0.3395 0.7639 0.4242 0.3482 0.7218

MFH [34] 0.6283 0.3254 0.7592 0.4103 0.3500 0.7216

BlockTucker [35] 0.6201 0.3286 0.7653 0.4221 0.3515 0.7288

CAT-ViL DeiT [15] 0.6452 0.3321 0.7705 0.4491 0.3622 0.7322

DMPL (Ours) 0.6953 0.5137 0.7827 0.4957 0.3717 0.7436

Fig. 2 Quantitative robustness experiments on the EndoVis-18 [25] dataset. Experiments were conducted on all types of image corruption at every 
level of image degradation, and the results were averaged. VB: VisualBERT; VBRM: VisualBERT ResMLP
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of both. Experiments were performed on the EndoVis-18 
[25] and EndoVis-17 [26] datasets, maintaining settings 
consistent with the quantitative outcomes outlined in 
Table 3.

The results unequivocally illustrate that incorporating 
either VCP or TCP, individually or concurrently, signifi-
cantly improves the predictive ACC of the model for both 
bounding boxes and responses. This surpasses the per-
formance of advanced models across various benchmarks 
and underscores the essential role played by each prompt 
in enhancing the proficiency of the model. However, the 
simultaneous integration of both prompters resulted in a 
comparatively marginal increase in bounding box predic-
tion ACC compared with independent integration. This 
observation stems from the methodology of the proposed 
model in which each prompter contributes complex 
semantic features sequentially, leading to the transforma-
tion of the initial prompter’s contribution into more rudi-
mentary semantic features. This sequential integration 
may inadvertently affect bounding box prediction ACC 
by potentially introducing confusion between the com-
plex semantic inputs from the secondary prompter.

To further demonstrate the robustness of the pro-
posed model, the qualitative results of VisualBERT [29], 
VisualBERT ResMLP [30], CAT-ViL DeiT [15], and our 
model were visualized on the EndoVis-18 dataset [25] 
for 15 types of image corruptions at level 2 of image 

degradation. As shown in Fig. 3, various types of image 
corruption interfere with the localization of bounding 
boxes in advanced models, thereby indirectly affecting 
the predictions of answers. By contrast, the proposed 
model can successfully suppress the interference intro-
duced by image corruption, correctly predicting the 
answers.

Qualitative analysis
In Fig.  4, the four sets of sample image-question pairs 
can be visualized along with the ground-truth answers 
and generated answers. The proposed model demon-
strates a pronounced ability to pinpoint instance loca-
tions pertinent to posed questions, markedly enhancing 
the caliber of the generated responses. For instance, in 
Example 2, advanced models such as VisualBERT [29], 
VisualBERT ResMLP [30], and CAT-ViL DeiT [14] erro-
neously ground the bounding box to the image’s bottom-
left corner, which leads to an inaccurate prediction of 
“bottom-left” as the answer. Conversely, the proposed 
model accurately identifies the bounding box at the top-
left position, providing the correct answer. An analogous 
outcome is observed in Example 4. The research findings 
indicate that the VCP framework, through the integra-
tion of visual and textual prompt knowledge, effectively 
disregards irrelevant areas within images. This approach 
significantly minimizes the distractions in answer predic-
tion, thereby enhancing the precision and focus of the 
response mechanism.

In Example 1, advanced models excel in predicting 
accurate answers but struggle to precisely localize rel-
evant bounding boxes. Conversely, VisualBERT [29] in 
Example 3 adeptly identifies the positions of instances 
related to the query but fails to deliver the correct answer. 
This highlights the ongoing challenge for advanced mod-
els to seamlessly integrate visual text and location-answer 
alignments. By contrast, the proposed model consistently 
achieves these alignments across both examples. This 
proficiency is attributed to the effective alignment and 
interaction of multi-domain knowledge within the TCP, 

Table 2 Evaluations of different models on the PSI-AVA [38] 
dataset

Models PSI-AVA

ACC Precision Recall F-score

VisualBERT [29] 0.3008 0.1818 0.6970 0.1408

VisualBERT R [30] 0.2901 0.1927 0.6137 0.1673
CAT-ViL DeiT [15] 0.2806 0 1819 0.5967 0.1668

DeepSeek-VL [39] 0.1342 0.6342 0.3756 0.0572

ALLaVA [40] 0.1727 0.5829 0.2626 0.1177

DMPL (Ours) 0.3222 0.1552 0.7976 0.1036

Table 3 Experimental results of ablation studies on EndoVis-18 [25] and EndoVis-17 [26] datasets

Models EndoVis-18 EndoVis-17

ACC F-score mIoU ACC F-score mIoU

Co-Attn DeiT [24] 0.6136 0.3208 0.7273 0.3805 0.3026 0.6870

CAT-ViL DeiT [15] 0.6452 0.3321 0.7705 0.4491 0.3622 0.7322

GVLE-LViT [14] 0.6659 0.3614 0.7625 0.4576 0.2489 0.7275

TCP (Ours) 0.6845 0.4846 0.7762 0.4639 0.3334 0.7509

VCP (Ours) 0.6581 0.4078 0.7740 0.4915 0.3636 0.7685
DMPL (Ours) 0.6953 0.5137 0.7827 0.4957 0.3717 0.7436
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Fig. 3 Qualitative robustness experiments on the EndoVis-18 dataset. Experiments were conducted on 15 types of image corruption at level 2 
of image degradation to visualize the answers predicted by the models and the associated bounding boxes. The 15 types of image corruption 
included Gaussian, shot, and impulse noise; defocus, glass, motion, and zoom blur; snow, frost, fog, brightness, contrast, elastic transform, pixelate, 
and jpeg compression

Fig. 4 Examples of localization and classification prediction results generated by the proposed model and other advanced models 
on the EndoVis-18 [25] dataset. Text in red denotes the wrong answer. Examples 1, 2, 3, 4 refer to these four examples from left to right
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mitigating biases linked to dependence on knowledge 
from isolated domains.

As the EndoVis-17 dataset does not provide training 
data and is only used for testing, the experimental results 
from this dataset reflect the generalizability of the model. 
Therefore, we focused on analyzing the model’s perfor-
mance on this dataset to acquire a deeper understanding 
of its strengths and weaknesses.

As shown in Fig.  5, Examples 1 and 2 demonstrate 
that the proposed model achieves more accurate visual 
answer localization, leading to correct textual answers 
unlike other models generating erroneous answers 
because of incorrect localization. In Example 3, other 
models also locate the correct answer, but with an overly 
broad and imprecise range. This inclusion of exces-
sively irrelevant information results in incorrect textual 
answers.

These three examples prove that the proposed model 
significantly improves the precision of visual answer 
localization compared to previous methods. Example 4 
shows that all models identified the correct visual infor-
mation; however, the answers generated by the other 

models were still incorrect. This proves that the proposed 
model, guided by prompt information, is engaged in a 
more thorough visual and textual information interac-
tion and alignment. These examples demonstrate that the 
proposed model outperforms previous models in terms 
of both localization and answer ACC.

Limitations
The proposed model leverages the advantages of dual-
modal prompt learning to some extent to improve the 
ACC of answers. However, achieving precise semantic 
alignment between modalities at a fine-grained level still 
poses certain challenges. In other words, there may be 
instances where the word in the question does not align 
accurately with the object in the image.

Figure 6 presents four examples of incorrect results. In 
Example 1, although the answer is correct, the position-
ing is incorrect. In Example 2, the positioning is correct 
but the answer is incorrect. These two examples indicate 
that the textual and visual information are not sufficiently 
aligned, leading to discrepancies between the visual 
and textual answers. Although the proposed approach 

Fig. 5 Examples of the true results generated by the proposed model and other models on the EndoVis17 [25] dataset. Text in red denotes wrong 
answers. Examples 1, 2, 3, 4 refer to these four examples from left to right
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mitigates language bias to some extent, it remains sus-
ceptible to biases inherent in the training data. This can 
influence the system’s decision-making process, particu-
larly in scenarios in which textual and visual prompts 
suggest conflicting interpretations.

Example 3 demonstrates an area of localization that 
is not sufficiently specific, focusing on excessive incor-
rect visual information, resulting in an incorrect answer. 
This example also suggests that the model ACC in local-
izing specific regions, particularly small targets, requires 
improvement. There is room for the model to enhance its 
focus on local information. Example 4 shows incorrect 
localization and answers, indicating that the ACC of the 
model requires further improvement. Additionally, the 
volume of training data in the dataset was a limiting fac-
tor for the model. The model had to learn from additional 
data to further improve its ACC.

Conclusions
In this study, a dual-modality prompt learning frame-
work was designed for VQGA in robotic surgery. The 
proposed framework leverages the prompt knowledge 

generated by pretrained models to facilitate the joint 
encoding of cross-modal inputs, thereby improving the 
understanding of surgical scenes while localizing spe-
cific areas relevant to answering questions. The experi-
mental evaluations conducted on the EndoVis-18 and 
EndoVis-17 datasets revealed that the proposed model 
effectively focuses on pertinent regions within images 
while capturing efficient multimodal alignments. Con-
sequently, the extension of prompt learning into the 
realm of VQA not only proves beneficial, but also 
emerges as a promising avenue for future research.

Abbreviations
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VQGA  Visual question-grounded answering
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iAFF  Iterative attentional feature fusion
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CAT-ViL  Co-attention gated vision-language embedding
VQLA  Visual question localized-answering
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mIoU  Mean Intersection over Union
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