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Abstract 

Learning with noisy labels aims to train neural networks with noisy labels. Current models handle instance-inde-
pendent label noise (IIN) well; however, they fall short with real-world noise. In medical image classification, atypical 
samples frequently receive incorrect labels, rendering instance-dependent label noise (IDN) an accurate representa-
tion of real-world scenarios. However, the current IDN approaches fail to consider the typicality of samples, which 
hampers their ability to address real-world label noise effectively. To alleviate the issues, we introduce typicality- 
and instance-dependent label noise (TIDN) to simulate real-world noise and establish a TIDN-combating framework 
to combat label noise. Specifically, we use the sample’s distance to decision boundaries in the feature space to repre-
sent typicality. The TIDN is then generated according to typicality. We establish a TIDN-attention module to combat 
label noise and learn the transition matrix from latent ground truth to the observed noisy labels. A recursive algorithm 
that enables the network to make correct predictions with corrections from the learned transition matrix is proposed. 
Our experiments demonstrate that the TIDN simulates real-world noise more closely than the existing IIN and IDN. 
Furthermore, the TIDN-combating framework demonstrates superior classification performance when training 
with simulated TIDN and actual real-world noise.

Keywords Noisy label, Instance-dependent label noise, Noisy label simulation, Real-world label noise, Polyp 
classification

Introduction
Deep learning neural networks have achieved remark-
able performance [1] due to large amounts of labeled 
data availability. Unfortunately, labeling for medical 
image classification is often time-consuming and expert-
demanding, which could lead to incorrect annotations. 

Noise labels refer to incorrect annotations, which can 
originate from inexperienced experts or mistakes made 
by annotators [2], particularly in endoscopic polyp clas-
sification with indistinct features. Noisy labels can mis-
lead deep neural networks due to their strong ability to 
fit images and labels [3]. Consequently, learning with 
noisy labels (LNL) methods have been developed. These 
techniques aim to train neural networks effectively using 
noisy labels while achieving high accuracy (ACC) on well-
annotated test sets. Previous studies [4–8] developed 
models that handle simulated instance-independent label 
noise (IIN) [9]. However, their effectiveness is limited in 
dealing with real-world label noise [10]. Under the IIN 
paradigm, human-generated noisy labels Y  is only related 
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to the original true labels Y  , i.e., the noisy transition 
probability is P(Ỹ |Y ) . However, in actual scenarios, label 
noise is often related to the samples; for example, atypical 
samples are more likely to be mislabeled. This leads to the 
concept of instance-dependent label noise (IDN), where 
the transition probability becomes P(Ỹ |Y ,X) , where X 
denotes the input images. The IDN models the real-world 
scenario better, resulting in improved handling of real-
world label noise compared with the IIN. Therefore, to 
address the challenge of learning with real-world label 
noise, it is crucial to simulate and combat it.

Methods for simulating label noise can be divided 
into IIN and IDN. The simulated IIN flips the origi-
nal labels using a noise transition probability matrix 
[11–13]. This process depends only on the class of 
the original label. Classic IIN includes random flip-
ping and pair flipping noise. In the IDN paradigm, the 
simulated label noise described in ref. [14] converts 
the pixel value into the probability of flipping labels. 
This approach combines instances and the probabil-
ity of flipping; however, it lacks reasonableness and 
ignores the typicality of the samples. Cheng et al. [15] 
presented a boundary noise model confined to two-
dimensional feature spaces. This approach is overly 
simplistic for complex, multidimensional spaces and 
falls short of accurately representing real-world label 

noise. The current IDN fails to consider the critical 
factors of typicality, particularly in medical tasks. In 
practical scenarios, the mislabeling of data often cor-
relates with the typicality of the instance features. 
Figure  1 demonstrates how beginners might find it 
challenging to correctly identify small atypical lesions, 
as shown in the second column. Similarly, the experts 
and novices may have misclassified a blurred adenoma 
polyp in the third column.

Methods for combating label noise can be catego-
rized into model-based or model-free approaches based 
on whether they model the noisy transition distribu-
tion from the ground truth to noisy labels. Model-free 
approaches do not model the noise paradigm (i.e., IIN 
or IDN). They mainly rely on the “small loss trick” 
[16], which suggests that the training loss for samples 
with noisy labels tends to be larger than for those with 
ground truth. This category includes methods such as 
MentorNet [17], co-teaching [4], and co-teaching+ [16]. 
Sample selection methodologies for identifying labels 
likely to be valid for network training have emerged. 
Double branch networks [4, 10, 16] have enhanced the 
selection precision. However, the “small loss trick” is 
ineffective for the IDN paradigm [14], as neural net-
works may overfit complex decision boundaries. Semi-
supervised learning methods [5, 18, 19] have also been 

Fig. 1 Effect of typicality in real-world label noise. The ground truth above the images is derived from histopathology. The left colonoscopy image 
displays typical characteristics, whereas the middle one shows atypicality with a small lesion, and the right one is blurred. A human expert provides 
the first row of real-world noisy annotations, and the second row represents the opinion of a human beginner. Incorrect labels are marked in red 
color
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adapted for the LNL problem. These methods leverage 
the information within the images of noisy samples to 
assist in selecting and correcting noisy labels. However, 
these methods do not fully utilize the information in 
noisy labels, and the correction error for noisy labels 
remains uncontrolled.

In comparison, model-based methods are deemed 
more reliable because they theoretically guarantee 
an optimal classifier for modeling the distribution of 
true labels. These methods introduce a noisy transi-
tion matrix T (X) , where X  denotes the raw instances. 
This matrix represents the transition probability from 
the latent ground truth to the observed noisy labels. 
Given oracle T ∗ , a statistically consistent model can 
be learned by minimizing the cross-entropy loss 
reweighted by T ∗ [20]. However, the existing model-
based studies rely on strong assumptions. Under the 
IIN assumption, which implies T (X) = Tc×c , ref. [6] 
established a Softmax layer representing the IIN tran-
sition channel, which is optimized in an expectation-
maximizing manner. Anchor points methods [21], 
which assume that the most confident samples of neu-
ral networks are predicted correctly as anchor points, 
estimate and fill the simple Tc×c . Unfortunately, the 
estimated Tc×c of IIN cannot improve real-world noisy 
labels. Under the complex IDN assumption, Xia et  al. 
[14] assumed that the noisy transition matrix depends 
only on the parts [22] of the instances rather than the 
raw images. Part-dependent methods are ineffective 
for medical images with more complex features and 
are difficult to compose into parts. Cheng et  al. [15] 
introduced a method designed to be robust to binary 
boundary noise and validated it in a two-dimensional 
feature space, which is inapplicable to complex medical 
image classification tasks. CSIDN [23] estimated T (X) 
according to the confidence of each sample but did 
not consider overconfidence from neural networks. In 
addition to the strong assumptions model-based IDN 
methods mentioned above, these methods overlook the 
relevance between typicality and the noisy transition 
matrix, which aligns with the wild.

We introduce typicality- and IDN (TIDN) to simu-
late real-world label noise and develop a TIDN-com-
bating framework to combat the label noise. A TIDN 
is generated by disturbing the original labels according 
to the typicality of the samples. We propose using the 
distance between the samples and decision bounda-
ries to represent typicality, calculated using a support 
vector machine (SVM) [24]. In the TIDN-combating 
framework, we establish a TIDN-attention module to 
link features and noisy transition matrix. A recursive 

algorithm was proposed to enable the framework to 
learn the noisy transition matrix, following the spirit 
of the expectation-maximization (EM) algorithm. The 
classification network correctly predicts with correc-
tions from the learned noisy transition matrix. Moreo-
ver, we proposed using an instance-independent noisy 
transition matrix to initialize the instance-dependent 
matrix in a recursive algorithm.

Our main contributions are as follows:

• We introduce a TIDN to simulate real-world label 
noise closely. In the TIDN paradigm, atypical sam-
ples are more likely to be mislabeled. We propose 
using the distance between the samples and deci-
sion boundaries to represent typicality, calculated 
using an SVM.

• We propose the TIDN-combating framework to 
combat label noise. This method establishes a TIDN-
attention module that maps features to a per-sam-
ple noisy transition matrix. A recursive algorithm 
is introduced to enable the framework to learn the 
transition matrix following the EM algorithm. The 
network could generate accurate predictions by 
understanding the transition relationship instead of 
overfitting noisy labels.

• Experiments were conducted to demonstrate that 
the TIDN closely mirrors real-world label noise 
compared with existing simulation paradigms. The 
TIDN-combating framework exhibits superior 
performance for both simulated and real-world 
label noise. This is evidenced by the higher test 
ACC when training with simulated and real-world 
label noises.

The remainder of this paper is organized as follows. 
Methods and experimental setups are described in detail 
in the Methods section. The experimental results are 
reported in Results section to demonstrate the effective-
ness of the proposed method. In the Discussion section, 
we provide an extended discussion.

Methods
The workflow of the proposed methods is depicted 
in Fig.  2. To address the problem of combating real-
world label noise, we first seek a simulated label noise 
to approximate the real world. After that, we design 
a TIDN-combating framework to combat the well-
simulated label noise. With the success in combating 
well-simulated noise, this framework can also address 
real-world label noise.
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Preliminaries
In a C-class classification task, we are provided with 
N  training pairs 

{(
xn, ỹn

)}N
n=1

 and M testing pairs {(
xn, yn

)}M
n=1

 , where xn represents the input medical 
images and ỹn, yn ∈ {1, . . . ,C} are the corresponding 
real-world noisy labels and ground truth, respectively.

The simulation objective is to generate instance-
dependent noisy labels y′n that are closely aligned with 
the real-world noise ỹn . Under the IIN paradigm, y′n 
depends solely on the original true label, yn . The prob-
ability that the generated noisy label belongs to a cer-
tain class j is P(y

′

n = j|yn = i) . Under the IDN 
paradigm, y′n depends on yn and the input image xn . 
The corresponding probability of flipping is 
P
(
y
′

n = j|yn = i, xn

)
.

The objective of combating labels is to train a deep 
neural network classifier using the pairs 

{(
xn, y

′

n

)}N

n=1
 

for it to perform well on the test set 
{(

xn, yn
)}M

n=1
.

Simulating the TIDN
Given a dataset 

{(
xn, ỹn, yn

)}N
n=1

 , we generated a simu-
lated y′n that could be in close proximity to the real-world 
noise ỹn under the IDN paradigm. In actual medical 
labeling scenarios, instances with typical characteristics 
are less likely to be mislabeled than those with atypical 
characteristics. Based on this observation, we propose a 
method that converts the per-sample distance from the 

classification boundary into the probability of label dis-
turbance. Figure  3 presents a simplified illustration of 
the proposed TIDN model. This highlights that samples 
located at the classification boundaries are susceptible 
to mislabeling. However, it is important to note that the 
feature space often has a higher dimensionality in image 
classification tasks.

An SVM was used to calculate the classification 
boundary within the feature space explicitly. The 
boundary hyperplanes, as defined by the “one versus 
rest” SVM approach [24], are denoted as Hi , where 
i ∈ {1, ..,C} represents the classes. The Euclidean dis-
tance to Hi of each instance is denoted as dti, where 
t ∈ {1, ..,N } denotes the instances. The probability of 
an instance label being disturbed was then established 
using the following equation:

where j = argmax
i∈{1,..,C}

dti . The maximum distance from the 

C channels is translated into the probability of label flip-
ping for the t-th sample. Equation  (1) ensures that the 
greater the distance of sample t from the hyperplane, the 
higher the likelihood of label flipping owing to its lower 
typicality. � is a hyperparameter for controlling the noise 
ratio of the simulated noisy dataset. After identifying the 
sample labels flipped using Eq. (1), we determine the spe-
cific class to which these labels are flipped. This process 
involves

(1)Pt = 1− e−�|dtj |

Fig. 2 Workflow of the proposed methods. The ellipses represent labels, and the red labels denote the incorrect ones
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where i represents the class of the original true label y, 
and j represents the class of the noisy label y′ after flip-
ping. "i  = j" ensures labels do not flip to their original 
class. The Softmax function can transform a C-dimen-
sional distance into a probability distribution of length C 
with a sum of one.

Combating label noise
TIDN‑combating
Having successfully simulated a TIDN that closely mir-
rors real-world scenarios, we introduce the TIDN-com-
bating framework. Let X ∈ R

h×w denotes the input 
image; Y , Ỹ ∈ {0, 1}C represent the one-hot latent 
ground truth and observed labels, respectively. Let ℓ 
represents the cross-entropy loss for classification, and 
let θ denotes the parameters of the classification net-
work. Directly minimizing E

X ,Ỹ

[
ℓ

(
fθ (X), Ỹ

)]
 leads 

deep networks to memorize the noisy label. To learn the 
correct distribution guided by ground truth Y  , the ora-
cle noisy transition matrix T ∗(X) = P

(
Ỹ |Y ,X

)
 is intro-

duced, as minimizing E
X ,Ỹ

[
ℓ

(
T∗fθ (X), Ỹ

)]
 leads to the 

same effect of minimizing EX ,Y

[
ℓ
(
fθ (X),Y

)]
 . Here, we 

introduce the structure of the TIDN-combating frame-
work and its corresponding recursive algorithm, illus-
trating the construction of T ∗(X) . With the modeling of 
T ∗(X) , the fitting of the observed Ỹ  leads to the fitting of 
the latent Y .

(2)P
(
y
′
= j|y = i

)
= Softmax

(
{dti|i �= j}

) An overview of the TIDN-combating framework is 
presented in Fig. 4. During the training stage, the feature 
extraction backbone ω1 outputs embedded F features. 
Classification head ω2 is expected to predict ground 
truth Y  , and the noise modeling phase is expected to 
construct the mapping from the embedded features to 
the instance-dependent noisy transition matrix T (X) , 
which is an intermediate product rather than a given 
parameter [6]. The observed Ỹ  is calculated by multiply-
ing T (X) with Y  . In the testing phase, the predictions are 
output through ω1 and ω2.

Structure of the TIDN‑attention
To build the learning pathway from the features to a 
per-sample noisy transition matrix, the TIDN-attention 
includes a 1× 1 convolutional layer [26] and a fully con-
nected layer, as depicted in Fig.  5. This architecture is 
aptly termed ‘attention,’ as it extracts a set of optimizable 
coefficients from the features, which are then applied 
multiplicatively to Y  . Notably, Y  is also obtained through 
features using classification head ω2.

Specifically, a convolutional layer was used to downsam-
ple the features. The kernel size of the 1× 1 convolutional 
layer is set according to k = ψ(F) =

∣∣∣ log2(F)γ
+ b

γ

∣∣∣
odd

 , 
where |t|odd indicates the nearest odd number of t. In this 
study, we set γ = 2, b = 1 , in accordance with the default 
setting outlined in ref. [27] to capture local cross-feature 
interaction. The downsampled features were then acti-
vated by the ReLU function, which is mapped to a C2 × 1 
vector through fully connected layers, where the activating 
function is a Sigmoid function. C2 × 1 vector was then 

Fig. 3 TIDN. In the TIDN paradigm, samples closer to the classification boundary are considered to have weaker typicality, making their labels prone 
to be mislabeled. In practical scenarios, the feature space extends beyond just two dimensions
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reshaped to align with the correct dimension of the noisy 
transition matrix, and the columns were subjected to a col-
umn-wise Softmax operation to align with the definition 
of the noise transition matrix columns, which represent 
P
(
Ỹ
∣∣∣Y ,X

)
.

Recursive algorithm for noise modeling
With the proposed framework, designing a recursive 
method to estimate T (X) is feasible, following the spirit 
of expectation maximization. Instead of the EM algo-
rithm, which cannot be directly used in deep networks, 
the likelihood of T and Y is alternately optimized in the 
proposed algorithm. In the training phase, the log-like-
lihood is

When latent variable Y is introduced, which represents 
the latent distribution of ground truth, the new log-likeli-
hood becomes

where C is the total class number and ω3 represents the 
TIDN-attention parameters. Based on the training data, 
we aim to find neural network parameter ω1,ω2,ω3 that 
maximize the likelihood function. We then introduce 
ωk−1 representing parameters in the last turn to perform 

(3)L(ω) =
N∑
t
logP(Ỹt |X t;ω1,ω2)

(4)L(ω) =
N∑
t
log(

C∑
i

P(Ỹt ,Yti|X t;ω1,ω2,ω3))

Fig. 4 Overview of the TIDN-combating framework. ω1 : The vision transformer (ViT) [25] backbone follows the original setup with residual 
connections. ω2 : The fully connected head of ViT. ω3 : Parameters of a TIDN-attention block. T (X) : Per-sample noisy transition matrix 
with a N × Class× Class dimension. The observed noisy label ỸN×1 is from multiplying T (X)N×C×C and YN×1 . At the testing phase, the noise 
modeling phase is removed; the feature extraction backbone and classified head output the final prediction expected to be ground truth

Fig. 5 Structure of ω3 : “TIDN-attention.” The embedded features are first down-sampled by a 1× 1 convolutional layer with adaptive kernel size k. 
The number of channels is reduced by r  . The fully connected layer transfers the results to C2 × 1 vector, which is subsequently reshaped to a C × C 
matrix. Softmax operation is then performed by columns of the matrix to make columns represent P

(
Ỹ

∣∣∣Y , X
)
 . Finally, C of C × 1 column vectors 

jointly form the typicality- and instance-dependent noisy transition matrix T (X) with a dimension of C × C . The activation function for a 1× 1 
convolutional and fully connected layers are the rectified linear unit (ReLU) and Sigmoid, respectively
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an expectation maximization process to optimize recur-
sively ωk . According to the EM algorithm, the evidence 
lower bound of the likelihood function can be derived 
from Jensen’s Inequality

We denote ck−1
ti  , which is an N × C matrix, as the pos-

terior distribution of the hidden true label, given the 
parameters in the last iteration as

As ck−1
ti  is the posterior distribution of the hidden true 

label, it can be specifically denoted by the parameters in 
the final turn

where Y k−1 = f (Xt ;ω
k−1
1

,ωk−1
2

),Tk−1(Xt ) = f (Xt ;ω
k−1
1

,ωk−1
3

) ; 
j refers to the row number where 1 is located in the one-
hot label Ỹt . Note that the calculation of ck−1

ti  generated 
no gradients in the network. As T (X) is generated by ω3 
and Y  is predicted by ω2 , the second term in Eq. (5) could 
be divided into two alternative terms:

The final loss function to be optimized in the neural 
networks can then be written as the negative of the log-
likelihood function

where j refers to the row number, and 1 is located on the 
one-hot label Ỹt.
ck−1
ti  is obtained using noisy labels and the param-

eters in the last turn; the first term in Eq.  (9) is directly 
calculated from the f (Xt;ω

k
1 ,ω

k
3), which equals the i-th 

column of T (X) . The last term in Eq.  (9) is the predic-
tion results of f (Xt;ω

k
1 ,ω

k
2) . The first term in Eq.  (9) 

also represents the expectation log-likelihood function: 
Ey(logP(Ỹ |y,X)) , and ωk

1 ,ω
k
3 are optimized through gra-

dient decent fixing ωk
2 . The latter term in Eq. (9) also 

(5)
L
(
ω
k
)
≥

N∑
t

C∑
i

P
(
Yti|Ỹt ,X t;ω

k−1
1 ,ωk−1

2 ,ωk−1
3

)
· logP

(
Ỹt ,Yti|X t;ω

k
1 ,ω

k
2 ,ω

k
3

)

(6)ck−1
ti = P

(
Yti|Ỹt ,X t;ω

k−1
1 ,ωk−1

2 ,ωk−1
3

)

(7)ck−1
ti =

Tk−1(Xt )ji·Y
k−1
i∑C

i=1

[
Tk−1(Xt )ji·Y

k−1
i

]

(8)logP
(
Ỹt ,Yti|X t;ω

k
1 ,ω

k
2 ,ω

k
3

)
= logP

(
Ỹt |Yti,X t;ω

k
1 ,ω

k
3

)
+ logP

(
Yti|X t;ω

k
1 ,ω

k
2

)

(9)loss = −
N∑
t

C∑
i

ck−1
ti ·

[
logP

(
Ỹt |Yti,X t;ω

k
1 ,ω

k
3

)
+logP

(
Yti|X t;ω

k
1 ,ω

k
2

)]

= −
N∑
t

C∑
i

ck−1
ti · (log

[
f (Xt ;ω

k
1 ,ω

k
3)

]
ji
+log

[
f
(
Xt ;ω

k
1 ,ω

k
2

)]
)

denotes Kullback-Leibler divergence between the prior 
and posterior distribution of latent true labels, and it is 
optimized by fixing ω3 . The pseudocode is presented in 
Algorithm 1.

Initialization of parameters
The successful convergence of the network training hinges 
on a careful and precise initialization of its parameters for 
both ω2 and ω3 . We initialized T (X) with T  using the IIN 
method [7]. Because T (X) in our method is an intermedi-
ate product of the network and not a directly adjustable 
parameter, it necessitates the use of a learning approach 
to initialize T (X) using T  . Under the IIN paradigm, ref. [7] 
outputs recognized noisy samples using T  . We utilized the 
recognized noisy samples to train ω3 while fixing ω2.

In the proposed framework, T (X) is obtained through 
the propagation paths of ω1 and ω3 , whereas Y  is acquired 
via the pathways of ω1 and ω2 . Therefore, based on the 
multiplicative relationship T (X)Y = Ỹ  , the network can 
learn the noise transition matrix of the IIN method as an 
initialization by fixing ω2 and optimizing ω3.

In addition, a warm-up stage is required to learn the 
initial distribution of Y  . We set warm-up epochs to 

optimize ω1  and ω2  while freezing ω3 , as the samples 
with noisy labels still benefit neutral networks in an 
early training stage [28].

Final prediction at test phase
Because T (X) could model the transition distribution 
from the ground truth to the observed noisy labels, the 
network shown in Fig. 4 fits both the observed noisy label 
Ỹ  and the latent ground truth. During the training stage, 
the feature extraction backbone and classification head 
could be fed with correct supervision; the fitting of Ỹ  leads 
to the simultaneous fitting of the ground truth. Thus, the 
noise modeling phase was removed during the test phase, 
and the remaining feature extraction backbone and clas-
sification head output the final classification predictions.
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 Algorithm 1 Recursive and alternative optimization for TIDN-attention

Dataset
We selected two datasets for colonoscopy image polyp 
classification: Kvasir V2 [29] and a colonoscopy video 
classification dataset [30]. The public dataset, Kvasir V2, 

contains 8000 images across eight categories, with 1000 
images per category. These categories included dyed 
resection, esophagitis, ulcerative colitis, and five other 
classes relevant to polyp characterization. The labels 
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sourced from clinical institutions and experts were con-
sidered accurate. The public dataset [30] comprised 152 
colonoscopy videos, including 80 adenoma, 30 serrated, 
and 42 hyperplastic videos, amounting to three lesion 
types. The video lengths varied from 6 s to 76 s, with an 
average of approximately 30  s. The labels were derived 
from the histopathology results and diagnoses by expert 
doctors or beginners. Histopathology results provided 
accurate annotations, whereas diagnoses by experts and 
beginners were considered noisy, with noise ratios of 
35.52% and 50.00%, respectively.

We employed a video classification dataset [30] with 
real-world label noise to validate the proposed method 
for simulating label noise. In this dataset, the histopa-
thology results were considered the ground truth. The 
annotations made by the experts and beginners were 
treated as label noise with noise ratios of 50.00% and 
35.52%, respectively. The effectiveness of the noise simu-
lation methods was validated by comparing the similarity 
between the simulated noise and actual real-world noise.

To verify the ability of the model to combat label noise, 
we trained it on both simulated and real label noise data. 
The datasets were divided into training, validation, and 
test sets at an 8:1:1 ratio. The training set labels were 
noisy, whereas the validation and test sets contained 
accurate labels.

Baselines and metrics
The IIN and IDN were compared with the proposed 
TIDN. The IIN contains symmetric and pair-flip-label 
noise [11–13]. For symmetric label noise, the labels of ran-
domly selected instances were uniformly flipped to other 
classes. For symmetric noise, labels were flipped to neigh-
boring classes for pair-flip noise. For the simulated IDN 
proposed in ref. [14], the probability of flipping is related 
to the pixels of the images, thereby generating IDN.

The comparison methods for combating label noise 
include the IIN and IDN methods. For the IIN methods, 
co-teaching+ [16] for methods of selecting clean samples, 
DivideMix [5] for semi-supervised learning, and noise 
layer [6] for IIN layers, which are similar to our work, 
were selected for comparison. The part-decomposing 
method, part-depend [14], and confident-score-based 
method, CSIDN [15], were selected for the IDN method. 
The baseline was set as a ViT trained directly on the noisy 
labels.

The mean total distance is a metric [31] used to meas-
ure the difference between the distributions of a real-
world and a simulated noisy dataset. Let D1 =

{
xi, y

1
i

}N
i

 
and D2 =

{
xi, y

2
i

}N
i

 be the same dataset with two types of 
noisy labels. The mean total distance between datasets D1 
and D2 is defined as

where y1i  and y2i  are soft labels representing probability 
distributions over {1, ...,C}.

Test ACC was chosen as the metric for combating 
label noise. The annotations in the test and validation 
sets are the ground truth to prove the robustness of 
LNL. The test and validation sets were blinded during 
training.

Implementation details
The ViT [25] was chosen as the feature extraction back-
bone of our methods for the image classification task, 
and the video transformer network [32] was chosen as 
the backbone for the video classification task. During 
training, the resolution of all input images was adjusted 
to 224 × 224, and the pixel values were normalized 
channel-wise. The dimensions of the embedded fea-
tures were B× 768 , where B is the batch size. Data 
augmentation was performed by random cropping and 
vertical flipping.

The network was based on the PyTorch (version 1.9.1) 
framework and trained on two 12  GB NVIDIA TITAN 
Xp GPUs. The ViT was optimized using the stochastic 
gradient descent (SGD) optimizer, whereas the TIDN-
attention structure was optimized using the Adam opti-
mizer. The SGD optimizer applied an initial learning rate 
of 0.003 divided by 0.2 every 10 epochs. The Adam opti-
mizer set a fixed learning rate of 0.003. The image clas-
sification task batch size was set to eight, and one for the 
video classification.

The training set contained noisy labels, and the valida-
tion and test sets contained the ground truth. Notably, 
the output epoch was chosen based on the top training 
ACC in the last five epochs, and the validation set was 
blind during training, as we were studying LNL.

Results
In this section, we describe the experiments conducted 
on the image classification dataset with simulated label 
noise and the video classification dataset with real-world 
label noise. Validation of the simulated TIDN subsection 
demonstrates that the proposed simulated noise is closer 
to the real-world noise. Results for combating the TIDN 
subsection presents the classification performance of the 
TIDN-attention method in countering simulated noise. 
Results for combating real-world label noise subsec-
tion demonstrates the classification performance of the 
TIDN-attention method when trained with real-world 
label noise. Ablation study of TIDN-combating subsec-
tion presents an ablation study of the TIDN-attention 
module and the initialization process.

dTv(D1,D2) =
1

2N

∑N

i=1
�y1i − y2i �1
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Validation of the simulated TIDN
Different approaches for simulating label noise have been 
applied to colonoscopy video classification datasets con-
taining real-world label noise. The simulated label noise 
was compared with real-world label noise to evaluate 
the simulation methods. Table  1 shows the mean total 
distances between the existing simulated label noise and 
real-world label noise from a human expert (low noise 
level with a noise ratio of 35.52%) and a human begin-
ner (high noise level with a noise ratio of 50.00%). The 
noise ratio of the human annotators was calculated based 
on the ACC between the ground truth and their anno-
tations. Our simulated TIDN had the lowest mean total 
distance to real-world noisy labels for both the low noise 
ratio (0.3440) and high label noise (0.3581) scenarios. 
Notably, all the simulated label noises align with the 
noise ratio of the real-world label noise.

The T-SNE map depicting the distribution of instances 
from different classes is shown in Figs. 6 and 7. In Fig. 6, 
the two-component T-SNE map shows the distribution of 
labels in the feature space. The three classes are of three 
different colors. Different simulated label noises with the 
same noise ratio (50.00%, aligned with that of a human 
expert) and ground truth are presented. The human 
expert label noise was mainly distributed on the edge of 
the feature map, and the proposed TIDN was the closest 
to it from the visualization. The simulation results for the 
colonoscopy classification for the eight classes are pre-
sented in Fig. 7, where there is no real-world label noise. 
The red circle area shows that the disturbed spaces are 
usually at the edge of the classification boundaries, indi-
cating that atypical samples are more easily disturbed.

Results for combating the TIDN
Methods for combating label noise were evaluated 
through test ACC when training with simulated and real-
world label noise. The test ACC (top 5) of the different 
methods used for comparison is summarized in Table 2.

Notably, the training set contained only simulated 
noise, whereas the labels were the ground truths in the 
test set. The baseline indicates that the ViT is trained 
directly with the simulated TIDN without any meth-
ods to combat label noise. Co-teaching+ , DivideMix, 
and noise layer ignore the dependence of instances. 

Table 1 Mean total distances between the simulated and real-
world noise labels

Noise type Expert (35.52%) Beginner (50.00%)

TIDN (ours) 0.3440 ± 0.0130 0.3581 ± 0.0190
IDN 0.3797 ± 0.1520 0.3905 ± 0.2210

Pair-flip 0.4197 ± 0.0090 0.4489 ± 0.0080

Symmetric 0.4635 ± 0.0510 0.4343 ± 0.0490

Fig. 6 T-SNE map showing the distribution of labels in the feature space for classifying lesions in colonoscopy videos [30]
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Part-dependent and CSIDN methods consider the 
instance dependence of label noise. The TIDN-atten-
tion achieves the greatest improvement from 87.81% 
to 92.44% and 67.82% to 86.23% for the 15% and 40% 
noise ratios, respectively. Under a 70% noise ratio, 
DivideMix achieved the highest test ACC of 56.41%, 

whereas our method achieved 52.31%, compared with 
the baseline of 34.82%.

Figure  8 illustrates the training process of the pro-
posed method, including the curves for ACC and loss 
during training. The labels in the validation set were 
accurate, the training set labels were noisy, and the 

Fig. 7 T-SNE map showing the distribution of simulated noisy labels in the feature space for colonoscopy image classification (8 classes). Horizontal 
and vertical axes represent the two components of the T-SNE plot
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validation set data remained unseen during train-
ing. Baseline refers to the classification network being 
trained directly on noisy data without using methods 
to counter-label noise. TIDN-attention represents the 
proposed classification network combating label noise. 
Figure  8a and c shows that when trained with noisy 
data, the classification network gradually overfitted 
noisy labels as the number of epochs increased. This 
was evidenced by the continuously decreasing loss of 
the training set, whereas the loss of the validation set 
initially decreased and then increased. The TIDN-
attention method proposed in this study enables the 
network to fit noisy and accurate labels simultane-
ously. This is shown in Fig. 8b and d, where the train-
ing and validation sets show increased ACC.

Results for combating real‑world label noise
Results of the real-world label noise are presented in 
Fig.  9. The test set contained 15 unique videos with 
ground-truth labels from histopathology. The baseline 
denotes that the network is trained directly on noisy 
labels without any methods for combating the label noise. 
The ground truth is also the upper bound because clean 
labels guide the network. Our proposed method achieved 
the same performance of 86.67% as the upper bound 
when combating real-world label noise based on the 
opinions of human beginners. It also achieved the high-
est improvement, from 40.00% to 80.00%, for label noise 
from human experts. Only the CSIDN designed for IDN 
effectively improved from 40.00% to 66.66%.

Ablation study of TIDN‑combating
Figure 10 presents the results of the ablation experiments 
using the TIDN-attention algorithm. The blue solid and 
red dashed lines represent the results of the proposed 
TIDN-attention module with and without initialization, 
respectively. Specifically, without initialization refers to 
random initialization of ω3 and with initialization refers 
to the method described in Initialization of parameters 

subsection. The green dashed line represents the scenario 
in which the noise transition matrix degenerates to IIN 
[6], assuming T(X) = T. Figure  10a presents the results 
for simulated noise with noise rates ranging from 15% to 
70%, whereas Fig. 10b shows the outcomes for real noise 
at rates from 35.52% to 50%. Under various noise set-
tings, the proposed method consistently outperformed 
the ablated methods for the test set ACC.

Discussion
We introduced a TIDN to simulate real-world label noise 
and validated this approach by comparing the mean 
total distance to real-world noise against that of existing 
simulated noises. Subsequently, we propose the TIDN-
combating framework to combat real-world label noise. 
The performance in combating label noise was validated 
using simulated and real-world noisy datasets.

In this section, we describe TIDN simulations. Fig-
ure 6 illustrates that the simulated TIDN closely resem-
bles real-world label noise. In Fig. 7c, the area marked by 
the red circle indicates that the samples near the decision 
boundaries were prone to disturbances. As the T-SNE 
map represents an abstract feature space, instances on 
the classification boundaries were effectively identified as 
atypical. The mean square distances in Table 1 prove that 
the proposed label noise is the closest to real-world noise. 
Because the proposed TIDN closely mimics real-world 
label noise, it can validate the LNL methods without real-
world label noise and ground truth data.

The noise resistance performance of the TIDN-com-
bating was demonstrated for real and simulated noise. 
Table  2 shows that the proposed method combats the 
TIDN better than the other methodologies, and Fig.  9 
proves that it also effectively combats real-world noise. 
Co-teaching+ , DivideMix, and noise layer ignore the 
dependence of instances on label noise. Co-teaching+ is 
ineffective because the small-loss trick does not apply 
to IDN. DivideMix has the best performance under 70% 
simulated label noise; however, it performs poorly in 
other settings. Noise layer is limited because its theory is 

Table 2 Test ACC (top 5) on Kvasir V2 dataset labeled with simulated TIDN

Method Noise ratio = 15% (%) Noise ratio = 40% (%) Noise ratio = 70% (%)

Baseline 87.81 ± 1.20 67.82 ± 0.40 34.82 ± 2.40

Co-teaching+ 88.12 ± 0.20↑ 72.12 ± 4.20↑ 53.13 ± 4.60↑
DivideMix 86.14 ± 1.20↓ 70.12 ± 2.10↑ 56.41 ± 3.40↑
Noise layer 83.12 ± 3.90↓ 70.92 ± 3.10↑ 36.51 ± 3.10↑
Part-depend 85.21 ± 1.30↓ 65.12 ± 2.40↓ 35.15 ± 1.40↑
CSIDN 89.14 ± 1.70↑ 75.12 ± 5.10↑ 46.15 ± 6.90↑
TIDN-attention (ours) 92.44 ± 1.10↑ 86.23 ± 0.40↑ 52.31 ± 2.40↑
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Fig. 8 ACC and loss curves during training. The horizontal and vertical axes represent the number of training epochs and the values of ACC or loss, 
respectively
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based on instance-independence assumption. For meth-
ods that consider instance dependence, part-depend does 
not perform as well, and the part-decomposing method 
does not apply to complex colonoscopy images for medi-
cal use. CSIDN has a basic improvement over the base-
line; however, it is still limited as the confidence score 
easily causes networks to fall into overconfidence.

Figure  8 indicates that our method fits both noisy 
labels (high training ACC) and the latent ground truth 
(high validation ACC). For the baseline method, the 
performance on the validation set first increases and 
then declines as the training ACC increases to the 
point of overfitting. In contrast, in the training pro-
cess of TIDN-attention, the validation ACC increases 
even when the training ACC increases to above 90%. 
The loss curve shows convergence after a sudden rise 
in the warm-up and initialization epochs. The train-
ing ACC and loss were calculated using noisy labels, 
whereas the validation ACC and loss were calculated 
using the ground truth. Training and validation ACC 
increase simultaneously because our recursive algo-
rithm optimizes the likelihood of T(X) and the latent 
ground truth. The structure fits the observed noisy 
labels while also fitting the ground truth distribution 

with the assistance of T(X). Note that the validation 
set contains accurate labels, it remains unseen dur-
ing training in actual LNL scenarios. Despite this, the 
experiments demonstrate that the proposed method 
can learn both the distribution of label noise and true 
labels simultaneously. Therefore, the convergence of 
the training loss signifies the achievement of a neural 
network robust to label noise.

Figure 10 shows the results of the ablation study. Com-
parisons between the noise layer and TIDN-attention 
highlight the benefits of modeling instance-dependent 
T(X) rather than instance-independent T. The baseline 
approach with no modeling of T performed poorly. The 
initialization of T(X) is inevitable because it outper-
forms the random initialization methods. This is because 
initialization restricts the degrees of freedom of T(X), 
enhancing performance.

The limitation of our work lies in the need for better 
initialization to limit the degrees of freedom of T(X) or to 
theoretically tackle the freedom problems for an instance-
dependent noisy transition matrix. In addition, our 
method can be applied to the latest classification meth-
ods, such as those based on diffusion models [33, 34], to 
mitigate the impact of incorrect labels.

Fig. 9 Test ACC of comparative methods under real-world label noise. Baseline refers to a classification network trained directly on noisy labels 
without anti-noise methods. Ground truth represents the upper bound of LNL, where accurate labels guide the classification network
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Conclusions
We introduce a novel simulated TIDN for closely 
approximating real-world label noise. Because TIDN 
aligns well with real-world scenarios, effectively com-
bating TIDN leads to a combination of real-world label 
noise. Therefore, we developed the TIDN-combating 
framework, which includes the TIDN-attention block 
and a corresponding recursive algorithm. This frame-
work simultaneously fits the observed noisy labels 
and latent ground truth by modeling a noisy transi-
tion matrix, ultimately leading to accurate classifica-
tion predictions. Our experiments demonstrate that 
the TIDN closely mimics real-world noise. Further-
more, the TIDN-combating framework achieves supe-
rior ACC on the test set annotated with ground truth, 
whether trained on datasets with simulated or real-
world noisy labels.
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