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Abstract 

Speech is a highly coordinated process that requires precise control over vocal tract morphology/motion to produce 
intelligible sounds while simultaneously generating unique exhaled flow patterns. The schlieren imaging technique 
visualizes airflows with subtle density variations. It is hypothesized that speech flows captured by schlieren, when ana-
lyzed using a hybrid of convolutional neural network (CNN) and long short-term memory (LSTM) network, can 
recognize alphabet pronunciations, thus facilitating automatic speech recognition and speech disorder therapy. This 
study evaluates the feasibility of using a CNN-based video classification network to differentiate speech flows corre-
sponding to the first four alphabets: /A/, /B/, /C/, and /D/. A schlieren optical system was developed, and the speech 
flows of alphabet pronunciations were recorded for two participants at an acquisition rate of 60 frames per second. 
A total of 640 video clips, each lasting 1 s, were utilized to train and test a hybrid CNN-LSTM network. Acoustic analy-
ses of the recorded sounds were conducted to understand the phonetic differences among the four alphabets. The 
hybrid CNN-LSTM network was trained separately on four datasets of varying sizes (i.e., 20, 30, 40, 50 videos per alpha-
bet), all achieving over 95% accuracy in classifying videos of the same participant. However, the network’s perfor-
mance declined when tested on speech flows from a different participant, with accuracy dropping to around 44%, 
indicating significant inter-participant variability in alphabet pronunciation. Retraining the network with videos 
from both participants improved accuracy to 93% on the second participant. Analysis of misclassified videos indi-
cated that factors such as low video quality and disproportional head size affected accuracy. These results highlight 
the potential of CNN-assisted speech recognition and speech therapy using articulation flows, although challenges 
remain in expanding the alphabet set and participant cohort.

Keywords  Alphabet pronunciation, Speech flows, Articulatory phonetics, Video classification, Schlieren, Long short-
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Introduction
Speech is an intricately orchestrated activity that requires 
precise management of the vocal tract’s shape and move-
ments to produce clear and understandable sounds [1]. 
Articulation therapy focuses on improving an individ-
ual’s ability to produce clear and correct speech sounds 
[2]. This therapy is commonly used for children and 
adults who have difficulty pronouncing certain sounds 
or words, which affects their overall speech clarity and 
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communication effectiveness. The initial step typically 
involves the speech-language pathologist listening to the 
patient speaking in various contexts to identify the prob-
lematic sounds and understand the underlying causes [3]. 
One commonly used procedure at this stage is the oral-
motor assessment, which examines the physical capabili-
ties of the mouth, including the strength, coordination, 
and movement of the lips, jaw, and tongue. Successful 
articulation therapy results in clearer speech, significantly 
enhancing communication effectiveness and boosting 
confidence in social, educational, or professional settings.

Patients with hearing and speech disorders face more 
challenges than those with only speech disorders in fol-
lowing speech therapy due to their lack or weak feedback 
from the ear [4]. The brain requires multiple forms of 
feedback to iteratively correct the oral motors for accu-
rate pronunciation. Other techniques are often imple-
mented to help patients generate more meaningful 
feedback, such as placing a fingertip on the lips or cheek 
to feel motion or exhaling onto a piece of paper to feel 
the flow [5]. While these methods are easy to implement 
and have proven useful in helping patients correct their 
articulations, they are limited by indirect feedback and 
interference with normal speech. Thus, a new method 
that provides direct and undisruptive sensory feedback 
to patients with hearing disorders is desirable to improve 
therapy outcomes and shorten therapy duration [6].

The exhaled speech flows are thought to be closely 
related to oral motor control rather than the acoustics 
traditionally used for speech diagnosis [7–10]. An artic-
ulated sound results from the integration of the vocal 
source (phonation) and vocal tract (resonance), encom-
passing vibroacoustic (vocal fold collisions and structure 
vibrations), aeroacoustics (boundary layer vortices, main 
flow turbulences), and frequency-wise pressure-structure 
interactions (attenuation and amplification) [11]. The 
first primarily involves humming sounds, the second 
frequently includes noise, while the third leads to intel-
ligible articulation unique to the speaker. The expira-
tory speech flow directly stems from the instantaneous 
oral-motor configuration (the resonator at that moment) 
shaped by the lips, tongue, teeth, oral cavity, and velum 
[12]. Therefore, any changes to this configuration will 
result in a distinct flow topology [13, 14]. Conversely, an 
altered flow topology could potentially be traced back to 
the structural anomaly [15]. It is theorized that by exam-
ining expiratory speech flows from patients with speech 
disorders, it may be possible to identify underlying ana-
tomical or physiological factors, enabling patient-specific 
interventions/therapies. Similarly, speech flows could 
provide real-time feedback on the outcomes of these 
interventions/therapies.

A schlieren optical system facilitates the visualization 
of airflows through light refraction caused by hetero-
geneous air densities [16, 17]. This technique has often 
been applied to visualize shock waves [18, 19], ultra-
sonic standing waves [20], respiratory flows [21–23], 
liquid flows [24], and turbulence [25]. Schlieren imaging 
has been used in a limited number of studies focused 
on speech production. Tomaschek et  al. [26] recorded 
the flow dynamics from lip, nasal, and vocal speeches 
using a schlieren system and quantitatively compared 
the flow intensity nasal and non-nasal sounds, revealing 
that delayed uvular closure nasalized the vowel sound. 
Furthermore, the flow variations following lip closure, 
as described in other studies [27, 28]. Lorenc et  al. [29] 
used an acoustic camera approach to investigate Polish 
nasalized vowels and suggested that the acoustic pressure 
distribution was dependent on the resonance location 
(i.e., nasal, oral, velopharyngeal, etc.). The sequence and 
percentage share of oral and nasal resonances were also 
determined from the acoustic field of Polish nasalized 
vowels. Rowell et  al. [30] compared speech airflows of 
nasal and oral vowels in French using the schlieren imag-
ing technique and noted higher flow intensities for nasal 
vowels than oral vowels, as well as notable inter-speaker 
variability in flow patterns. Challenges associated with 
environmental factors for recording speech flows were 
also highlighted in as study [30]. Harvey et al. [31] stud-
ied acoustic waves propagating in the air using the high-
speed schlieren technique and demonstrated that audio 
signals could be inversely recovered from schlieren-
recorded videos, termed “schlieren microphone.”

Video classification has progressed significantly with 
the advent of deep learning, facilitating the integration of 
a pre-trained convolutional neural network (CNN) with 
a long short-term memory (LSTM) network. In this inte-
grative approach, video frames are initially transformed 
into feature vectors by the convolutional network, cap-
turing essential attributes of each frame [32, 33]. These 
vectors are subsequently fed into an LSTM network, 
which captures temporal information inherent in the 
video frame sequences [34]. The final architecture merges 
layers from both the convolutional and LSTM networks, 
enabling video label classification. This approach ensures 
that the classifier accounts for both the spatial character-
istics derived from individual frames and the temporal 
continuity inherent in the video, allowing for a compre-
hensive video classification strategy. The hybrid CNN-
LSTM method has seen increasing application in fields 
such as online video categorization [35], behavior/activ-
ity recognition [36], natural language processing [37], 
weather broadcasting [38], auto-driving [39], lung sound 
diagnosis [40], and detecting wake-sleep patterns [41].
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This study aimed to evaluate the feasibility of using 
video classification to distinguish phonetic alphabet pro-
nunciations (i.e., /A/, /B/, /C/, and /D/) captured using 
the schlieren imaging technique. It is hypothesized that 
the pronunciation of each letter will produce unique spa-
tiotemporal flow patterns that differentiate it from other 
letters, and that certain features will remain consistent 
across participants, despite the presence of significant 
inter-participant differences. The focus of this study is on 
the video classification of the first four alphabetic letters. 
Specific aims include:

(1)	 Develop a schlieren system and check the quality of 
recorded speech flows.

(2)	 Develop a dataset of 640 videos recording articula-
tions of /A/, /B/, /C/, and /D/.

(3)	 Find the minimal number of videos required to 
train an accurate network.

(4)	 Evaluate the performance of a trained network on 
speech videos from other participants.

(5)	 Evaluate the effect of continuous training on clas-
sification performance.

Methods
Study design
The first four letters of the English alphabet, /A/, /B/, /C/, 
and /D/, were selected to assess the feasibility of artificial 
intelligence (AI)-based differentiation of speech flows 
acquired using schlieren photography. This selection was 
based on their notable differences and similarities, offer-
ing various levels of difficulty for classification. For exam-
ple, /A/ is a vowel pronounced with no stricture in the 
vocal tract, while /B/, /C/, and /D/ are consonants articu-
lated with complete or partial closure of the vocal tract 
[42]. Among these consonants, the phonation location 
varies: /B/ is articulated at the lips with a closing-opening 
motion, /C/ is produced at the closed teeth by forcing 
air through the teeth crevice, and /D/ is generated at the 
tongue tip that presses against the alveolar ridge. Nota-
bly, external observations of /A/ and /D/ pronunciations 
show minimal differences in lip and jaw movements, 
underscoring the necessity for additional biomarkers to 
disclose hidden tongue movements for more accurate 
classification.

Speech flows from two participants (i.e., first partici-
pant (P1) and second participant (P2)) were recorded 
using a schlieren optical system at 60 frames per sec-
ond. The study received approval from the institutional 
review board at UMass Lowell, and both participants 
provided written consent. Audio recordings of the alpha-
bet pronunciations were made simultaneously with the 
video recordings. These videos were then segmented 
into individual clips of one second each, with the highest 

expiratory flow rates typically occurring around the mid-
point of each clip.

To create the classification database, a minimum of 
eighty separate video clips per letter and per partici-
pant were prepared, resulting in a total of more than 640 
(80 × 4 × 2) video clips. To determine the minimum num-
ber of training videos required for an accurate network 
(i.e., > 90% accuracy), the CNN-LSTM model was trained 
separately on four datasets, containing 20 × 4, 30 × 4, 
40 × 4, and 50 × 4 videos, respectively, all from the same 
participant. The classification performance of the trained 
network was subsequently tested on the dataset from P1 
that contained 30 videos per alphabet, previously unseen 
by the trained network.

To evaluate the network’s performance with external 
participants, it was tested on the dataset from P2, which 
included 30 videos. This dataset had not been used in the 
initial training phase. A decline in performance metrics 
would indicate the presence of unique or additional fea-
tures in P2. To enhance network applicability, the original 
training set was expanded by incorporating an additional 
50 × 4 videos from P2. The augmented network was then 
tested on both datasets. This approach is anticipated to 
significantly improve performance on the second dataset 
while maintaining high accuracy on the first.

Schlieren optical system
The schlieren optical imaging (SOI) system consists of 
four components: a concave mirror, a point light source, 
a razor blade, and a video camera for collecting images 
(Fig. 1a). The mirror, an AD015 telescope mirror (Agena 
AstroProduct, Cerritos, CA) with a 406 mm diameter, a 
1.8 m focal length, and a 45 mm thickness, reflects light 
from the light-emitting diode (LED) light source, which is 
covered with a pin-sized hole and placed 3.6 m from the 
mirror (twice the focal length). The light reflects from the 
mirror back into the test area and encounters the razor 
blade, which obstructs approximately half of the light, 
allowing the remaining half to reach the camera (Canon 
EOS Rebel T7) and produce an image. Dimming the light 
enables the camera to better focus on the test participant, 
who breathes into the test area (right panel, Fig. 1a). Opti-
mal image contrast is achieved by optimizing the location 
of the light source and the portion of light obstructed by 
the razor blade. Note that there is no definitive method to 
measure precisely the amount of light passing from the 
razor blade to the camera; however, the position of the 
LED point light source and the razor blade ensures that 
part of the light is on the blade and the other part hits the 
camera lens. Obtaining optimal images requires making 
the point light source very small, complicating the assur-
ance that 50% of the light is on the razor blade and 50% is 
reaching the camera.
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Acoustic analyses
Acoustic analyses were conducted in MATLAB using 
both Fourier transform and continuous wavelet trans-
form (CWT). In CWT, various wavelets, including the 
Morlet wavelet, were used to refine and alter the signal 
f(t):

a is the scaling factor, b is the time lag, and ψ(t) is the 
Morlet wavelet [43]. The wavelet coefficient wt represents 
the degree of similarity between the signal and the wave-
let at a particular a and b. Adjusting a and b allows for 
the isolation of spatial and temporal anomalies, such as 
abrupt changes in patterns. A smaller value of a results in 
a more condensed wavelet and higher frequency, accen-
tuating rapid and sharp fluctuations. Modifying the time 
lag, b, shifts the starting point of the wavelet either for-
ward or backward. The scalogram, which visualizes the 
time–frequency energy distribution, was derived using 
the CWT [44].

CNN‑LSTM video classification
A hybrid model combining a CNN with a LSTM net-
work leverages spatial feature extraction with sequential 
data processing. The model starts with a CNN inspired 
by AlexNet, known for its effectiveness in image recog-
nition tasks [45] featuring five convolutional layers fol-
lowed by rectified linear unit activations. Max-pooling 
layers follow the first, second, and fifth convolutional 
layers to reduce dimensionality and achieve translational 
invariance.

The features extracted by the CNN are then input into 
a bidirectional LSTM (BiLSTM) network to capture tem-
poral dependencies in the data (Fig.  1b). The BiLSTM 
layer processes sequence information in both forward 
and backward directions [46], essential for understanding 

(1)wt(a, b) =
1
√
a

∞

−∞

f (t)Ψ
t − b

a
dt, a > 0

context and progression in temporal data, like video 
frames or time-series sensor data. The final output goes 
through a softmax layer (or another suitable activation 
function) to categorize the video into one of four classifi-
cations: /A/, /B/, /C/, or /D /.

Various metrics, derived from the confusion matrix, 
evaluate the network’s classification performance, includ-
ing overall accuracy and category-specific measures like 
precision, sensitivity, specificity, F1 score, receiver oper-
ating characteristic (ROC) curve, and area under the 
curve (AUC). In this four-class system, category-specific 
metrics adapt from their binary forms using the One-vs-
Rest approach. The CNN-LSTM model was trained and 
tested on an AMD Ryzen 3960X 24-Core workstation 
with 3.79 GHz processors, 256 GB of RAM, and a 24 GB 
GeForce RTX 3090 GPU (NVIDIA).

Results
Schlieren‑recorded speech flows
Time series of speech flows when pronouncing /A/
Figure 2 presents a time series of images illustrating the 
flow dynamics observed in two participants while pro-
nouncing the letter /A/. Additional details are available 
in supplementary video S1. During the initial phase of 
/A/ articulation, the mouth partially opens, leading to 
the formation of a jet flow at the lips. This jet flow, lasting 
from 0.2 s to 0.4 s, extends 20–25 cm into the surround-
ing air at a downward angle. Upon completion of the 
articulation, the flow from the mouth ceases (indicated 
in purple), and a secondary flow (indicated in orange) 
emerges from the nostrils, likely due to the uvula closing 
the nasopharynx during the articulation of /A/ and the 
resultant pressure build-up in the nasal cavity.

Comparing different participants, both similarities and 
discrepancies in /A/ articulation are evident, reflecting 
alphabet-specific phonetic articulatory features as well as sig-
nificant diversity even when articulating the same letter. This 
observation persists despite diligent efforts to ensure consist-
ency in recording, as described in schlieren optical system 

Fig. 1  Experimental setup and network model: (a) Schlieren optical system and method for recording speech flows, and (b) multi-level training 
and testing of the hybrid CNN-LSTM network for video classification of phonetic alphabet speech flows, i.e., /A/, /B/, /C/, and /D/
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section. Here, the jet flow from P1 extends a longer distance, 
while in P2, the flow shows a higher level of dispersion, and 
the mouth opens wider. Additionally, upon the completion of 
articulation, P2 completely closes the mouth, while P1 keeps 
the mouth slightly open, resulting in a softer tone.

Speech flows pronouncing /B/, /C/, /D/
Distinct differences in speech flow dynamics are 
observed between /A/ and the other three letters, i.e., /B/, 
/C/, and /D/, as shown in Fig. 3 and in the supplementary 

video S1. The three letters also display distinctions in 
both manners of articulation and the airflow jets accom-
panying speech. A notable difference is the penetration 
depth of the jet flows, with /D/ articulation resulting in 
the shortest penetration, while /A/ has the longest among 
the four. Such distinctions become more apparent upon 
viewing the supplementary video S1.

Furthermore, the orientation of the speech flow jets 
varies, with /A/ forming a 45° angle from the vertical 
direction and /B/ and /C/ forming a much sharper angle 

Fig. 2  Time series of speech flows captured by schlieren imaging during the pronunciation of /A/ by two participants: (a) P1, and (b) P2

Fig. 3  Speech flows captured by schlieren imaging when pronouncing /B/, /C/, /D/ by two participants: (a) P1, and (b) P2
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(30°–35°). This variance stems from the relative position 
between the teeth and lips during pronunciation.

Another distinction is seen in the evolution of the flows 
and the associated kinematics of the lips and chin pro-
ducing the flows. From the supplementary video S1, the 
motions of the lips are clearly observable, with /A/ differ-
ing significantly from /B/, /C/, /D/; /A/ involves a wider 
and longer mouth opening than the others. Subtle differ-
ences also exist among /B/, /C/, and /D/, with /B/ featur-
ing an abrupt mouth opening, /C/ showing a retraction 
of the lower lip and chin, and /D/ having a relatively sta-
ble lip/chin position.

The last, yet not the least, difference lies in the flow 
and articulation manner between different participants. 
These significant disparities between the two partici-
pants, as shown in both Figs.  2 and 3, can result from 
many factors, such as accent and habit. However, such 
differences also pose a challenge in identifying the hall-
mark features that constitute the intelligibility of each 

letter, as well as in developing a generic AI-based speech 
reading model based on articulatory flows.

Sound acoustics, scalogram, and Fast Fourier Transform
Pronunciation of /A/
The soundtrack of /A/ pronunciations, along with their 
analyses by two participants, is shown in Fig.  4. For a 
given participant, the pronunciations of the same letter 
are consistent, as illustrated by the similarity among the 
three recordings in the first panel in Fig. 4a. Similarities 
are also observed in the spectrogram, which displays the 
energy distribution as a function of time and frequency 
(upper middle panel in Fig.  4a). The lower panels in 
Fig.  4a show the zoomed soundtrack and spectrogram 
of the second /A/ pronunciation, lasting around 0.3  s. 
Several horizontal strips are noted in the spectrogram, 
whose energy intensity decreases progressively with 
increasing frequencies, denoting the participant’s fun-
damental frequency and formants. The two right panels 

Fig. 4  Pronunciation of /A/ and acoustics analyses: (a) P1, and (b) P2
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in Fig.  4a depict the Fast Fourier Transform (FFT) of 
the second /A/ pronunciation in both semi-logarithmic 
(upper) and linear plots, the latter exhibiting five peaks in 
the frequency range of 0–1000 Hz.

Both similarities and discrepancies in /A/ pronuncia-
tions exist between the two participants in terms of the 
soundtrack, spectrogram, and FFT profile (Fig.  4b vs 
4a). The two recordings are similar in their overall pat-
terns, both exhibiting a spindle shape. Also, horizontal 
stripes are observed in the spectrogram of the P2. How-
ever, differences are also apparent. Firstly, the /A/ pro-
nunciation by the P2 lasts longer, i.e., 0.5  s vs 0.3  s by 
the P1. Secondly, the soundtrack patterns between the 
two participants are slightly different, with the P2’s pat-
tern being more regular than that of the first. Thirdly, the 
spectrogram of the P2 is less distinctive, indicating a less 
articulated sound. Lastly, the P2’s FFT profile contains 
more peaks (9) than that of the P1 (5 peaks). These differ-
ences will influence the training process and subsequent 
performance of the video classification network to be 
developed.

Pronunciation of /B/, /C/, /D/
Figure 5 displays the sound recordings and spectrograms 
for the articulation of the alphabets /B/, /C/, and /D/. For 
a given participant, each alphabet exhibits a distinctive 
pattern in the soundtrack and spectrogram. An abrupt 
shift in energy intensity is observed in the articulation of 
/B/, /C/, /D/, which is absent in /A/ (Fig. 5 vs Fig. 4). This 
shift is most noticeable in /C/, occurring approximately 
in the middle of the articulation in both participants. 
The spectrograms differ among the alphabets, each being 
unique in their energy distribution vs time and frequency. 
Again, both similarities and discrepancies are observed 
between the two participants for each alphabet, illustrat-
ing the individual phonetic characteristics that contrib-
ute to intelligible articulation and the signature acoustic 
qualities of each person.

CNN‑LSTM video classification
Network accuracy vs number of training videos
Figure  6 aims to determine the minimal number of 
speech flow videos required for effective network train-
ing. To this end, four training datasets comprising 80, 
120, 160, 200 videos (i.e., 20, 30, 40, and 50 videos per 
letter, respectively) were utilized to train the CNN-
LSTM network. This network was then tested on a dis-
tinct dataset containing 120 video clips (30 per letter) 
from the same participant. For ease of reference, the four 
trained networks are labeled as N20, N30, N40, and N50, 
respectively.

In Fig. 6a, it is observed that all four networks achieved 
a classification accuracy of 95% or higher. This indicates 

that as few as 20 video clips are sufficient to distinguish 
the four alphabets. Note that each video clip lasts 1  s 
and contains 60 frames, which theoretically provides 60 
spatial features and 59 time-sequence features. The per-
formance of the network varies among the alphabets, as 
reflected in the F1 scores shown in Fig. 6b. These scores, 
both average and category-specific, are above 95%, indi-
cating robust overall performance. Categorical F1 scores 
exceed 90% for all letters, with /A/ achieving the highest 
and /D/ the lowest. The ROC curves are similar across 
the networks, but /D/ consistently demonstrates the 
poorest performance. Among all trained networks, N50 
demonstrates the best performance, albeit by a narrow 
margin.

Network performance on speech flows from a different 
participant
The four networks, trained on the P1 dataset, were fur-
ther tested on an external dataset comprising 120 video 
clips (30 for each letter) from the P2, resulting in signifi-
cantly lower accuracies (43%–46%), as shown in Fig. 7a. 
This decrease indicates the presence of distinct features 
in P2’s speech flows that are not captured in P1.

Figure  7b displays the ROC curves for N20 and N40 
when tested on the P2 test dataset. The letter /C/ is 
observed to be close to the diagonal line, reflecting the 
low similarity between the two participants when pro-
nouncing the letter /C/. It is, therefore, necessary to 
retrain the network by incorporating speech videos from 
P2 to achieve a network that performs well for both 
participants.

Second round of network training and testing
The performance of the retrained model, based on a 400-
video dataset (50 per letter per participant) from both 
participants, is shown in Fig.  8. The retrained network 
was tested on two datasets, P1 and P2, each containing 
120 videos (30 videos per letter). As anticipated, the clas-
sification accuracy on P1 remains high at 98.3%, and on 
P2, it drastically improves from 46% to 93.3% (Fig.  8a). 
The ROC curves for all four alphabets are close to the 
upper-left corner, indicating high performance by the 
retrained network. Figure 8b also shows the network per-
forms slightly less well on P2 than on P1. Additionally, 
the lowest network performance on P1 is for the letter 
/D/, while on P2, it is for the letter /B/.

The categorical metric performances, including pre-
cision, sensitivity, specificity, and F1 score, are further 
shown in Fig. 8c (P1) and Fig. 8d (P2). For P1 (Fig. 8c), 
the two alphabets /C/ and /D/ are more frequently con-
fused, while for P2 (Fig. 8d), the often-confused pair is 
/B/ and /C/. Moreover, the confusion between /B/ and 
/C/ for P2 is significantly more frequent than any other 
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pairs (Figs. 8d vs 8c). The notably lower values in preci-
sion, sensitivity, and F1 score for /B/ in P2 warrant fur-
ther investigation.

Misclassification analyses on /B/ pronunciations in P2 test 
dataset
The confusion matrix for the retrained CNN-LSTM 
network tested on the P2 dataset is shown in Fig.  9a. 

The highest misclassification occurred for the letter /B/, 
with seven out of thirty /B/ pronunciations misclassi-
fied as /C/ (red dotted ellipse, Fig. 9a). All misclassified 
videos were individually inspected to understand the 
reasons behind the misclassifications.

Figure 9b presents three typical examples. The artic-
ulation of /B/ involves the lips first closing and then 
quickly opening, whereas during the articulation of 

Fig. 5  Comparison of the sound recordings and spectrograms for the pronunciation of /B/, /C/, and /D/: (a) P1, and (b) P2
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/C/, the lips remain open, and the tongue tip initially 
presses against the teeth, then suddenly retracts, gen-
erating specific speech flow patterns. Thus, two snap-
shots of /B/ speech flows are shown in Fig.  9b, one at 
the moment of mouth opening and the other at the end 
of mouth opening. Two anomalies in the first sample in 
Fig. 9b might contribute to its misclassification: the dis-
proportionally smaller head size relative to the mirror 
and the low contrast between the flow and background, 
obscuring the discriminatory features.

The flow patterns of the second sample resemble those 
of /C/ in Fig. 3, especially at the end of mouth opening. 
This is consistent with the higher prediction score for 
/C/ than /B/, as shown in Fig.  9b. In the third sample, 

the head is disproportionately larger relative to the mir-
ror, and excessive buoyancy plumes introduce nonrel-
evant features, diluting the alphabet-specific features’ 
impact. For all three samples, the prediction scores for 
/C/ are consistently higher than those for /B/ (Fig. 9c), 
though the superiority is not overwhelming, indicating 
a close resemblance in the flow patterns associated with 
these two letters when pronounced by P2.

Discussion
This study revealed notable distinctions in the spatiotem-
poral patterns of speech flows among /A/, /B/, /C/, and 
/D/. The proposed CNN-LSTM network exhibited vary-
ing performances on different letters and participants, 

Fig. 6  Effect of the number of training videos from P1 on network performance: (a) accuracy, (b) F1 score (average and category-wise), and (c) ROC 
curves

Fig. 7  Network performance when tested on a different participant (P2): (a) accuracy, and (b) ROC curves
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highlighting both challenges in developing univer-
sal speech recognition models and opportunities for 
improved therapy for patients with speech disorders, as 
detailed below.

CNN‑LSTM performance vs training/testing video sets
In the first classification task, the effect of the number 
of training videos on model performance was evaluated. 
The model achieved a classification accuracy of 95% and 

Fig. 8  Classification performance of the CNN-LSTM network retrained with 400 video clips (50 per letter per participant) from both participants: 
(a) accuracy on the two test datasets: P1 and P2, each with 30 video clips per letter, (b) ROC curves on the two test datasets: P1 and P2, and (c) 
categorical performance on P1, and (d) categorical performance on P2

Fig. 9  Misclassification analyses of letter /B/: (a) the confusion matrix of the retrained CNN-LSTM network when tested on the P2 dataset, (b) 
samples of misclassified videos and their respective prediction scores
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above for all training sets with 20 videos or more per 
alphabet (Fig. 6a). Accuracy showed a slight but progres-
sive improvement with an increased number of training 
videos, reaching the highest accuracy of 96.7% in N50, 
emphasizing the benefits of a larger training dataset. 
Each video lasted 1 s and consisted of 60 frames.

Considering alphabet-specific metrics, /A/ had the 
highest F1 score (Fig.  6), consistent with /A/ being a 
vowel and /B/, /C/, and /D/ consonants. However, the 
frequent misclassification of /B/ as /C/ in participant 2 
(Fig.  9) indicates a notable similarity in articulatory air-
flow dynamics between these two letters (Fig. 3), despite 
their distinct acoustic representations (Fig. 5). The vari-
ability in alphabet-specific (categorical) performance 
among N20–N50 in Fig.  6 suggests that certain alpha-
betic articulations may require more focused training 
or present inherent challenges not addressed merely by 
increasing dataset size. This insight is crucial for further 
model refinement, especially in optimizing alphabet-spe-
cific performance.

Very low performance (44%, Fig. 7) was observed when 
the model was tested on articulatory flow videos from a 
different participant. This indicates that while the model 
performs well in a controlled environment (P1), its ability 
to generalize and maintain accuracy under more complex 
scenarios (P2) is limited. This finding is crucial for future 
model development, emphasizing the need to enhance 
the model’s adaptability and robustness in varied testing 
conditions.

The model’s performance significantly improved after 
retraining with videos from both participants, from 44% 
to 93% (Fig.  8), underscoring the high inter-participant 
variability in articulatory flow dynamics and the necessity 
of including training sets from all relevant sources. Large 
discrepancies were observed in alphabet-specific metrics, 
suggesting that while the model excels for certain letters, 
its ability to generalize across a wider spectrum of alpha-
bets requires further investigation. Moreover, analyses of 
misclassified samples in Fig. 9 showed that the low quality 
of certain flow videos contributed to their misclassifica-
tion; therefore, a standardized video acquisition method is 
needed to ensure consistency and minimize confounding 
factors when using the schlieren imaging technique.

It is observed that both the face silhouette kinemat-
ics and exhaled flows are features unique to each letter, 
which can be utilized to differentiate alphabet pronun-
ciations using CNN-LSTM-based video classification. 
Devergie et al. [47] explored how visual lip gestures can 
enhance speech intelligibility in scenarios with back-
ground noise and multiple speakers. Additionally, it is 
noted that the human brain is capable of interpreting 
silent lip movements and translating them into an under-
standing of speech [48].

Audio‑visual disparities among /A/, /B/, /C/, and /D/
Establishing a one-to-one relationship between alpha-
betic articulation and speech flows presents challenges. 
However, it is feasible to infer oral-motor controls from 
aerodynamic data. In this study, /A/ produced a jet flow 
with a downward angle of 45° while /B/, /C/, and /D/ pro-
duced a much sharper angle (30°–35°). From a phonetic 
perspective, this difference is attributed to /A/ being a 
vowel and /B/, /C/, and /D/ being consonants. From an 
oral-motor control perspective, this difference aligns 
with the relative motions of the lips, tongue, and jaw dur-
ing articulation. As depicted in Fig. 2 and supplementary 
video S1, articulating /A/ involves lowering and then 
raising the jaw, with the lips open and the tongue resting 
on the mouth floor. The relatively large oral cavity allows 
the jet flow to exit the mouth obstructively at an angle of 
approximately 45° and at a large volume. Furthermore, a 
larger movement of the jaw accentuates the /A/ sound 
by releasing more flow. By contrast, the mouth open-
ing is smaller when articulating /B/, /C/, /D/, leading to 
smaller flow volumes. The jet flows are also influenced 
by the alphabet-specific oral-motor controls, such as the 
closing-opening lips in /B/, the teeth touching in /C/, and 
the tip of the tongue pushing against the alveolar ridge 
in /D/. Inversely, based on the oral flow dynamics, one 
can infer the inner oral-motor motions, such as lip open-
ing, tongue-tip retraction, tongue-root advancement, jaw 
dropping, and larynx lowering, which can further vary 
in duration, amplitude, and sequence [49]. It is observed 
that schlieren imaging captures only the side view of the 
lip and jaw motions, not the movements of the teeth and 
tongue inside the oral cavity.

Additionally, more nasal leaks in /A/ and /D/ than in 
/B/ and /C/ were observed in the supplementary video 
S1. This observation aligns with the findings by Solé [27] 
that a greater velopharyngeal closure force, leading to a 
higher pressure build-up in the nasal cavity, results in a 
larger nasal leak flow. Thus, one can infer the soft palate 
movements based on the variations in nasal flow.

Implications for speech therapy
Oral-motor assessments often serve as a starting point 
in speech therapy and can be repeated to track progress 
and adjust therapy goals [50]. These assessments evalu-
ate the strength, coordination, and movement of oral 
components such as the lips, jaw, tongue, and velum [51]. 
The oral-motor assessment is crucial in identifying the 
underlying causes of speech and swallowing difficulties. 
For instance, weak tongue muscles often lead to unclear 
articulation, and a poor lip closure can result in drooling 
and challenges with certain speech sounds [52]. Based 
on the findings of the oral-motor assessment, a speech 
therapist can develop a tailored therapy plan, which may 
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include exercises to strengthen muscles, improve coordi-
nation, and enhance sensory responses.

This study, along with similar future studies based on 
speech flow visualizations, can offer new insights into 
articulatory phonetics and provide novel tools for assist-
ing in the diagnosis and therapy of children or adults 
with speech disorders. Speech production involves a 
complex feedback mechanism that includes hearing, per-
ception, and information processing within the brain. 
Similarly, speech therapy often utilizes auditory feedback 
and lip reading to evaluate and treat speech and language 
disorders [5, 6]. In contrast to these conventional tech-
niques, this study suggests that a schlieren-based speech 
flow visualization system can link the three most relevant 
observables: sound, oral motor, and speech flow. The 
feedback on therapeutic efficacy is real-time and can be 
quantitatively measured by a pattern-matching method, 
such as the degree of sound, lip kinematics, or flow 
matching their respective normal patterns. Additionally, 
when synergized with machine learning, this method can 
devise optimal, patient-specific therapy to correct speech 
disorders. It is noted that while several studies have used 
schlieren imaging to study speech flows [26, 29, 30], none 
have applied it to speech therapy, focusing instead on the 
flow intensity of nasal/oral vowels in different languages 
(German [26], Polish [29], and French [30]). Harvey et al. 
[31] attempted to recover physical audio signals from 
high-speed schlieren images, but this approach may be 
limited to shockwaves generated by events such as clap-
ping hands, snapping belts, and cracking towels, where 
high-frequency signals dominate. It may not be practical 
for recovering low-frequency speech signals.

Limitations and future studies
The study could be improved in several aspects. Firstly, 
including more participants would allow for the evalua-
tion of inter-participant variability in speech flows, thus 
facilitating the identification of signature phonetic fea-
tures for each alphabet. Secondly, more alphabets can 
be considered. However, considering more alphabets 
also presents an increasing challenge due to the need for 
more discriminatory features, the introduction of more 
confounding factors, and the similarity of some letters 
that may be too subtle to manifest in articulatory flows. 
Speech exhibits remarkable flexibility and diversity, with 
subtle and striking differences in pronunciations across 
regional dialects and accents, such as the noticeable dif-
ferences between American and British pronunciations. 
Novel approaches are needed to identify flow-alphabet 
associations with refined granularity. One promising 
method is the Meta-Path-Based feature learning method 
proposed by Zhao et al. [53], which derived hidden fea-
tures underpinning drug side effects by capturing the 

heterogeneous associations in meta-paths in an explain-
able manner. Thirdly, the study only utilized AlexNet 
to extract spatial features of speech flow morphology. 
Ablation experiments to evaluate the contributions of 
individual components to the system’s performance, or 
comparative experiments with other models, were not 
performed [54]. Selecting the most appropriate CNN for 
this task necessitates exploring and evaluating more con-
temporary methods, including models with more sophis-
ticated and deeper architectures, such as ResNet50 [55] 
and VGG19 [56], known for their advanced features, and 
alternatives like MobileNet [57] and EfficientNet [58], 
known for their simpler structures and greater time effi-
ciency. Each approach offers unique benefits and trade-
offs, warranting consideration for optimal performance 
in this task.

Conclusions
This pilot study explored the feasibility of speech recog-
nition using schlieren-based articulatory flows of four 
letters from two participants. The schlieren optical sys-
tem successfully captured the expiratory flow dynamics 
of articulatory phonetics, which are beyond human visual 
capability. Considering the first four English alphabets 
/A/, /B/, /C/, and /D/, each letter exhibited a unique pat-
tern in flow topology and temporal evolution. However, 
significant inter-participant variability in flow patterns 
was also observed between the two participants for each 
letter. The classification accuracy of the CNN-LSTM 
network was 95% and above when trained and tested on 
videos from one participant but dropped to around 44% 
when tested on a different participant. The network was 
retrained with videos from both participants, leading to 
a classification accuracy of 98% on P1 and 93% on P2. 
Misclassification analysis revealed that low video qual-
ity was a contributing factor, underscoring the need for a 
standardized protocol in video acquisition when utilizing 
the schlieren imaging technique. Future studies should 
include more alphabets and participants to enhance 
the understanding of the flow signatures of articulatory 
phonetics and develop flow-based speech recognition 
models.

Abbreviations
CNN	� Convolutional neural network
LSTM	� Long short-term memory
SOI	� Schlieren optical imaging
LED	� Light-emitting diode
CWT​	� Continuous wavelet transform
BiLSTM	� Bidirectional long short-term memory
ROC	� Receiver operating characteristic
AUC​	� Area under the curve
P1	� First participant
P2	� Second participant
AI	� Artificial intelligence
FFT	� Fast Fourier Transform



Page 13 of 14Talaat et al. Visual Computing for Industry, Biomedicine, and Art            (2024) 7:12 	

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s42492-​024-​00163-w.

Additional file 1: Supplementary video S1. Schlieren speech flows of 
/A/, /B/, /C/, /D/, by two participants. 

Acknowledgements
We gratefully acknowledge Amr Seifelnasr of UMass Lowell Biomedical Engi-
neering for his constructive discussions and critical review of this manuscript.

Authors’ contributions
MT contributed to conceptualization, investigation, methodology, software, 
formal analysis, and writing-review and editing; KB contributed to concep-
tualization, methodology, investigation, data curation, and visualization; XS 
contributed to conceptualization, methodology, validation, formal analysis, 
writing-review and editing; JX contributed to conceptualization, methodol-
ogy, formal analysis, and writing-original draft. All the authors have read and 
approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The data presented in this study are available upon request from the cor-
responding author.

Declarations

Competing interests
The authors have no relevant conflicts of interest to disclose.

Received: 5 January 2024   Accepted: 29 April 2024

References
	1.	 Cordella C, Gutz SE, Eshghi M, Stipancic KL, Schliep M, Dickerson BC et al 

(2022) Acoustic and kinematic assessment of motor speech impairment 
in patients with suspected four-repeat tauopathies. J Speech Lang Hear 
Res 65(11):4112–4132. https://​doi.​org/​10.​1044/​2022_​jslhr-​22-​00177

	2.	 Wertzner HF, Neves LP, Jesus LMT (2022) Oral and laryngeal articulation 
control of voicing in children with and without speech sound disorders. 
Children 9(5):649. https://​doi.​org/​10.​3390/​child​ren90​50649

	3.	 Morgan L, Marshall J, Harding S, Powell G, Wren Y, Coad J et al (2019) ‘It 
depends’: characterizing speech and language therapy for preschool 
children with developmental speech and language disorders. Int J Lang 
Commun Disord 54(6):954–970. https://​doi.​org/​10.​1111/​1460-​6984.​
12498

	4.	 Shojaei E, Jafari Z, Gholami M (2016) Effect of early intervention on lan-
guage development in hearing-impaired children. Iran J Otorhinolaryn-
gol 28(84):13–21

	5.	 Zhang ZY (2022) Oral vibratory sensations during voice production at dif-
ferent laryngeal and semi-occluded vocal tract configurations. J Acoust 
Soc Am 152(1):302–312. https://​doi.​org/​10.​1121/​10.​00123​65

	6.	 Chesters J, Baghai-Ravary L, Möttönen R (2015) The effects of delayed 
auditory and visual feedback on speech production. J Acoust Soc Am 
137(2):873–883. https://​doi.​org/​10.​1121/1.​49062​66

	7.	 Talaat M, Si XH, Xi JX (2023) Breathe out the secret of the lung: video clas-
sification of exhaled flows from normal and asthmatic lung models using 
CNN-Long Short-Term Memory networks. J Respir 3(4):237–257. https://​
doi.​org/​10.​3390/​jor30​40022

	8.	 Solomon NP, Hixon TJ (1993) Speech breathing in Parkinson’s disease. J 
Speech Hear Res 36(2):294–310. https://​doi.​org/​10.​1044/​jshr.​3602.​294

	9.	 Hodge MM, Rochet AP (1989) Characteristics of speech breathing in 
young women. J Speech Hear Res 32(3):466–480. https://​doi.​org/​10.​
1044/​jshr.​3203.​466

	10.	 Xi JX, Si XA, Kim JW, Mckee E, Lin EB (2014) Exhaled aerosol pattern 
discloses lung structural abnormality: a sensitivity study using computa-
tional modeling and fractal analysis. PLoS One 9(8):e104682. https://​doi.​
org/​10.​1371/​journ​al.​pone.​01046​82

	11.	 Selleck MA, Sataloff RT (2014) The impact of the auditory system on pho-
nation: a review. J Voice 28(6):688–693. https://​doi.​org/​10.​1016/j.​jvoice.​
2014.​03.​018

	12.	 Wang JS, Xi JX, Han P, Wongwiset N, Pontius J, Dong HB (2019) Compu-
tational analysis of a flapping uvula on aerodynamics and pharyngeal 
wall collapsibility in sleep apnea. J Biomech 94:88–98. https://​doi.​org/​10.​
1016/j.​jbiom​ech.​2019.​07.​014

	13.	 Xi JX, Wang ZX, Talaat K, Glide-Hurst C, Dong HB (2018) Numerical study 
of dynamic glottis and tidal breathing on respiratory sounds in a human 
upper airway model. Sleep Breath 22(2):463–479. https://​doi.​org/​10.​1007/​
s11325-​017-​1588-0

	14.	 Xi JX, Si XA, Dong HB, Zhong HL (2018) Effects of glottis motion on airflow 
and energy expenditure in a human upper airway model. Eur J Mech B 
Fluids 72:23–37. https://​doi.​org/​10.​1016/j.​eurom​echflu.​2018.​04.​011

	15.	 Si XH, Wang JS, Dong HB, Xi JX (2023) Data-driven discovery of anomaly-
sensitive parameters from uvula wake flows using wavelet analyses and 
Poincaré maps. Acoustics 5(4):1046–1065. https://​doi.​org/​10.​3390/​acous​
tics5​040060

	16.	 Shiba S, Hamann F, Aoki Y, Gallego G (2024) Event-based background-
oriented schlieren. IEEE Trans Pattern Anal Mach Intell 46(4):2011–2026. 
https://​doi.​org/​10.​1109/​tpami.​2023.​33281​88

	17.	 Settles GS, Hargather MJ (2017) A review of recent developments in 
schlieren and shadowgraph techniques. Meas Sci Technol 28(4):042001. 
https://​doi.​org/​10.​1088/​1361-​6501/​aa5748

	18.	 Požar T, Petkovšek R (2020) Cavitation induced by shock wave focusing in 
eye-like experimental configurations. Biomed Opt Express 11(1):432–447. 
https://​doi.​org/​10.​1364/​boe.​11.​000432

	19.	 Liao SF, Zhang WB, Chen H, Zou LY, Liu JH, Zheng XX (2019) Atwood num-
ber effects on the instability of a uniform interface driven by a perturbed 
shock wave. Phys Rev E 99(1):013103. https://​doi.​org/​10.​1103/​PhysR​evE.​
99.​013103

	20.	 Jardon Z, Hinderdael M, Van Beeck J, Guillaume P (2021) Wave propaga-
tion visualization through ducts using the Schlieren technique for crack 
localization with the eSHM system. Appl Opt 60(32):10221–10231. 
https://​doi.​org/​10.​1364/​ao.​438397

	21.	 Tang JW, Nicolle A, Pantelic J, Koh GC, Wang LD, Amin M et al (2012) 
Airflow dynamics of coughing in healthy human volunteers by shadow-
graph imaging: an aid to aerosol infection control. PLoS One 7(4):e34818. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​00348​18

	22.	 Derrick D, Kabaliuk N, Longworth L, Pishyar-Dehkordi P, Jermy M (2022) 
Speech air flow with and without face masks. Sci Rep 12(1):837. https://​
doi.​org/​10.​1038/​s41598-​021-​04745-z

	23.	 Xu CW, Wei XX, Liu L, Su L, Liu WB, Wang Y et al (2020) Effects of personal-
ized ventilation interventions on airborne infection risk and transmission 
between occupants. Build Environ 180:107008. https://​doi.​org/​10.​1016/j.​
build​env.​2020.​107008

	24.	 Suwanrut J, Chantipmanee N, Kamsong W, Buking S, Mantim T, Saetear 
P et al (2018) Temperature-dependent schlieren effect in liquid flow for 
chemical analysis. Talanta 188:74–80. https://​doi.​org/​10.​1016/j.​talan​ta.​
2018.​05.​055

	25.	 Li H, Li AG, Zhang LH, Hou YC, Yang CQ, Chen L et al (2023) Estimation of 
wind speed based on Schlieren machine vision system Inspired by green-
house top vent. Sensors 23(15):6929. https://​doi.​org/​10.​3390/​s2315​6929

	26.	 Tomaschek F, Arnold D, Sering K, Strauss F (2021) A corpus of Schlieren 
photography of speech production: potential methodology to study 
aerodynamics of labial, nasal and vocalic processes. Lang Resour Eval 
55(4):1127–1140. https://​doi.​org/​10.​1007/​s10579-​021-​09550-8

	27.	 Solé MJ (2018) Articulatory adjustments in initial voiced stops in Spanish, 
French and English. J Phon 66:217–241. https://​doi.​org/​10.​1016/j.​wocn.​
2017.​10.​002

	28.	 Xi JX, Yuan JE, Yang MA, Si XH, Zhou Y, Cheng YS (2016) Parametric study on 
mouth–throat geometrical factors on deposition of orally inhaled aerosols. 
J Aerosol Sci 99:94–106. https://​doi.​org/​10.​1016/j.​jaero​sci.​2016.​01.​014

https://doi.org/10.1186/s42492-024-00163-w
https://doi.org/10.1186/s42492-024-00163-w
https://doi.org/10.1044/2022_jslhr-22-00177
https://doi.org/10.3390/children9050649
https://doi.org/10.1111/1460-6984.12498
https://doi.org/10.1111/1460-6984.12498
https://doi.org/10.1121/10.0012365
https://doi.org/10.1121/1.4906266
https://doi.org/10.3390/jor3040022
https://doi.org/10.3390/jor3040022
https://doi.org/10.1044/jshr.3602.294
https://doi.org/10.1044/jshr.3203.466
https://doi.org/10.1044/jshr.3203.466
https://doi.org/10.1371/journal.pone.0104682
https://doi.org/10.1371/journal.pone.0104682
https://doi.org/10.1016/j.jvoice.2014.03.018
https://doi.org/10.1016/j.jvoice.2014.03.018
https://doi.org/10.1016/j.jbiomech.2019.07.014
https://doi.org/10.1016/j.jbiomech.2019.07.014
https://doi.org/10.1007/s11325-017-1588-0
https://doi.org/10.1007/s11325-017-1588-0
https://doi.org/10.1016/j.euromechflu.2018.04.011
https://doi.org/10.3390/acoustics5040060
https://doi.org/10.3390/acoustics5040060
https://doi.org/10.1109/tpami.2023.3328188
https://doi.org/10.1088/1361-6501/aa5748
https://doi.org/10.1364/boe.11.000432
https://doi.org/10.1103/PhysRevE.99.013103
https://doi.org/10.1103/PhysRevE.99.013103
https://doi.org/10.1364/ao.438397
https://doi.org/10.1371/journal.pone.0034818
https://doi.org/10.1038/s41598-021-04745-z
https://doi.org/10.1038/s41598-021-04745-z
https://doi.org/10.1016/j.buildenv.2020.107008
https://doi.org/10.1016/j.buildenv.2020.107008
https://doi.org/10.1016/j.talanta.2018.05.055
https://doi.org/10.1016/j.talanta.2018.05.055
https://doi.org/10.3390/s23156929
https://doi.org/10.1007/s10579-021-09550-8
https://doi.org/10.1016/j.wocn.2017.10.002
https://doi.org/10.1016/j.wocn.2017.10.002
https://doi.org/10.1016/j.jaerosci.2016.01.014


Page 14 of 14Talaat et al. Visual Computing for Industry, Biomedicine, and Art            (2024) 7:12 

	29.	 Lorenc A, Król D, Klessa K (2018) An acoustic camera approach to study-
ing nasality in speech: the case of Polish nasalized vowels. J Acoust Soc 
Am 144(6):3603–3617. https://​doi.​org/​10.​1121/1.​50840​38

	30.	 Rowell J, Noguchi M, Bernhardt BM, Herdman A, Gick B, Schellenberg M 
(2016) Schlieren study of external airflow during the production of nasal 
and oral vowels in French. Can Acoust 44(3):2947

	31.	 Harvey JS, Smithson HE, Siviour CR (2018) Visualization of acoustic waves 
in air and subsequent audio recovery with a high-speed schlieren imag-
ing system: experimental and computational development of a schlieren 
microphone. Opt Lasers Eng 107:182–193. https://​doi.​org/​10.​1016/j.​optla​
seng.​2018.​03.​015

	32.	 Talaat M, Si XH, Xi JX (2023) Multi-level training and testing of CNN mod-
els in diagnosing multi-center COVID-19 and pneumonia X-ray images. 
Appl Sci 13(18):10270. https://​doi.​org/​10.​3390/​app13​18102​70

	33.	 Talaat M, Xi J, Tan KY, Si XA, Xi JX (2023) Convolutional neural network 
classification of exhaled aerosol images for diagnosis of obstructive 
respiratory diseases. J Nanotheranostics 4(3):228–247. https://​doi.​org/​10.​
3390/​jnt40​30011

	34.	 Zhao WZ, Xia J, Jiang XP, He TT (2023) A novel framework for deep knowl-
edge tracing via gating-controlled forgetting and learning mechanisms. 
Inf Process Manag 60:103114. https://​doi.​org/​10.​1016/j.​ipm.​2022.​103114

	35.	 Zhang X, Yang Y, Shen YW, Zhang KR, Ma LT, Ding C et al (2022) Quality 
of online video resources concerning patient education for neck pain: 
a YouTube-based quality-control study. Front Public Health 10:972348. 
https://​doi.​org/​10.​3389/​fpubh.​2022.​972348

	36.	 Chen J, Wang JP, Yuan Q, Yang Z (2023) CNN-LSTM model for recognizing 
video-recorded actions performed in a traditional chinese exercise. IEEE J 
Transl Eng Health Med 11:351–359. https://​doi.​org/​10.​1109/​jtehm.​2023.​
32822​45

	37.	 Li CT, Zhang YM, Weng Y, Wang BD, Li ZZ (2023) Natural language 
processing applications for computer-aided diagnosis in oncology. 
Diagnostics 13(2):286. https://​doi.​org/​10.​3390/​diagn​ostic​s1302​0286

	38.	 Gilik A, Ogrenci AS, Ozmen A (2022) Air quality prediction using 
CNN+LSTM-based hybrid deep learning architecture. Environ Sci Pollut 
Res Int 29(8):11920–11938. https://​doi.​org/​10.​1007/​s11356-​021-​16227-w

	39.	 Qin PP, Li H, Li ZM, Guan WL, He YX (2023) A CNN-LSTM car-following 
model considering generalization ability. Sensors 23(2):660. https://​doi.​
org/​10.​3390/​s2302​0660

	40.	 Megalmani DR, Shailesh BG, Rao MVA, Jeevannavar SS, Ghosh PK (2021) 
Unsegmented heart sound classification using hybrid CNN-LSTM neural 
networks. In: Proceedings of the 43rd annual international conference 
of the IEEE engineering in medicine & biology society, IEEE, Mexicos, 1-5 
November 2021. https://​doi.​org/​10.​1109/​embc4​6164.​2021.​96295​96

	41.	 Zhuang L, Dai MH, Zhou Y, Sun LY (2022) Intelligent automatic sleep 
staging model based on CNN and LSTM. Front Public Health 10:946833. 
https://​doi.​org/​10.​3389/​fpubh.​2022.​946833

	42.	 Xu Y, Xu AQ (2021) Consonantal F0 perturbation in American English 
involves multiple mechanisms. J Acoust Soc Am 149(4):2877–2895. 
https://​doi.​org/​10.​1121/​10.​00042​39

	43.	 Xi JX, Wang JS, Si XA, Dong HB (2023) Direct numerical simulations and 
flow-pressure acoustic analyses of flapping-uvula-induced flow evolu-
tions within normal and constricted pharynx. Theor Comput Fluid Dyn 
37(2):131–149. https://​doi.​org/​10.​1007/​s00162-​023-​00638-1

	44.	 Xi JX, Wang JS, Si XA, Zheng SK, Donepudi R, Dong HB (2020) Extracting sig-
nature responses from respiratory flows: low-dimensional analyses on Direct 
Numerical Simulation-predicted wakes of a flapping uvula. Int J Numer 
Method Biomed Eng 36(12):e3406. https://​doi.​org/​10.​1002/​cnm.​3406

	45.	 Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with 
deep convolutional neural networks. Commun ACM 60(6):84–90. https://​
doi.​org/​10.​1145/​30653​86

	46.	 Chen WJ, Li JL (2021) Forecasting teleconsultation demand using an 
ensemble CNN attention-based BiLSTM model with additional variables. 
Healthcare 9(8):992. https://​doi.​org/​10.​3390/​healt​hcare​90809​92

	47.	 Devergie A, Grimault N, Gaudrain E, Healy EW, Berthommier F (2011) The 
effect of lip-reading on primary stream segregation. J Acoust Soc Am 
130(1):283–291. https://​doi.​org/​10.​1121/1.​35922​23

	48.	 Bourguignon M, Baart M, Kapnoula EC, Molinaro N (2020) Lip-reading 
enables the brain to synthesize auditory features of unknown silent 
speech. J Neurosci 40(5):1053–1065. https://​doi.​org/​10.​1523/​jneur​osci.​
1101-​19.​2019

	49.	 Fuchs S, Rodgers B (2013) Negative intraoral pressure in German: evi-
dence from an exploratory study. J Int Phon Assoc 43(3):321–337. https://​
doi.​org/​10.​1017/​S0025​10031​30002​36

	50.	 Lee ASY, Gibbon FE (2015) Non-speech oral motor treatment for children 
with developmental speech sound disorders. Cochrane Database Syst 
Rev 2015(3):CD009383. https://​doi.​org/​10.​1002/​14651​858.​CD009​383.​
pub2

	51.	 Belmonte MK, Saxena-Chandhok T, Cherian R, Muneer R, George L, 
Karanth P (2013) Oral motor deficits in speech-impaired children with 
autism. Front Integr Neurosci 7:47. https://​doi.​org/​10.​3389/​fnint.​2013.​
00047

	52.	 Ding P, Campbell-Malone R, Holman SD, Lukasik SL, Fukuhara T, Gierbo-
lini-Norat EM et al (2013) Unilateral superior laryngeal nerve lesion in an 
animal model of dysphagia and its effect on sucking and swallowing. 
Dysphagia 28(3):404–412. https://​doi.​org/​10.​1007/​s00455-​013-​9448-y

	53.	 Zhao WZ, Yao WJ, Jiang XP, He TT, Shi C, Hu XH (2023) An explainable 
framework for predicting drug-side effect associations via meta-path-
based feature learning in heterogeneous information network. IEEE/ACM 
Trans Comput Biol Bioinform 20(6):3635–3647. https://​doi.​org/​10.​1109/​
tcbb.​2023.​33080​94

	54.	 Mistry PK, Strock A, Liu RZ, Young G, Menon V (2023) Learning-induced 
reorganization of number neurons and emergence of numerical 
representations in a biologically inspired neural network. Nat Commun 
14(1):3843. https://​doi.​org/​10.​1038/​s41467-​023-​39548-5

	55.	 Chu Y, Yue X, Yu L, Sergei M, Wang ZK (2020) Automatic image captioning 
based on ResNet50 and LSTM with soft attention. Wirel Commun Mob 
Comput 2020:8909458. https://​doi.​org/​10.​1155/​2020/​89094​58

	56.	 Srinivas K, Sri RG, Pravallika K, Nishitha K, Polamuri SR (2024) COVID-19 
prediction based on hybrid Inception V3 with VGG16 using chest X-ray 
images. Multimed Tools Appl 83(12):36665–36682. https://​doi.​org/​10.​
1007/​s11042-​023-​15903-y

	57.	 Michele A, Colin V, Santika DD (2019) MobileNet convolutional neural 
networks and support vector machines for palmprint recognition. Proce-
dia Comput Sci 157:110–117. https://​doi.​org/​10.​1016/j.​procs.​2019.​08.​147

	58.	 Tan M, Le QV (2019) EfficientNet: rethinking model scaling for convo-
lutional neural networks. arXiv:1905.11946 [cs.LG]. https://​doi.​org/​10.​
48550/​arXiv.​1905.​11946

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1121/1.5084038
https://doi.org/10.1016/j.optlaseng.2018.03.015
https://doi.org/10.1016/j.optlaseng.2018.03.015
https://doi.org/10.3390/app131810270
https://doi.org/10.3390/jnt4030011
https://doi.org/10.3390/jnt4030011
https://doi.org/10.1016/j.ipm.2022.103114
https://doi.org/10.3389/fpubh.2022.972348
https://doi.org/10.1109/jtehm.2023.3282245
https://doi.org/10.1109/jtehm.2023.3282245
https://doi.org/10.3390/diagnostics13020286
https://doi.org/10.1007/s11356-021-16227-w
https://doi.org/10.3390/s23020660
https://doi.org/10.3390/s23020660
https://doi.org/10.1109/embc46164.2021.9629596
https://doi.org/10.3389/fpubh.2022.946833
https://doi.org/10.1121/10.0004239
https://doi.org/10.1007/s00162-023-00638-1
https://doi.org/10.1002/cnm.3406
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.3390/healthcare9080992
https://doi.org/10.1121/1.3592223
https://doi.org/10.1523/jneurosci.1101-19.2019
https://doi.org/10.1523/jneurosci.1101-19.2019
https://doi.org/10.1017/S0025100313000236
https://doi.org/10.1017/S0025100313000236
https://doi.org/10.1002/14651858.CD009383.pub2
https://doi.org/10.1002/14651858.CD009383.pub2
https://doi.org/10.3389/fnint.2013.00047
https://doi.org/10.3389/fnint.2013.00047
https://doi.org/10.1007/s00455-013-9448-y
https://doi.org/10.1109/tcbb.2023.3308094
https://doi.org/10.1109/tcbb.2023.3308094
https://doi.org/10.1038/s41467-023-39548-5
https://doi.org/10.1155/2020/8909458
https://doi.org/10.1007/s11042-023-15903-y
https://doi.org/10.1007/s11042-023-15903-y
https://doi.org/10.1016/j.procs.2019.08.147
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.1905.11946

	Schlieren imaging and video classification of alphabet pronunciations: exploiting phonetic flows for speech recognition and speech therapy
	Abstract 
	Introduction
	Methods
	Study design
	Schlieren optical system
	Acoustic analyses
	CNN-LSTM video classification

	Results
	Schlieren-recorded speech flows
	Time series of speech flows when pronouncing A
	Speech flows pronouncing B, C, D

	Sound acoustics, scalogram, and Fast Fourier Transform
	Pronunciation of A
	Pronunciation of B, C, D

	CNN-LSTM video classification
	Network accuracy vs number of training videos
	Network performance on speech flows from a different participant
	Second round of network training and testing

	Misclassification analyses on B pronunciations in P2 test dataset

	Discussion
	CNN-LSTM performance vs trainingtesting video sets
	Audio-visual disparities among A, B, C, and D
	Implications for speech therapy
	Limitations and future studies

	Conclusions
	Acknowledgements
	References


