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Abstract 

Large language models (LLMs), such as ChatGPT, have demonstrated impressive capabilities in various tasks 
and attracted increasing interest as a natural language interface across many domains. Recently, large vision-language 
models (VLMs) that learn rich vision–language correlation from image–text pairs, like BLIP-2 and GPT-4, have been 
intensively investigated. However, despite these developments, the application of LLMs and VLMs in image quality 
assessment (IQA), particularly in medical imaging, remains unexplored. This is valuable for objective performance 
evaluation and potential supplement or even replacement of radiologists’ opinions. To this end, this study intro-
duces IQAGPT, an innovative computed tomography (CT) IQA system that integrates image-quality captioning 
VLM with ChatGPT to generate quality scores and textual reports. First, a CT-IQA dataset comprising 1,000 CT slices 
with diverse quality levels is professionally annotated and compiled for training and evaluation. To better leverage 
the capabilities of LLMs, the annotated quality scores are converted into semantically rich text descriptions using 
a prompt template. Second, the image-quality captioning VLM is fine-tuned on the CT-IQA dataset to generate qual-
ity descriptions. The captioning model fuses image and text features through cross-modal attention. Third, based 
on the quality descriptions, users verbally request ChatGPT to rate image-quality scores or produce radiological qual-
ity reports. Results demonstrate the feasibility of assessing image quality using LLMs. The proposed IQAGPT outper-
formed GPT-4 and CLIP-IQA, as well as multitask classification and regression models that solely rely on images.
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Introduction
In recent years, there have been many advances in the 
field of large language models (LLMs). LLMs such as 
PaLM [1], LLaMA [2], and GPTs [3–5] have shown excel-
lent results in natural language processing, including 
language translation, question answering, and text gen-
eration. The most remarkable breakthrough is ChatGPT, 
which was built upon InstructGPT [6] using labeler-
written prompts and reinforcement learning from human 
feedback [7]. However, LLMs such as ChatGPT are 
unable to process visual information as they are trained 
only on textual data. To address this gap, vision-language 
models (VLMs) [8–14], which synergistically combine 
the capabilities of LLMs with visual processing, were pro-
posed to capture rich vision-language correspondence. 
These perform well in various multimodal tasks such as 
report generation, diagnosis, and vision question answer-
ing. In this context, OpenAI launched its new large VLM 
called GPT-4 [15], with amazing performance on multi-
modal tasks during dialogues. In addition, MiniGPT-4 
[16] integrates an advanced LLM, Vicuna [17], and a 
pre-trained ViT [18] with a single linear projection 
layer, leading to performance close to that of GPT-4.

While LLMs and VLMs are powerful in many tasks, 
few efforts have been made to adapt them for image 
quality assessment (IQA), which is essential in the devel-
opment of image reconstruction or enhancement algo-
rithms [19–22]. In medical imaging, IQA plays a crucial 
role, directly influencing the accuracy and reliability of 
diagnoses [23, 24]. Particularly, in computed tomogra-
phy (CT), reconstructed low-dose CT (LDCT) images 
from various deep-learning methods [25–33] may have 
blurring or over-smoothing problems, hindering their 
clinical translation. Therefore, assessing CT image  
quality before diagnosis is essential. Classic medical IQA 
methods can be either objective or subjective. Objective 
assessment methods use mathematical models for quan-
titative analysis, comparing the similarities or differences 
between reconstructed images and their references. Over 
the past decades, several objective IQA metrics have 
been widely used, including peak signal-to-noise ratio 
(PSNR), structural similarity (SSIM), and root-mean-
square error (RMSE). However, these metrics are usu-
ally unsatisfactory in radiological practice, as they do not 
effectively reflect the diagnostic utilities of images. Sub-
jective IQA methods, on the other hand, involve expert 
opinions, which more accurately reflect the clinical needs 
[34]. However, the continuously growing number of CT 
images per scan poses a major burden on radiologists, 
who need to carefully assess each image.

In the past few years, deep-learning methods have been 
developed for diverse IQA tasks, including image percep-
tion [35–38], screen content [39], video [40], and medi-
cal images [41–44]. Blind pseudo-reference image-based 
method [36] introduced a no-reference IQA method 
that creates a pseudo-reference image to facilitate the 
quality assessment of distorted images. Unified content-
type adaptive blind IQA model [37] proposed a uni-
fied framework for assessing the quality of compressed 
images across different content types. However, most of 
these methods focus on low-level image features, ignor-
ing high-level features, especially hierarchical semantic 
information that is essential in the clinical context. To 
address this issue, Gao et al. [44] proposed an IQA net-
work that integrates expert knowledge, combining the 
overall image quality ratings of radiologists with objec-
tive metrics as training labels.

Although using overall ratings as the optimization tar-
get can well reflect the overall noise level and fidelity of 
the image, it cannot meet the requirements of radiolo-
gists for extraction of clinically related subtleties, such as 
the small blood vessels, lymph nodes, and lesions.

Recently, CLIP-IQA [45] used a CLIP model to assess 
the similarity between images and predefined textual 
prompts. However, its design for natural images and 
dependence on simple text prompts limit its applicabil-
ity for complex medical IQA, especially in evaluating fine 
structures and small lesions in CT images.

This study developed IQAGPT, a CT IQA system based 
on an image-quality captioning VLM incorporated with 
ChatGPT to generate quality scores and summarize 
quality reports of CT images. First, to train IQAGPT, a 
dataset of 1,000 image-text pairs named CT-IQA was 
compiled, in which an experienced radiologist scored 
CT images of different qualities, similar to the subjec-
tive evaluation previously reported [28, 34]. The qualities 
included image noise, small structures, lesion conspicu-
ity, and diagnostic confidence. To utilize the strengths 
of LLMs in subjective image evaluation, a prompt tem-
plate was designed to convert the quality scores to text 
descriptions. Second, an image-quality captioning model 
built upon a pre-trained medical VLM [12] was devel-
oped and fine-tuned on the CT-IQA dataset using an 
autoregressive language modeling objective that predicts 
the next token given previous tokens [3]. Finally, through 
interacting with ChatGPT, IQAGPT can score CT images 
and generate quality reports based on the caption from 
the image-quality captioning model. Figure  1 presents 
an exemplary dialogue between a user and the proposed 
IQAGPT.
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In summary, the main contributions of this work are as 
follows.

• A hybrid large model approach for CT-IQA, which 
synergizes the objective and subjective image quality  
evaluation in a clinically important scenario, is 
introduced.

• An IQA system consisting of VLMs and ChatGPT, 
termed IQAGPT, which is built on an image-quality 
captioning model and can output quality scores and 
reports by interacting with ChatGPT, is developed.

•  A CT-IQA dataset for IQA, containing 1,000 image-
text pairs professionally annotated according to four 
common subjective metrics used in diagnosis, was 
compiled.

•  Preliminary results demonstrate the feasibility of 
assessing CT image quality using IQAGPT, and the 
resulting text-guided image-quality captioning model 
outperforms GPT-4 and CLIP-IQA. Furthermore, 
external evaluations by additional radiologists and 
performance on new data demonstrate the robust-
ness and generalizability of the proposed method, 
respectively.

Methods
This study aims to develop a CT IQA system, called 
IQAGPT, using VLMs and ChatGPT. In CT-IQA data-
set subsection, the CT-IQA dataset is detailed. Thereaf-
ter, in Image-quality captioning model and Interaction 
with ChatGPT subsections, the image-quality captioning 
model and IQAGPT which interacts with ChatGPT, are 
described, respectively. The implementation details are 
presented in Implementation details subsection and the  
performance evaluation of IQAGPT is explained in  
Evaluation metrics subsection.

CT‑IQA dataset
To adapt to the IQA tasks and accurately assess the  
quality of CT images, an image-text dataset called CT-IQA, 
was compiled, in which an experienced radiologist sub-
jectively assessed the CT images.

Characteristics
Normal-dose CT (NDCT) slices and corresponding  
LDCT images at 25% of the normal dose were randomly  
selected from the 2016 AAPM Grand Challenge dataset  
[46], which includes abdominal CT scans of 10 anonymous 

Fig. 1 A dialogue between humans and the proposed IQAGPT. In the dialogues, IQAGPT can output scores and write the quality report based 
on an input image
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patients. Specifically, 100 NDCT and LDCT pairs were 
uniformly selected from 8 patients for training and 25 
slice pairs were uniformly selected from the remaining 2 
patients for testing. Each scan was acquired using a Sie-
mens SOMATOM Flash scanner and reconstructed with 
a B30 kernel and 1 mm slice thickness. The NDCT scans 
were acquired at 120 kV and 200 quality reference mAs 
(QRM), and the LDCT scans were acquired at 120  kV 
and 50 QRM. Additionally, some lesions in NDCT and 
corresponding LDCT were randomly simulated to eval-
uate subjective visual lesion conspicuity. The selected 
125 LDCT images were processed using a modularized 
denoising model [28] called MAP-NN, producing vari-
ous intermediate denoised images with associated noise 
reduction directions. RED-CNN [25], a widely used 
denoising model, was implemented, and optimized using 
the MSE loss function. Finally, 1,000 CT slices with dif-
ferent quality were obtained, including 125 NDCT slices 
with corresponding 125 LDCT slices, 625 reconstructed 
images with 5 denoising levels from MAP-NN, and 125 
reconstructed images from RED-CNN. An abdomen 
window of all CT scans [-160, 240] HU was employed to 
visualize abdominal organs. These were normalized into 
a range of [0, 1]. Figure 2 presents CT images of eight dif-
ferent quality levels from the dataset, including LDCT, 
NDCT, images denoised with MAP-NN, and images 
denoised with RED-CNN.

Annotation process
First, a web page was created where all data were ran-
domly displayed, including CT images of eight different 
levels in the dataset, including LDCT, NDCT, denoised 
image of MAP-NN, and denoised image of RED-CNN. 
Subsequently, a radiologist scored these CT images in 
terms of four metrics used in previous studies [28, 34], 
defined as follows.

• Image noise and structural fidelity on a four-point 
scale: 1 = better than usual, acceptable for diagnostic 
interpretation; 2 = average, acceptable for diagnostic 
interpretation; 3 = sub-optimal, for limited diagnostic 
information only; and 4 = unacceptable for diagnostic 
interpretation.

• The visibility of small structures (small blood vessels, 
adrenal glands, small lymph nodes) on a four-point 
scale: 1 = excellent visualization; 2 = acceptable visi-
bility; 3 = sub-optimal visibility; and 4 = unacceptable 
visualization.

• Subjective visual lesion conspicuity (N/A = if no 
lesion) on a four-point scale: 1 = well-seen lesion with 
well-visualized margins; 2 = well-seen lesion with 
poorly visualized margins; 3 = poorly seen lesion with 
poorly visualized margins; and 4 = lesion blurred 
with severe loss of margins.

Fig. 2 Examples of images from the CT-IQA dataset
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• Diagnostic confidence on a four-point scale: 1 = com-
pletely confident; 2 = probably confident; 3 = confi-
dent only for a limited clinical entity such as a kidney 
stone, a calcified lesion, or a large lesion; and 4 = poor 
confidence.

The scoring process was double-blinded; that is, the 
radiologist did not know the type of images under evalu-
ation; NDCT was not availed for reference. Figure  3 
shows the distribution of human expert scores across the 
aforementioned four metrics for CT images of eight dif-
ferent image qualities: NDCT, LDCT, MAP-NN (d = 1), 
MAP-NN (d = 2), MAP-NN (d = 3), MAP-NN (d = 4), 
MAP-NN (d = 5), and RED-CNN. The denoising level is 
represented by d.

The objective metrics for images of varying qual-
ity were calculated with NDCT as the reference image, 
shown in Table  1. RED-CNN achieves the best perfor-
mance in PSNR and RMSE. However, as illustrated by 
the distribution of annotated scores in Fig. 3, the objec-
tive results generated by RED-CNN do not align with 
the professional preference, which further highlights the 
necessity to align the annotation of subjective quality-
assessment datasets with professional preference.

Image‑quality captioning model
Instead of using the rating scores to train the classifi-
cation or regression model, an image-quality caption-
ing model is developed to summarize the image quality. 
By doing so, the VLM with semantic text information 
and image-text fusion can better appreciate the subjec-
tive scores than image-only models—this is further dis-
cussed in Results section. The proposed model is based 
on a pre-trained medical VLM and fined-tuned with an 
autoregressive language modeling objective on the CT-
IQA dataset. To leverage the capabilities of LLMs in the 
subjective image evaluation, we convert scores to qual-
ity descriptions using a specific prompt template during 
training. The prompt template is defined as “Image noise 
and structural fidelity: {description 1}; Visibility of small 
structures: {description 2}; Subjective visual lesion con-
spicuity: {description 3}; Diagnostic confidence: {descrip-
tion 4}.” Every description is the evaluation criterion 

Fig. 3 Score distribution of four metrics assessed by the radiologist in constructing CT-IQA dataset. Scores 1, 2, 3, and 4 are defined in CT-IQA 
dataset subsection

Table 1 Quantitative performance measures on different quality 
levels, with NDCT as the reference image

Method PSNR↑ RMSE↓ SSIM↑

LDCT 21.85 ± 1.25 0.082 ± 0.011 0.7897 ± 0.0250

MAP-NN (d = 1) 24.01 ± 1.26 0.063 ± 0.009 0.8171 ± 0.0229

MAP-NN (d = 2) 25.56 ± 1.25 0.053 ± 0.007 0.8339 ± 0.0215

MAP-NN (d = 3) 26.43 ± 1.22 0.048 ± 0.006 0.8394 ± 0.0209
MAP-NN (d = 4) 26.80 ± 1.19 0.046 ± 0.006 0.8365 ± 0.0211

MAP-NN (d = 5) 26.89 ± 1.16 0.046 ± 0.006 0.8294 ± 0.0218

RED-CNN 27.16 ± 1.12 0.044 ± 0.005 0.8270 ± 0.0225
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corresponding to the score described in CT-IQA dataset 
subsection. An example of score conversion to quality 
caption is given in the lower left part of Fig. 4, where the 
score assessed by the radiologist is [4, 4, 2, 4].

The left side of Fig. 4 presents the overall framework of 
the proposed image quality captioning model, consisting 
of an image encoder, text encoder, and multimodal text 
decoder. The image encoder is a 12-layer visual trans-
former ViT-S/16 [18] while the text encoder is the first 
6 layers of the  BERTbase [47] model. The multimodal text 
decoder consists of the last 6 layers of  BERTbase; its role 
is to fuse image and text features through cross-modal 
attention. Some recent studies have incorporated cross-
modal attention [48–50]. Min et  al. [49, 50] used the 
normalization and summation fusion function to inte-
grate audio-visual contexts. In contrast, the proposed 
captioning model leverages the synergy between visual 
data and textual descriptions through a transformer-
based [18] cross-attention mechanism to fuse image fea-
tures with text features. The image encoder, text encoder, 
and multimodal decoder have been pre-trained in radi-
ography images and report pairs [12] using four widely 
used learning objectives in the field of vision-language 
alignment; more details on these four objectives are in 
ref. [12]. We then fine-tuned the pre-trained models to 
predict the next word for IQA on the CT-IQA dataset, 
using an auto-regressive paradigm. We hypothesize that 

this paradigm, combined with the proposed input tem-
plate, allows LLMs to better comprehend the relation-
ship between different metrics. CT-text pair is denoted 
as (I ,T ) , where I represents a CT slice and T  is defined as 
T = (t1, t2, ..., tm) with m tokens. The objective function is 
defined as follows:

where ti is the next token to be predicted and 
t1:i−1 = (t1, t2, ..., ti−1) represents the sequence of all pre-
vious tokens. P is the conditional probability modeled by 
the image-quality captioning model, and θ represents the 
trainable parameters of the model.

Interaction with ChatGPT
ChatGPT provides a language interface with remark-
able reasoning capabilities across many domains [11]. 
The proposed IQAGPT enables the interaction between 
ChatGPT and users to generate more comprehensive 
output information, as depicted on the right side of 
Fig. 4. When users upload CT images, they can prompt 
IQAGPT with requests like “Please rate the quality of this 
image.” or “Please write a quality-assessment report for 
this image.” Subsequently, the users receive either quality 
scores or detailed quality reports. To this end, ChatGPT 
is used to perform corresponding operations on the out-
put caption from the image-quality captioning model. For 

(1)L(I ,T ) = − logP(t1|I; θ)+
m

i=2 logP(ti|t1:i−1, I; θ)

Fig. 4 Overview of IQAGPT. While the left side shows the proposed image-quality captioning model, the right side details the process of the score 
and report generation through interacting with ChatGPT
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score-related demands, it converts the predicted caption 
to a score according to the prompt template described in 
CT-IQA dataset subsection. For report-related demands, 
it summarizes the predicted caption into a quality-assess-
ment report in a radiology report format.

While it is straightforward to obtain scores using a look-
up table, integrating ChatGPT into the proposed model 
leverages its advanced natural language understanding 
capabilities to generate detailed and context-aware quality 
reports, providing the following benefits. (1) Contextual 
understanding: the ability of ChatGPT to comprehend 
and generate contextually relevant text ensures that the 
quality reports are not only accurate but also rich in clini-
cal context, which is more friendly for radiologists. (2) 
Flexibility: unlike a static look-up table, ChatGPT can 
be adapted to variations in input data, providing more 
nuanced and flexible assessments. (3) Scalability: Chat-
GPT can easily incorporate new quality metrics without 
requiring significant modifications to the model structure.

Implementation details
All parameters of the proposed model were fine-tuned 
using a 32  GB NVIDIA V100 GPU. During training, the 
image-quality captioning model was fine-tuned in IQAGPT 
for 50 epochs with a batch size of 8, in which we used the 
AdamW optimizer [51] and a weight decay of 0.02. The ini-
tial learning rate was 2.0 ×  10–4, and warm-up [52] in the 
first 2 epochs had a learning rate of 1.0 ×  10–5, gradually 
reduced to 1.0 ×  10–6 with cosine annealing [53]. For data 
processing, full-size images were employed within an abdo-
men window of [-160, 240] HU. The data of 10 patients were 
split into training and testing datasets at a ratio of 8:2 as 
described in CT-IQA dataset subsection. The training data 
were augmented through horizontal flipping and rotation.

Evaluation metrics
To show the effectiveness of IQAGPT, we quantitatively 
evaluated the performance of generated quality caption-
ing and score. First, captioning results were analyzed using 
widely recognized metrics in text generation tasks: bilin-
gual evaluation understudy (BLEU-n; “n” means n words) 
[54], recall-oriented understudy of gisting evaluation 
(ROUGE-L; “L” means the longest common subsequence) 
[55], metric for evaluation of translation with explicit order-
ing (METEOR) [56], and consensus-based image descrip-
tion evaluation (CIDEr; “r” stands for recall) [57]. These 
metrics measure the similarity between the generated and 
reference texts, with higher scores for better quality. BLEU 
measures the quality of machine-translated text compared 
to a human reference translation. It calculates the preci-
sion for the candidate sentence based on n-grams (phrases 
of n words) with respect to the reference texts. ROUGE-L 
focuses on the longest common subsequence between the 

evaluated text and the reference text. METEOR is based on 
the harmonic mean of unigram precision and recall, with 
recall weighted higher than precision. METEOR calculates 
the weighted harmonic mean of unigram precision and 
recall, prioritizing recall over precision. CIDEr quantifies 
the resemblance of the crafted sentence to multiple refer-
ence sentences, considering the agreement among human 
evaluators. Notably, BLEU-n, ROUGE-L, and METEOR 
scores range from 0 to 1 while CIDEr scores range from 0 
to infinity. In addition, the output text descriptions were 
converted into scores, the performance was compared in 
terms of accuracy as the classification evaluation, and the 
Pearson linear correlation coefficient (PLCC) and Spear-
man’s rank order correlation coefficient (SROCC) were 
computed to evaluate the regression.

Results
Evaluation of generated quality captioning
Two examples of the test results are presented in Fig. 5, 
where the predicted descriptions are converted to scores 
and quality reports using ChatGPT. It can be observed 
that IQAGPT consistently generates quality descriptions 
in excellent alignment with the annotations of radiolo-
gists. Furthermore, the reports generated using ChatGPT 
are consistent with the outputs from the proposed qual-
ity captioning model, which effectively overcomes the 
limitations of the existing VLM dialogue when assess-
ing the quality of medical images. The quantitative cap-
tioning performance of IQAGPT and MiniGPT-4 were 
compared, as depicted in Table  2. GPT-4 [15] was not 
employed as its latest version, GPT-4 V, was not tailored 
for interpreting specialized medical imagery such as CT 
scans. The learnable linear layer in MiniGPT-4 was fine-
tuned using the CT-IQA dataset in the experimental 
settings described by Zhu et  al. [16]. IQAGPT achieves 
better quantitative results in seven metrics. The require-
ment for vast amounts of training data is a significant 
challenge for LLMs like MiniGPT-4. Considering the 
time and resource limitations, only 1,000 image-text 
pairs were annotated in the CT-IQA dataset to demon-
strate the feasibility of the proposed method. MiniGPT-4, 
with its considerable size of seven billion parameters, 
struggles with this limited dataset, leading to unstable 
output and compromised performance. Conversely, the 
proposed IQAGPT, with a more compact model struc-
ture, produces more stable and accurate results.

Evaluation of generated quality score
To validate the efficacy of the proposed image-qual-
ity captioning model, the proposed prompt template 
was employed to transform output text descriptions 
into scores to assess IQAGPT performance in both 
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classification and regression tasks. A comparative study 
on IQAGPT was conducted with an image-only multi-
task classification model, using accuracy as a metric. 
Additionally, IQAGPT was compared with CLIP-IQA 
[45] and an image-only multi-task regression model, 
employing PLCC and SROCC. These quantitative results 
are detailed in Tables  3 and 4. The PLCC and SROCC 
calculation for the metric of subjective visual lesion con-
spicuity was not performed as over half of the CT scans 

Fig. 5 Captions predicted using the predicted method and scores and reports generated using ChatGPT

Table 2 Quantitative evaluation of captioning quality using IQAGPT and MiniGPT-4

Method Parameter BLEU‑1 BLUE‑2 BLEU‑3 BLEU‑4 METEOR ROUGE‑L CIDEr

MiniGPT-4 7B 0.798 0.733 0.717 0.652 0.516 0.826 3.070

IQAGPT 210 M 0.819 0.777 0.742 0.712 0.546 0.858 3.620

Table 3 Comparison of classification evaluation accuracy 
between IQAGPT and ViT-C

Classification ViT‑C IQAGPT

Image noise and structural fidelity 0.545 0.765
Visibility of small structures 0.405 0.620
Subjective visual lesion conspicuity 0.725 0.820
Diagnostic confidence 0.375 0.605
Mean 0.512 0.702
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in the dataset did not contain lesions. The image-only 
multi-task classification and regression models were 
named ViT-C and ViT-R respectively. First, the same 
pre-trained image encoder (ViT-S/16) was employed in 
IQAGPT to extract image features. Then, four pairs of 
fully connected layers were implemented following the 
classification (CLS) token for four metrics, as depicted in 
Fig. 6. ViT-C and ViT-R employed cross-entropy loss and 
mean squared error loss respectively. The same training 
strategy was used with IQAGPT to train CLIP-IQA + , 
ViT-C, and ViT-R.

Table  3 shows that IQAGPT outperforms the image-
only classification model, ViT-C, across four metrics, 
achieving a notable improvement of 0.19 in mean accu-
racy. For regression, IQAGPT surpasses ViT-R and 
CLIP-IQA, as shown in Table  4. Compared with ViT-C 
and ViT-R, which represent ablation methods without 
LLM, IQAGPT outperforms them because it uses LLM 

to analyze detailed text information instead of using 
only raw scores as labels. Regarding CLIP-IQA, which 
uses CLIP to perceive subjective attributes through text 
prompt pairing, these texts contain only a single adjec-
tive, enabling the assessment of global quality attributes 
such as noisiness and brightness, but insufficient to cap-
ture complex details in medical images for diagnosis. In 
contrast, IQAGPT has complex text descriptions using 
an autoregressive LLM model. Furthermore, a notable 
advantage of IQAGPT is its efficiency; unlike CLIP-IQA, 
which requires separate fine-tuning for each of the four 
metrics, IQAGPT can simultaneously produce results for 
all metrics in a single output.

For each image-quality level and metric, accuracy 
was computed using converted scores, as depicted in 
Table 5. The relative accuracies associated with interme-
diate images generated by MAP-NN may not be highly 
robust owing to their similar features. This aligns with 

Table 4 Comparison of IQAGPT with CLIP-IQA and ViT-R in the regression evaluation performance in terms of PLCC/SROCC

CLIP-IQA + represents the fine-tuned version of CLIP-IQA

Regression CLIP‑IQA CLIP‑IQA + ViT‑R IQAGPT

Image noise and structural fidelity 0.277/0.271 0.742/0.633 0.580/0.460 0.821/0.820
Visibility of small structures 0.121/0.117 0.712/0.696 0.436/0.415 0.743/0.735
Subjective visual lesion conspicuity ‑ - - ‑
Diagnostic confidence 0.081/0.069 0.650/0.642 0.504/0.422 0.699/0.689
Mean 0.160/0.114 0.701/0.657 0.531/0.519 0.754/0.748

Fig. 6 Flowcharts of (a) multi-task classification model ViT-C and (b) multi-task regression model ViT-R, respectively. CLS tokens are followed 
by four groups of classifiers, each consisting of two fully connected layers. Scores 1, 2, 3, and 4 are the categories corresponding to the four metrics 
described in CT-IQA dataset subsection
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the challenges in the subjective evaluation of images with 
subtle quality differences, a critical aspect of the CT-IQA 
dataset. This study highlights the complexity of differen-
tiating between similar images.

Furthermore, the score distributions of IQAGPT, ViT-
C, ViT-R, and CLIP-IQA + for four quality metrics are 
presented in Fig.  7. Notably, our method more closely 
approximates the groundtruth (GT) compared to ViT-C, 
ViT-R, and CLIP-IQA + , demonstrating its effectiveness. 
Overall, IQAGPT has a higher correlation with human 
perception than the competing methods, marking a sig-
nificant advancement in CT subjective IQA.

To further demonstrate the effectiveness of IQAGPT, 
the predicted and GT scores for each quality level 
and metric are visualized in Fig.  8, demonstrating the 

prediction accuracy of IQAGPT. In addition, Fig.  9 
presents the predicted scores for NDCT and corre-
sponding denoising results from MAP-NN (d = 1) and 
RED-CNN, along with the calculated PSNR and SSIM. 
It can be observed that the quantitative results of MAP-
NN (d = 1) are inferior to that of RED-CNN; however, 
in professional subjective assessment, these two are 
similar and considered acceptable. From the perspec-
tive of the radiologist, the results of MAP-NN (d = 1) 
suffer from incomplete denoising, leading to some 
blurred details, while the RED-CNN results exhibit 
over-smoothing issues due to the use of a pixel-level 
loss function. In contrast, the scores of the results pre-
dicted by IQAGPT are almost identical to the GT ones, 

Table 5 Accuracy for each of the four metrics in eight image-quality levels

Metric 1: Image noise and structural fidelity; Metric 2: Visibility of small structures; Metric 3: Subjective visual lesion conspicuity; and Metric 4: Diagnostic confidence. 
MAP-NN (·) provides 5 denoising levels [28]

Metric NDCT LDCT MAP‑NN (1) MAP‑NN (2) MAP‑NN (3) MAP‑NN (4) MAP‑NN (5) RED‑CNN Mean

Metric 1 1.000 0.800 0.600 0.520 0.480 0.880 0.880 1.000 0.765

Metric 2 0.960 0.680 0.480 0.360 0.520 0.600 0.640 0.720 0.620

Metric 3 0.920 0.920 0.880 0.760 0.800 0.840 0.760 0.800 0.820

Metric 4 0.920 0.760 0.360 0.400 0.320 0.440 0.680 0.960 0.605

Mean 0.950 0.790 0.580 0.510 0.520 0.690 0.740 0.840 0.702

Fig. 7 Scores distribution for four quality metrics using IQAGPT, ViT-C, ViT-R, and CLIP-IQA + . The last column lists the GT scores
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Fig. 8 Mean values of the GT scores and the scores predicted by IQAGPT
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demonstrating that IQAGPT learned IQA expertise 
consistent with the clinical needs.

Evaluation on new datasets
This study proposes a novel paradigm for IQA by lever-
aging LLMs to generate text descriptions; however, no 
datasets specifically annotated for this purpose currently 
exist. To further verify the generalizability of IQAGPT, 
we evaluated it on “Low Dose CT Image and Projection 
Data” latest released by Mayo Clinic in 2020 [58], named 
Mayo2020 dataset, which includes NDCT and LDCT 

images. Owing to the cost of professional annotations, 
the radiologist annotated several images.

Figure 10 shows that IQAGPT is more consistent with the 
gold standard of the radiologist than ViT-C. Furthermore, 
IQAGPT did not blindly categorize NDCT as the best or 
LDCT as the worst. This is because the noise characteristics 
of the Mayo2020 differ from those of the CT-IQA dataset 
used for training in this study. IQAGPT produced results 
that align with the preference of the radiologist, demon-
strating its adaptability across different datasets.

Fig. 9 Scores of three examples predicted using IQAGPT

Fig. 10 Scores of four examples predicted using IQAGPT in Mayo2020 dataset. Wrong scoring is highlighted in green
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External evaluation by additional radiologists
The CT-IQA dataset was annotated by one radiologist. 
To investigate the bias introduced by the radiologist, an 
external evaluation was conducted, in which two addi-
tional radiologists were invited to annotate. Each radi-
ologist independently assessed the CT images using the 
quality metrics predefined in this study. Considering the 
high cost and significant time required for professional 
annotations, this was limited to the test dataset only. 
Radiologist 1 (R1), with nine years of experience, was the 
original annotator for both the training and testing sets 
in previous evaluations. Each of the two additional radi-
ologists, Radiologist 2 (R2) and Radiologist 3 (R3), had 
two years of experience.

The performance of IQAGPT was evaluated sepa-
rately for each radiologist’s annotations using PLCC and 
SROCC. Table 6 shows that the best results are achieved 
on the test set annotated by R1, indicating the consist-
ency between the training and test sets annotated by 
R1. The PLCC/SROCC scores for R2 and R3, though 
dropping a little bit, are still comparable to those of R1, 
demonstrating the strong robustness of the developed 
model against external evaluation and verification. Dif-
ferent radiologists have different biases regarding image 

quality; however, the high correlation among radiolo-
gists shows a small bias between internal and external 
evaluations.

Ablation on LLMs
To further demonstrate the effectiveness of textual 
semantic information, the t-SNE [59] method was 
employed to visualize the features of the CLS tokens in 
the image encoders of IQAGPT, ViT-C, and ViT-R, as 
illustrated in Fig. 11. Each sample was labeled using the 
score of the image noise and structural fidelity metric. 
This visualization demonstrates that IQAGPT distin-
guishes features of different categories more clearly than 
ViT-C and ViT-R, and exhibits an ordered sequence in 
the score-based feature representation. Additionally, the 
self-attention map of tokens from the multimodal text 
decoder, depicted in Fig.  12, reveals that each token is 
interconnected not only with tokens from the same task 
but also with those from preceding tasks. This finding 
underscores the merits of textual descriptions in captur-
ing inter-task correlations, enhancing the classification 
performance.

Interpretation
To provide an interpretation of the proposed quality cap-
tioning model, per-word Grad-CAM visualizations are 
presented in Fig.  13. The Grad-CAM visualizations are 
highly correlated with where radiologists look at when 
making decisions. For instance, radiologists tend to 
concentrate on the global appearance of an image when 
assessing ‘noise,’ whereas local features gain more atten-
tion during evaluations of ‘diagnosis’ or ‘lesions.’

Overall, the above findings indicate that IQAGPT can 
successfully perform CT subjective quality-assessment 
tasks. It can predict texts aligned with the GT and also 

Table 6 Performance of IQAGPT with three radiologist 
annotations in the regression evaluation in terms of PLCC/SROCC

Regression R1 R2 R3

Image noise and structural 
fidelity

0.821/0.820 0.750/0.756 0.755/0.750

Visibility of small structures 0.743/0.735 0.668/0.659 0.680/0.673

Subjective visual lesion con-
spicuity

‑ - -

Diagnostic confidence 0.699/0.689 0.661/0.672 0.679/0.688

Mean 0.754/0.748 0.694/0.696 0.705/0.704

Fig. 11 Feature visualization of the CLS token in the image encoder of (a) IQAGPT, (b) ViT-C, and (c) ViT-R, using the t-SNE method. The samples are 
labeled with categories from the metric of image noise and structural fidelity



Page 14 of 17Chen et al. Visual Computing for Industry, Biomedicine, and Art            (2024) 7:20 

Fig. 12 Self-attention map of tokens from the last layer in the multimodal text decoder

Fig. 13 Grad-CAM visualizations on the cross-attention maps corresponding to individual words
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translate these texts into scores and reports using Chat-
GPT in a clinically meaningful way.

Discussion
This study highlights the efficacy of integrating large 
models for IQA, with a specific focus on LDCT denois-
ing. It suggests a significant potential to replace the tra-
ditional subjective image-quality evaluation procedure 
conducted by radiologists with large hybrid deep models, 
which are resource-efficient and time-saving. In other 
words, the developed IQAGPT is the first attempt in this 
direction, and IQAGPT not only eases the burden on 
radiologists by automating CT IQA but also aids radiolo-
gists in refining diagnostic performance.

 The proposed method was developed on the CT-IQA 
dataset of 1,000 image-text pairs annotated by a pro-
fessional radiologist. For this purpose, a prompt tem-
plate was leveraged to transform quality scores into text 
descriptions. Having fine-tuned the image-quality cap-
tioning model on the CT-IQA dataset, IQAGPT can 
generate quality descriptions for different CT scans. 
Using ChatGPT as an interactive interface facilitates 
user engagement, allowing for versatile outputs including 
quality scores and comprehensive reports.

Experimental results demonstrate the efficacy of 
IQAGPT in steadily generating quality descriptions and 
converting them into scores and reports. Quantitative 
evaluation using metrics for image captioning, classifi-
cation, and regression tasks, underscores the superior 
performance of IQAGPT. In addition, ablation studies 
show the effectiveness of incorporating LLMs in subjec-
tive CT-IQA tasks; IQAGPT can integrate the expertise 
of radiologists with the advanced capabilities of LLMs. 
Furthermore, LLM provides an interpretation of gener-
ated results using the quality captioning model. While 
CLIP-IQA also employs LLMs, its limitation to training 
one metric at a time with simple text prompts restricts 
its applicability in complex medical IQA scenarios, espe-
cially when assessing fine structures and small lesions.

However, it is acknowledged that there are some limi-
tations of the CT-IQA dataset. First, the relatively small 
size of the dataset might have made the training pro-
cess of the LLM sub-optimal. Owing to the high cost 
and significant time required for professional radiologist 
annotations, the study aims to validate the feasibility of 
using LLMs for IQA, serving as a rapid communication 
to demonstrate the potential of the proposed approach. 
In the future, it is planned to collect more clinical data 
to conduct larger-scale experiments and further vali-
date current findings. Although the external evaluation 
indicates a strong correlation between radiologists, the 
dataset annotated by a single radiologist still introduces 
a small bias into the model. In the future, it is planned 

to use mean calibration or small-scale fine-tuning to 
adapt to the preferences of different radiologists. Since 
IQAGPT represents the initial effort in IQA using 
LLMs, the reliance on the annotation standards of the 
prior studies may not fully encompass the complexity of 
image-quality nuances [28, 34], such as body parts and 
lesion types. In the future, text descriptions could be sig-
nificantly refined, and different types of CT images could 
be added for IQA, thereby broadening its applicability 
and effectiveness in clinical scenarios.

Conclusions
This study presents a pioneering exploration into CT 
subjective quality assessment, using an innovative amal-
gamation of VLMs and ChatGPT. We collected CT-IQA, 
an image-text dataset comprising pairs of CT scans with 
quality scores annotated by an experienced radiologist. 
We develop IQAGPT, fine-tuned on a VLM using the 
CT-IQA dataset, which can integrate with ChatGPT to 
generate both quality scores and detailed reports. The 
results of extensive experiments not only demonstrate 
the feasibility of IQAGPT but also highlight the effective-
ness of LLMs, marking a significant potential of integrat-
ing LLMs in the field of subjective IQA.
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