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Abstract 

Fetal macrosomia is associated with maternal and newborn complications due to incorrect fetal weight estimation 
or inappropriate choice of delivery models. The early screening and evaluation of macrosomia in the third trimester 
can improve delivery outcomes and reduce complications. However, traditional clinical and ultrasound examinations 
face difficulties in obtaining accurate fetal measurements during the third trimester of pregnancy. This study aims 
to develop a comprehensive predictive model for detecting macrosomia using machine learning (ML) algorithms. The 
accuracy of macrosomia prediction using logistic regression, k-nearest neighbors, support vector machine, random 
forest (RF), XGBoost, and LightGBM algorithms was explored. Each approach was trained and validated using data 
from 3244 pregnant women at a hospital in southern China. The information gain method was employed to identify 
deterministic features associated with the occurrence of macrosomia. The performance of six ML algorithms based 
on the recall and area under the curve evaluation metrics were compared. To develop an efficient prediction model, 
two sets of experiments based on ultrasound examination records within 1-7 days and 8-14 days prior to delivery 
were conducted. The ensemble model, comprising the RF, XGBoost, and LightGBM algorithms, showed encouraging 
results. For each experimental group, the proposed ensemble model outperformed other ML approaches and the tra-
ditional Hadlock formula. The experimental results indicate that, with the most risk-relevant features, the ML algo-
rithms presented in this study can predict macrosomia and assist obstetricians in selecting more appropriate delivery 
models.
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Introduction
A newborn with a birth weight of 4000  g or more is 
described by the term macrosomia [1]. Fetal macrosomia 
can cause multiple maternal and fetal complications. For 
instance, it can increase the risk of cesarean section for 
mothers, leading to prolonged labor, labor block, post-
partum bleeding, chorioamnionitis, and a higher likeli-
hood of soft birth canal laceration. It also increases the 
risk of shoulder dystocia, brachial plexus injury, and 
clavicle fracture in fetuses and newborns. During vagi-
nal delivery, the baseline incidence of shoulder dystocia 
is 0.2%-3.0%, but when the birth weight reaches 4500 g, 
the risk of shoulder dystocia dramatically increases to 
9%-14% [2]. Given the serious complications involved, 
timely diagnosis of macrosomia and selection of a more 
appropriate mode of delivery for pregnant women are 
clinically significant.

The size and shape of the pelvis are crucial in guiding 
the choice of delivery model. Owing to factors such as 
race, nutrition, genetics, and endocrine influences, the 
morphological structure of the pelvis varies considerably 
among Chinese and Western women [3]. The pelvises of 
Western women, such as those from the United States, 
are often anthropoid. The anteroposterior diameter of 
an anthropoid pelvis is larger than its lateral diameter, 
which is a physiological structure that facilitates spon-
taneous delivery. Approximately half of the pelvises of 
Chinese women are gynecoid, characterized by a shallow 
pelvic cavity [4]. If the fetus is overweight or has a large 
head, the risk of cesarean section significantly increases 
[5]. Therefore, screening and evaluation of macrosomia 
in the third trimester are particularly important for Chi-
nese women, as they can improve delivery outcomes and 
reduce maternal and fetal complications [6, 7]. Among 
the reports for predicting macrosomia, two broad cate-
gories of screening methods are clinical examination and 
ultrasound assessment [8, 9].

Obstetricians have developed simple formulas to pre-
dict fetal weight, which are combined with clinical fea-
tures, such as maternal abdominal or fundal height [10]. 
However, factors such as the degree of obesity in preg-
nant women, abdominal wall thickness, uterine tension, 
fetal posture, and amniotic fluid depth can lead to sig-
nificant errors in these formulas when predicting fetal 
weight, making them insufficiently accurate. Previous 
studies have indicated that clinical examinations often 
result in large prediction errors that do not meet clinical 
requirements [11, 12].

With ongoing advancements in ultrasound equipment 
and technology, the prediction of fetal weight based on 
ultrasound measurements of various fetal biological fea-
tures has become widely utilized. Reports suggest that 
the ultrasound examination method demonstrates higher 

accuracy than those of clinical examination methods 
[13]. Fetal biparietal diameter (BPD), head circumference 
(HC), abdominal circumference (AC), and femur length 
(FL) are the most commonly used biological parameters 
for estimating fetal weight (EFW). Siemer et  al. [14] 
compared the accuracy of 11 widely used EFW formu-
las and found that the estimation of fetal weight based 
on Hadlock formulas [15] tends to be more accurate, 
and multiparameter estimation methods can enhance 
the precision of EFW. However, these formulas, estab-
lished by Western scholars, may not account for vari-
ations among individuals from different ethnic groups 
[16]. When applying these methods in China, particu-
larly to large or low-weight fetuses, individual differences 
among populations can result in significant errors. For 
instance, the birth weights of only 33%-44% of cases with 
ultrasound-estimated fetal weights over 4500  g can be 
accurately predicted [9, 17–21]. Additionally, maternal 
self-parameters and measurement techniques directly 
affect the accuracy of EFW. Obtaining precise fetal meas-
urements during the third trimester is often challenging 
[22], and the absolute error tends to increase with higher 
estimated fetal weights [19, 21]. Consequently, there is 
still room for improvement in the current ultrasound 
examinations used for fetal weight estimation.

Furthermore, machine learning (ML) technologies 
have previously shown benefits in numerous application 
domains, including speech recognition, image process-
ing, facial recognition, and automatic diagnosis [23–26]. 
Additionally, they have been validated for their precision 
and value in predicting disease outcomes [27]. Conse-
quently, ML techniques have the potential to enhance the 
efficiency and rationality of decision-making in the prog-
nosis of macrosomia, ultimately aiming to minimize birth 
defects.

Recently, ML technologies have been recognized and 
utilized as tools for predicting birth weight. Akhtar et al. 
[28] conducted a comprehensive study on predicting 
large for gestational age (LGA) using ML techniques and 
proposed a support vector machine (SVM) model with a 
subset of 30 features as the most effective classification 
model, achieving a precision score of 85% and area under 
the curve (AUC) of 72%. Their dataset encompassed 
220 pilot counties across all 31 provinces of China from 
2010 to 2013 [29]. Ye et al. [30] evaluated and compared 
the accuracies of nonlinear and quadratic mixed-effects 
models combined with 26 different empirical formulas 
for EFW. They suggested that ensemble learning could 
enhance the prediction of LGA. Their datasets were com-
piled in Norway and Sweden between 1986 and 1988. Lu 
et al. [31] introduced an ensemble model comprising ran-
dom forest (RF), XGBoost, and LightGBM algorithms, 
achieving 64.3% accuracy and 7% mean relative error 
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in predicting fetal weight. Although numerous studies 
have aimed to predict fetal weight with a certain level 
of accuracy, there is a paucity of research applying ML 
techniques with a limited number of features to compre-
hensively detect macrosomia in pregnant women from 
southern China.

In this study, a dataset of pregnant women in southern 
China was established. In addition to the features derived 
from ultrasound examinations, the clinical character-
istics of the pregnant women, including pre-pregnancy 
body mass index (BMI), gestational weight gain (GWG), 
fasting blood glucose (FBG), and 2-h postprandial blood 
glucose (2hPG) were also considered. Subsequently, 
information gain (IG), a standard univariate filtering 
method, was used to select the top-ranked features from 
a pool of 12 [32]. For comparative analysis, six different 
ML classifiers and the most effective Hadlock formula 
method [15] were utilized to assess the macrosomia clas-
sification performance. However, applying classifiers 
directly to an imbalanced dataset can significantly affect 
the experimental outcomes. Therefore, class balancing 
procedures are essential. An ensemble model was used 
to refine the results, drawing inspiration from a previous 
study [31].

Methods
Data preprocessing
Data from 3244 pregnant women who delivered between 
September 2017 and August 2019 at the University of 
Hong Kong-Shenzhen Hospital were collected and ana-
lyzed retrospectively. The dataset was based on electronic 
health records, which included maternal, fetal, and neo-
natal clinical features.

Before conducting formal experiments, basic preproc-
essing steps were implemented. Special cases, such as 
twins, premature births before 37 weeks, and infants with 
birth weights below 2500 g, were excluded. Additionally, 
pregnant women with incomplete records or apparent 
errors in the clinical data of mothers, fetal parameters, 
and neonatal outcomes were also excluded. The actual 
weight data for these fetuses were accurate, with no miss-
ing or apparent errors. This study was approved by the 
Medical Ethics Committee of The University of Hong 
Kong-Shenzhen Hospital.

To diagnose macrosomia accurately, weighing new-
borns after birth is essential. In early pregnancy, 
additional ultrasound examinations do not improve 
accuracy. A single ultrasound examination during the 
third trimester is currently the simplest and most effec-
tive method for predicting macrosomia [33]. Most birth 
weight prediction formulas rely primarily on prenatal 
ultrasound measurements obtained within one week 

prior to delivery [14, 31, 34]. This study used ultra-
sound measurements taken within 1-7 days and 8-14 
days prior to delivery as input data to establish an effi-
cient prediction model that ensures the accuracy of 
macrosomia screening before birth. The former aimed 
to predict macrosomia as comprehensively as possible, 
while the latter was intended to validate the model.

In this study, we conducted two groups of experi-
ments. The first group utilized six different ML algo-
rithms to classify macrosomia for pregnant women 
with ultrasound examination records within 1-7 days 
prior to delivery. Subsequently, the most effective mod-
els were combined to form a new model expected to 
achieve optimal prediction performance. The second 
experimental setup was designed to validate the model 
for pregnant women with ultrasound examination 
records within 8-–14 days before delivery.

In this study, macrosomia refers to infants with a birth 
weight of 4000  g or more. In the first experiment, 46 
infants were classified as macrosomia and 1044 as non-
macrosomia, totaling 1090 samples with ultrasound 
examination records within 1-7  days prior to delivery. 
The second group comprised 936 samples, including 37 
cases of macrosomia and 899 non-macrosomia, with 
records of ultrasound examinations within 8–14 days 
prior to delivery. We encoded the actual weight of the 
newborn and estimated fetal weight using the equation 
derived by Hadlock et al. [15]. The label was assigned a 
value of 1 if the actual or estimated weight was 4000 g 
or more and 0 otherwise.

The dataset included the following 12 features: pre-
pregnancy BMI, GWG, in kg, gestational week (GA), 
gestational diabetes mellitus (GDM), amniotic fluid 
index (AFI), time interval between the last ultrasound 
examination and delivery (Interval), FBG, in mmol/L, 
2hPG, in mmol/L, fetal AC, in mm, fetal HC, in mm, 
fetal FL, in mm, and fetal BPD, in mm. Table 1 presents 
the definitions of each feature.

Feature standardization
Since different features can have varying units and 
orders of magnitude, normalizing the data is essential 
to minimize their impact on the prediction outcomes 
and ensure that each feature is on a comparable scale. 
The normalization is shown in Eq. (1):

where x represents the current feature value; xmin and 
xmax represent the minimum and maximum values of the 
current feature, respectively; and y is the normalized fea-
ture value [35]. The data range is [0, 1].

(1)y = x−xmin
xmax−xmin
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Feature selection
Feature selection is a widely utilized technique for identify-
ing features that exhibit a strong correlation with the target 
class while remaining uncorrelated with other classes. The 
primary goal of applying feature selection in this study was 
to develop a classification model that offers enhanced per-
formance and reduced computational overhead. Recently, 
IG has been employed in various medical domains to 
screen the top features, yielding positive outcomes [36, 
37]. This study adopted IG as a feature selection method to 
enhance model performance based on these findings.

Generally, this is the difference between the informa-
tion entropy of the macrosomia dataset A with and with-
out feature t. There are L class labels in dataset A, and 
the information entropy of a class [38] in dataset A is 
denoted by H(A) , which is defined as

where Pi is the probability of a labeled class in the mac-
rosomia dataset A.

The macrosomia dataset A is further divided into 
K groups by feature t with K different values, namely, 
Ak(k = 1,2, . . . ,K ) . The entropy of each group is calcu-
lated as

where Pki defines the probability of a labeled class in sub-
set data Ak of the basic data A. As each group of subset 
data Ak contains Wk samples where ( k = 1,2, . . . ,K  ), the 
weight of each group is set to Wk ∕W  . The IG [39] of each 
feature t can be written as

(2)H(A) = −

n

i=1 Pi log2Pi

(3)H(Ak) = −

∑
n

i=1 Pki log2Pki

Subsequently, the scores generated by IG are sorted in 
descending order, and the top i features are selected as 
the best variable set for classification.

ML algorithms
This study aims to address the binary classification prob-
lem [40], enabling doctors to detect and diagnose mac-
rosomia as early as possible and provide guidance for 
delivery methods. ML algorithms offer advantages such 
as self-training, generalization, self-organization, and 
learning capabilities. The objective of this study is to 
develop an effective ML prediction model capable of clas-
sifying and predicting macrosomia and non-macrosomia. 
The performance of the logistic regression (LR), k-near-
est neighbors (KNN), SVM, RF, XGBoost, and LightGBM 
algorithms using the scikit-learn Python toolkit with 
default parameters were evaluated.

The LR [41] algorithm is a statistical method used for 
binary classification problems. It estimates the prob-
ability of a target variable belonging to a particular class 
using a logistic function that transforms linear combi-
nations of features into probabilities. The KNN [42] is a 
simple and effective classification method that assigns a 
new data point to the class of the majority of its KNN. 
The SVM classifier [43] is a binary classification method 
that uses hyperplanes to separate the data points of dif-
ferent classes. It aims to maximize the distance between 
the hyperplanes and the closest data points of each class, 
resulting in a robust and accurate classifier. For RF, many 
regression decision trees are incorporated to improve the 
accuracy of classification and regression tasks by con-
structing multiple decision trees and combining their 
predictive results [44]. It reduces overfitting by randomly 
sampling data and features and has good generalization 
ability [45]. XGBoost [46] is an efficient and scalable ML 
algorithm that uses gradient boosting to build strong 
predictive models that provide accurate and robust solu-
tions for various classification, regression, and ranking 
tasks. LightGBM [47] is a gradient-boosting framework 
that uses efficient parallel training to achieve high per-
formance and low memory consumption. It offers bet-
ter accuracy and faster training and supports large-scale 
datasets, making it a versatile tool for ML tasks. Light-
GBM uses the many-vs-many segmentation method to 
divide the category features into two subsets to achieve 
optimal segmentation of the category features. Ensemble 
methods of creating multiple models in ML are effec-
tive prediction methods because they can improve the 
prediction performance and generalization ability by 

(4)IG(A, t) = H(A)−
K∑

k=1

Wk
W H(Ak)

Table 1 Features and their definitions

Feature  xGDM has only two values: 0 (non-GDM) and 1 (GDM); Feature  xAFI 
has only three values: -1 (oligohydramnios), 0 (normal amniotic fluid) and 1 
(polyhydramnios)

Feature Definition

x2hPG 2-h postprandial blood glucose (mmol/L)

xBMI Pre-pregnancy body mass index

xAC Fetal abdominal circumference (mm)

xFBG Fasting blood glucose (mmol/L)

xHC Fetal head circumference (mm)

xFL Fetal femur length (mm)

xGWG Gestational weight gain (kg)

xBPD Fetal biparietal diameter (mm)

xGA Gestational week (week)

xInterval Time interval between the last ultra-
sound examination and delivery (day)

xGDM Gestational diabetes mellitus

xAFI Amniotic fluid index
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combining multiple base learners, thereby reducing over-
fitting and enhancing the classification accuracy [48].

Performance evaluation indices
The model performance was assessed and compared 
using two key indicators to determine the optimal pre-
diction model for macrosomia.

The first indicator is Recall, which quantifies the accu-
racy of correctly identifying true cases of macrosomia. 
Clinically, a high sensitivity in predicting macrosomia is 
crucial. The second indicator is the AUC, which provides 
stable results even with imbalanced datasets. A model 
with a higher AUC indicates superior performance.

Results
Comparison of ML prediction models
As defined above, we executed the experiment using 
tenfold cross-validation on 1090 cases with ultrasound 
examination records within 1-7 days prior to delivery and 
containing 12 features. Table 2 lists the Recall and AUC 
values of all six ML classifiers and ultrasound estimation 
based on the Hadlock formula.

From the results, we can see that LR, SVM, and KNN 
performed inefficiently by producing notably low results 
for Recall and AUC; RF performed best in terms of 
Recall (0.8300), and XGBoost performed best in terms 

of AUC (0.8193), whereas LightGBM performed well in 
both Recall and AUC values. Compared to the ultrasonic 
estimation, all six ML classifiers performed better. These 
results demonstrate that ML algorithms may further 
improve the accuracy of macrosomia screening than that 
of the Hadlock formula.

Analysis of feature selection method
We chose IG as our feature selection method to achieve 
better performance for each classifier. It ranks the fea-
tures in descending order based on their high IG entropy. 
Applying this process, three features with significantly 
lower IG entropy, namely,  xInterval,  xGDM, and  xAFI, were 
excluded from the 12 features. The selection results for 
these features are shown in Fig. 1.

Subsequently, all six ML classifiers were trained using 
tenfold cross-validation on a dataset that included 1090 
cases with nine features for each case. The classification 
results are listed in Table 3. On comparing the results of 
Tables  2 and 3, it can be observed that all six ML clas-
sifiers demonstrated better prediction performance on 
the dataset containing nine features than on the dataset 
containing 12 features. It suggests that the use of the IG 
method to select features helps improve the prediction 
performance to some extent.

Table 2 Comparison of Recall and AUC values for six ML methods on 1090 samples with ultrasound examination records 1-7 days 
before delivery and containing 12 features

Index Hadlock LR SVM KNN RF XGBoost LightGBM

Recall 0.3650 0.6250 0.8000 0.3350 0.8300 0.8200 0.8050

AUC 0.6787 0.6151 0.7816 0.6034 0.8038 0.8193 0.7940

Fig. 1 Feature selection using IG
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Analysis of the ensemble model
As previously discussed, we utilized an ensemble model 
that integrates the top-performing models from Table 3, 
RF, XGBoost, and LightGBM, to enhance classification 
performance. This ensemble model was constructed 
using a voting mechanism.

Subsequently, the three individual models and ensem-
ble model underwent tenfold cross-validation training on 
a dataset comprising 1090 cases, each featuring nine fea-
tures, to evaluate their effectiveness in screening for mac-
rosomia. The results of these experiments are presented 
in Table 4.

Table  4 indicates that the ensemble model marginally 
improved the Recall and AUC values compared to the 
individual ML algorithms and Hadlock formula. Spe-
cifically, Recall showed an improvement of 0.5, while the 
AUC increased by an estimated 0.17.

Effectiveness verification of ensemble model
Traditionally, fetal weight estimation has often relied on 
the Hadlock formula, which is based on multiple ultra-
sound measurements. However, some fetuses grow rap-
idly after reaching term, leading to varying ultrasound 
examination records across different GAs. Consequently, 
the use of the Hadlock formula may result in significant 
deviations in the predicted fetal and birth weights owing 
to the extended time interval between ultrasound exami-
nation and delivery [33].

To further validate the ensemble model for predicting 
fetal weight, it was applied to a dataset comprising ultra-
sound examination records from 8-14 days before deliv-
ery. This dataset includes 936 samples, each featuring 
nine key features. The classification results are listed in 
Table 5.

As shown in Table 5, the ensemble model described in 
this study demonstrated a notable improvement in Recall 
and AUC values when compared to the Hadlock formula 
and the other three ML classifiers. Specifically, Recall and 
AUC were improved by 0.75 and 0.24, respectively.

Discussion
There remains scope for advancement in the detection 
of macrosomia, particularly among pregnant women in 
southern China. This study focused on pregnant women 
in southern China who delivered singleton infants at 
term. We utilized ML algorithms, feeding in maternal 
and infant features as inputs and EFW labels as outputs. 
The IG method, grounded in information entropy theory, 
was employed to evaluate the features that are most pre-
dictive of macrosomia. Following feature selection, we 
conducted two sets of evaluations to assess the predic-
tion performance of macrosomia using ML algorithms. 
Our approach began with six ML classifiers; the results 
indicated that RF, XGBoost, and LightGBM performed 
the best (Table 4). To optimize prediction performance, 
an ensemble model that integrates the top-performing 
classifiers (RF, XGBoost, and LightGBM) to predict mac-
rosomia was developed.

Effective prediction of macrosomia within 1‑7 days prior 
to delivery
The first experimental group, which included ultrasound 
examination records from days prior to delivery, was 
used to validate our hypothesis. Table  4 shows that the 
ensemble model introduced in this study is highly effec-
tive for screening macrosomia when the interval between 
the final ultrasound and delivery is 1-7 days [22]. This 
ensemble model outperformed the traditional Hadlock 
formula in terms of predictive accuracy.

Table 3 Comparison of Recall and AUC values for six ML methods on 1090 samples with ultrasound examination records 1-7 days 
before delivery and containing 9 features

Index Hadlock LR SVM KNN RF XGBoost LightGBM

Recall 0.3650 0.7150 0.8250 0.4800 0.8550 0.8600 0.8300

AUC 0.6787 0.7152 0.8278 0.6940 0.8345 0.8375 0.8254

Table 4 Prediction performance of macrosomia by the 
ensemble model on 1090 samples with ultrasound examination 
records 1-7 days before delivery and containing 9 features

Index Hadlock RF XGBoost LightGBM Ensemble model

Recall 0.3650 0.8550 0.8600 0.8300 0.8750

AUC 0.6787 0.8345 0.8375 0.8254 0.8460

Table 5 Prediction performance of macrosomia by the 
ensemble model on 936 samples with ultrasound examination 
records 8-14 days before delivery and containing 9 features

Index Hadlock RF XGBoost LightGBM Ensemble model

Recall 0.0250 0.7500 0.7333 0.7333 0.7750

AUC 0.5120 0.7482 0.7420 0.7692 0.7585
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Predicting macrosomia within 8‑14 days prior to delivery 
remains valuable
To verify whether this model was also effective in pre-
dicting macrosomia in pregnant women who had ultra-
sound examination records within 8-–14 days before 
delivery, we conducted a second set of experiments. As 
shown in Table 5, the ensemble model remains effective 
in detecting macrosomia, whereas the Hadlock formula 
has limitations [16] within this timeframe.

In summary, the ensemble model may be more suit-
able for screening macrosomia based on ultrasound data 
obtained 1-2 weeks before delivery. The accurate predic-
tion of macrosomia in the third trimester can encourage 
pregnant women to be more mindful of their diet and 
nutritional status, which are crucial for eugenics. Addi-
tionally, precise macrosomia assessment enables obste-
tricians to offer tailored counseling and advice to women 
at risk of delivering a macrosomic infant, thereby guiding 
them on appropriate delivery options. Careful consid-
eration of delivery models in clinical practice can reduce 
the incidence of abnormal deliveries and prevent adverse 
outcomes for both mothers and infants.

Ensemble model construction and external validation 
driven by “1‑14 days prior to delivery” data
In clinical practice, a full-term pregnancy is defined as a 
period of 37 weeks of gestation. Ultrasound examinations 
are recommended every two weeks during the late stages 
of pregnancy to ensure the safety of both mother and 
baby, with particular attention paid to data from the last 
two weeks before delivery, which is crucial for predict-
ing fetal weight. While previous research has primarily 
utilized data from 1-7 days before delivery, our inclusion 
of data from 8-14 days aimed to maximize the capabil-
ity of the model to detect macrosomia at an earlier stage; 
accordingly, we categorized the data into two groups: one 
for the period from 1-7 days before delivery and another 
for 8-14 days before delivery.

Based on the experimental results, the ensemble model 
showed significant accuracy in predicting macrosomia. 
Thus, we applied this model to assess its predictive per-
formance using data from 1-14 days before delivery, with 
the goal of creating a broadly applicable model for late 
pregnancy. We aimed to enhance the accuracy of fetal 
growth assessment and provide robust decision support 
for clinical practice.

This dataset comprises 2026 cases with ultrasound 
examination records within 1-14 days prior to delivery, 
each featuring nine key features. The classification results 
are listed in Table 6.

Table  6 indicates that the ensemble model described 
in this study improves the Recall and AUC values to 

some extent when applied to the dataset with ultrasound 
examination records within 1-14 days prior to delivery 
compared to the Hadlock formula and three other ML 
classifiers. The improvements in Recall and AUC were 
0.60 and 0.20, respectively.

Additionally, to provide a more intuitive illustration of 
the classification effectiveness of the ensemble model, a 
confusion matrix was constructed. This matrix features 
the predicted macrosomia cases along the horizontal 
axis and actual macrosomia instances along the verti-
cal axis. The displayed confusion matrix has undergone 
normalization, resulting in the sum of each row (or col-
umn) equaling 1, which represents conditional prob-
abilities. The diagonal values within this matrix represent 
the accurate classification probability for each category, 
also known as the recall or true positive rate. As shown 
in Fig. 2, the model exhibits an accuracy rate of 0.88 for 
predicting macrosomia, which underscores its robust 
predictive capability.

To comprehensively evaluate the generalization capa-
bility of the ensemble model, we additionally collected 
44 samples from pregnant women who underwent ultra-
sound examinations at The Second People’s Hospital of 
Shenzhen within 1-14 days before delivery, which served 
as an external validation test set. There were five cases of 
macrosomia in the sample set. External validation data 
were reviewed and approved by the Ethics Committee of 
The Second People’s Hospital of Shenzhen.

The classification results are listed in Table 7. The con-
fusion matrix is shown in Fig. 2. Based on external data 
validation, it can be seen that the ensemble model has 
good generalization performance and holds certain clini-
cal significance. The Recall, accuracy, and AUC values 
were 0.6, 0.77, and 0.75, respectively. The relatively low 
Recall may be attributed to the small sample size.

Predicting low‑birth‑weight infants is still applicable
It is evident that our model is sensitive to changes in 
fetal weight; hence, we endeavored to predict another 
weight extreme: low birth weight (LBW) infants (birth 
weight under 2500 g [33, 49]). LBW infants exhibit sig-
nificantly higher morbidity and mortality rates than 
infants with adequate birth weight [50]. According to 

Table 6 Prediction performance of macrosomia by the 
ensemble model on 2026 samples with ultrasound examination 
records 1-14 days before delivery and containing 9 features

Index Hadlock RF XGBoost LightGBM Ensemble model

Recall 0.2194 0.7708 0.7944 0.7958 0.8181

Accuracy 0.7640 0.7818 0.8026 0.7793 0.8000

AUC 0.6077 0.7765 0.7987 0.7872 0.8086
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Goldenberg and Culhan [50], the mortality rate among 
LBW infants is 40 times greater than that of normally 
weighted infants, with an increased likelihood of long-
term disabilities. Accurate prenatal fetal weight estima-
tion is crucial for preventing complications related to 
LBW. Although the Hadlock formula is a widely used 

clinical tool for fetal weight estimation from ultrasound 
data, its accuracy is insufficient for LBW infants.

Consequently, an ensemble model combining RF, 
XGBoost, and LightGBM to predict LBW infant 
weights, aiming to substantiate the efficacy of the 
model, was employed.

Initially, cases of twins and macrosomia (birth 
weight ≥ 4000 g), as well as records with incomplete data 
or apparent errors, were excluded and then focused on 
1128 pregnant women with ultrasound records 1-7 days 
before delivery, featuring nine key features. Table 8 shows 
that our ensemble model outperformed the traditional 
Hadlock formula in predicting LBW infants. Early detec-
tion of at-risk pregnancies for LBW infants allows obste-
tricians to identify fetal growth restrictions and promptly 
enhance monitoring. This method enables more precise 
predictions of fetal weight at both extremes, aiding in 
determining the most suitable delivery method and tim-
ing to maximize maternal and fetal safety.

Limitations and future work
Our study has certain limitations that should be consid-
ered. Cases with incomplete records or evident errors 
were excluded from the analysis. This exclusion may 

Fig. 2 Confusion matrix results

Table 7 Prediction performance of the ensemble model based 
on external data

Index Hadlock Ensemble model

Recall 0.2000 0.6000

Accuracy 0.5227 0.7727

AUC 0.5350 0.7543

Table 8 Prediction performance of LBW infants by the ensemble 
model on 1128 samples with ultrasound examination records 1-7 
days before delivery and containing 9 features

Index Hadlock RF XGBoost LightGBM Ensemble model

Recall 0.5417 0.9333 0.9667 0.9333 0.9667

AUC 0.7626 0.9311 0.9260 0.9170 0.9311
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have introduced a selection bias because the removed 
data represented approximately 17% of the entire data-
set. In the future, we plan to expand the model by 
incorporating data from diverse populations to ensure 
its applicability across various geographical regions, 
thereby validating the safety and predictability of our 
prediction model.

Conclusions
In this study, an ensemble model utilizing data from 
pregnant women in southern China for the precise 
screening of macrosomia was introduced. Our find-
ings identified the key determinants of pregnancy that 
can assist obstetricians in prioritizing and enhancing 
monitoring. This ensemble model, which integrates RF, 
XGBoost, and LightGBM, exhibited a high level of reli-
ability in detecting macrosomia in the third trimester. 
The future application of this model in clinical prenatal 
care could significantly benefit pre-pregnancy coun-
seling, prenatal evaluation, intrapartum care, postnatal 
management, and long-term reproductive health.
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