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Abstract 

Medical image registration is vital for disease diagnosis and treatment with its ability to merge diverse informa-
tion of images, which may be captured under different times, angles, or modalities. Although several surveys have 
reviewed the development of medical image registration, they have not systematically summarized the existing med-
ical image registration methods. To this end, a comprehensive review of these methods is provided from traditional 
and deep-learning-based perspectives, aiming to help audiences quickly understand the development of medical 
image registration. In particular, we review recent advances in retinal image registration, which has not attracted 
much attention. In addition, current challenges in retinal image registration are discussed and insights and prospects 
for future research provided.
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Introduction
Medical image registration is a fundamental step in com-
puter-aided diagnosis (CAD) and image-guided surgi-
cal treatment and has attracted much attention. It aligns 
multiple medical images by finding appropriate spatial 
transformation relationships to fuse their corresponding 
information, helping doctors make a more comprehen-
sive and precise diagnostic conclusion. These medical 
images may be acquired at different times, angles, and 
even modalities for a certain tissue or organ of the 
human body. Therefore, the purpose of medical image 

registration is to eliminate the interference of these fac-
tors and find consistent objects or shapes for matching.

Numerous methods have been developed to address 
the different transformation tasks in medical image reg-
istration. These can be grouped into two types: coarse-
grained global linear registration and fine-grained local 
elastic registration. Coarse-grained global linear registra-
tion extracts the salient features of the input image pair, 
thereby matching these features and overcoming angular 
changes. Fine-grained local elastic registration performs 
pixel-level analysis of the input image pair after linear 
alignment and local corrections to overcome spontane-
ous tissue movements and deformations.

Another method to classify registration methods is 
based on what is used to match the images. The first and 
direct approach is an intensity-based method [1]. These 
methods consider registration as an optimization prob-
lem by iteratively disturbing the transformation param-
eters to maximize pixel-wise similarity. Another early 
but still popular approach is feature-based methods [2], 
which extract manually designed features and descrip-
tors, match them, and establish a transformation based 
on matching. In contrast to intensity-based methods, 
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feature-based methods provide more robust registration 
by matching salient features rather than simply compar-
ing pixels.

In the past decade, deep features have replaced hand-
craft features with their ability to provide learnable, and 
therefore, more flexible, problem-specific feature rep-
resentations for registration tasks. Later, after deep fea-
ture extractors, end-to-end registration neural networks 
integrated the entire registration process into a single 
network by applying deep learning techniques such as 
convolutional neural networks (CNNs), generative adver-
sarial networks (GANs), and transformers. Once trained, 
these methods can obtain registration results directly 
from input image pairs, thereby speeding up registration. 
They have also been proven to have better registration 
performance.

Several reviews on deep learning for medical image 
registration have been conducted [3–5]. However, those 
studies only investigated the popular CNN-based meth-
ods at the time and did not mention the latest trans-
former-based methods. Additionally, those studies only 
investigated methods based on deep learning but ignored 
traditional methods from the early years, which can also 
provide significant guidance.

Among medical images, retinal images focus on a 
unique part of the human body that allows noninva-
sive observation of blood vessels in  vivo. This noninva-
sive approach allows the capture of high-quality images, 
which facilitates the examination of the retina with mini-
mal discomfort to patients. Longitudinal studies critical 
for monitoring disease progression often use a series of 
images captured at various time intervals. The diagnosis 
of retinal diseases such as age-related macular degen-
eration (AMD) is further facilitated by the availability 
of multiple imaging modalities, each serving a distinct 
diagnostic purpose. AMD, characterized by choroidal 
neovascularization (CNV), exemplifies the need for a 
multimodal approach: (1) color fundus (CF) photography 
effectively highlights areas of hemorrhage and the pres-
ence of fibrovascular tissue; (2) fluorescein angiography 
(FA) reveals subtle leaks associated with CNV that are 
not always visible to the naked eye; and (3) optical coher-
ence tomography (OCT) provides detailed cross-sec-
tional scans that can uncover intraretinal abnormalities. 
These modalities collectively assist ophthalmologists in 
diagnosing retinopathies and formulating strategies for 
ophthalmic surgery [6]. Moreover, retinal analysis is rel-
evant not only to eye diseases, but also to various human 
diseases, including diabetes [7], Alzheimer’s disease [8], 
and coronary heart disease [9]. Therefore, the retina 
serves as a microcosm for broader health assessments, 
providing a noninvasive yet informative window into a 
patient’s overall well-being. Retinal image registration, 

which combines complementary structural and func-
tional information from the same or different modalities, 
is a crucial step in this process. Due to the particularity 
of the way retinal images are collected, they are mainly 
affected by three factors: illumination differences, angle 
differences, and variations in retinal lesions. These fac-
tors pose multiple technical challenges in the registration 
of retinal images: (1) Ensuring consistency in pixel val-
ues by standardizing or normalizing lighting conditions; 
(2) Identifying correspondences over long distances; 
(3) Tracking and quantifying the progression of retinal 
lesions.

However, in recent years, few studies have system-
atically reviewed retinal image registration. Although 
reviews have been conducted on related topics, such as 
retinal disease classification [10] and segmentation [11], 
the specific area of retinal image registration has not 
been thoroughly explored. Saha et al. [12], and Pan and 
Chen [13] addressed retinal image registration; however, 
they focused on a single retinal modality and did not 
perform a comparative analysis with mainstream medi-
cal image registration techniques. Therefore, the purpose 
of this paper is to review and summarize existing medi-
cal image registration works using traditional and deep 
learning-based methods, aiming to help audiences grasp 
the development of medical image registration. Moreo-
ver, retinal image registration are also surveyed and syn-
thesized as a characteristic of this review. Finally, the 
current challenges in retinal image registration are also 
highlighted and future research directions discussed.

An initial literature search was performed using free-
text searches in PubMed and Google Scholar. Papers 
that included the search term Medical Image Registra-
tion were considered and the publishing conference or 
journal and citations checked to ensure the quality of the 
research. Later, another search was performed using the 
search term  Retinal Image Registration  and all related 
papers considered. In the analysis, different tempo-
ral scopes were adopted for traditional and contempo-
rary methods. For traditional methods the search was 
extended to encompass the last two decades, whereas for 
deep learning-based methods, the focus was narrowed 
to the most recent ten-year period to capture the latest 
advancements. Finally, the search space was iteratively 
increased by examining the bibliographies of the relevant 
papers.

The overall organization is illustrated in Fig.  1: Back-
ground section defines the basic concepts of image reg-
istration and briefly introduces the popular retinal image 
modalities. Traditional registration methods  and Deep 
learning-based registration methods sections review the 
general methodology of medical image registration cat-
egorized as traditional and deep learning, respectively. 
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Registration application in retinal images section reviews 
the applications in retinal image registration, and com-
pares them with the general methodology. Discus-
sion section discusses the advantages and disadvantages 
of the reviewed methods, highlights the current chal-
lenges, and provides potential future research directions. 
Finally, in Conclusion section, the paper is summarized.

Background
Problem formulation
Image registration is a fundamental task in image pro-
cessing. This involves finding correspondences between 
two images, namely, a moving and fixed image, and 
establishing a transformation between them. A fixed 
image is used as a reference, and the goal is to trans-
form the moving image to match the fixed image. Reg-
istration algorithms are designed to determine the best 
transformation, denoted by T ∗ , that maximizes the simi-
larity between two images [14]. This can be achieved by 
maximizing the image similarity function sim(If ,T (Im)) , 
where Im and If  are the moving and fixed images, respec-
tively, and T (Im) is the moving image transformed using 
the transform T.

Transformation types
This subsection introduces different transformation 
models, including rigid, affine, perspective, and deform-
able. Rigid, affine, and perspective transformations are 
linear, whereas deformable transformations are nonlin-
ear. Figure 2 visually demonstrates their effects.

Rigid transformation consists of translation and rota-
tion and preserves the original image’s size and shape. It 
is represented as:

Here, (x,  y) and (x′, y′) denote the original and trans-

formed pixel coordinates, R = cos θ − sin θ

sin θ cos θ
 is the 

rotation matrix, and t = [tx, ty]T is the translation vector.
Affine transformation combines translation, rotation, 

scaling, and shearing, offering more flexibility than rigid 
transformation. Affine transformation preserves straight 
lines and parallelism, but is not perpendicular. It is rep-
resented as:

Perspective transformation, or projective transfor-
mation, corrects perspective distortions, such as fore-
shortening and skew, between images. Perspective 
transformation maintains straightness but not parallel-
ism or perpendicularity. This is represented in homoge-
neous coordinates as follows:

Here, (x, y, w) is the homogeneous coordinate of the 
image to be transformed, (x′, y′,w′) is the target coor-
dinate in the transformed image. By setting w = 1 and 
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Fig. 1 Structure of the review
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transforming the target w′ = 1 , the target point (x′, y′) is 
obtained in Cartesian coordinates:

Deformable transformation allows nonlinear defor-
mation, better adapting to shape variations compared 
to rigid or affine methods. It is represented as:

Here, φ represents the deformation field and φ[x, y] 
represents the transformation vector (�x,�y) at (x, y).

Evaluation metrics
Reliable evaluation metrics are crucial for assessing the 
medical image registration performance and guiding 
the design of new algorithms. Here, a brief review of 
four popular evaluation metrics is provided.

Mean square error (MSE) and root mean square error 
(RMSE) are standard metrics for measuring the quality 
of image registration. MSE can be calculated as

(4)
x′ = Ax+By+C

ax+by+c

y′ = Dx+Ey+F
ax+by+c

(5)
[

x′

y′

]

=
[

x
y

]

+ φ[x, y]

RMSE simply adds an extra step to the square root based 
on MSE, and I and J have different meanings. 

1. images: serves as image similarity measurement 
between warped moving image I ′M and fixed image IF
.

2. point pairs: serves as the distance measurement 
between corresponding point pairs.

3. transformations: serves as the difference between 
ground truth transformation and predicted transfor-
mation.

Success rate (SR) quantifies the proportion of successful 
registrations out of the total number of registration sam-
ples. It can be mathematically expressed as

where Nsuccess is the number of successful registra-
tions and Ntotal is the total number of registration sam-
ples. However, the definition of success varies among 
studies, using different criteria or thresholds. The most 

(6)MSE =
1

N

N
∑

i=1

(I − J )2

(7)SR =
Nsuccess

Ntotal

× 100%

Fig. 2 Effect of different transformations. a Origin; b Rigid; c Affine; d Perspective; e Deformable



Page 5 of 23Nie et al. Visual Computing for Industry, Biomedicine, and Art            (2024) 7:21  

commonly used criterion is the MSE between the pre-
dicted and corresponding ground truth points.

Dice similarity coefficient (DSC) quantifies the spatial 
overlap between two segmentations. For registration, 
Dice is calculated between the segmentation maps of the 
fixed image and the warped moving image to evaluate the 
overlap of the anatomical structures, which can be math-
ematically expressed as

where SF and SM are the segmentations of IM and IF , 
respectively, and SM ◦ φ represents the warped segmen-
tation of the moving image using the transformation φ.

Jacobian determinant quantifies the physical plausi-
bility and invertibility of deformations by measuring 
how each pixel (or voxel if 3D) changes after the appli-
cation of a certain deformation field. When the Jacobian 
determinant is non-positive, the deformation is not dif-
feomorphic. The percentage of pixels (or voxels) with 
non-positive Jacobian determinants ( |Jφ | ≤ 0 ) is always 
used, and the Jacobian determinant J at each point (i, j) of 
the deformation field φ can be formulated as

For 3D images, the 3D Jacobian determinant of each 
point (i, j, k) is used. This can be similarly defined as:

Retinal image modalities
To illustrate retinal image registration, four commonly 
used techniques for photographing the eye are intro-
duced: CF photography, FA, OCT, and optical coherence 
tomography angiography (OCTA). These techniques 

(8)DSC = 2×
|SF ∩ (SM ◦ φ)|
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provide various medical imaging tools to analyze retinal 
conditions.

CF photography
CF photography involves the use of a fundus camera 
to capture color images of the retina using white light. 
Equipped with a low-power microscope, the camera 
magnifies the interior surface of the eye. This technique is 
cost effective and straightforward for trained profession-
als [15]. The CF images (Fig. 3a) contain a broader range 
of fundus and rich color information, making it helpful 
in checking the atrophy of the retina and macular. Addi-
tionally, it helps diagnose retinopathies, such as diabetic 
retinopathy (DR), AMD, and glaucoma, as well as reveal 
signs of systemic diseases, such as diabetes and cardio-
vascular diseases [16].

FA
The FA, shown in Fig.  3b, involves a special dye called 
fluorescein and a camera to trace blood flow in the ret-
ina and choroid. It uses a special dye, fluorescein, and a 
camera to examine blood flow in the retina and choroid. 
The radiopaque dye is injected into the vein of the tester’s 
arm, and the retinal vessels are photographed by trac-
ing the dye before and after injection. FA can be used to 
detect capillary leakage [17], aneurysms, and neovascu-
larization. However, some people may experience dis-
comfort after the procedure [18].

OCT
OCT is an imaging technology that uses the interference 
between an investigated object and a local reference sig-
nal to create high-resolution cross-sectional images and 
3D scans of the retina and anterior segment [19]. Fig-
ure 3c shows a cross-sectional scan of OCT. It is a non-
invasive technique that enables visualization of each layer 
of the retina, measurement of its thickness, and provides 
treatment guidance for conditions such as glaucoma, DR, 
and AMD. Intraoperative OCT (iOCT) is necessary in 
many retinal therapies, including glaucoma surgery [20] 
and epiretinal device implantation [21], because it pro-
vides real-time visualization of the retinal layers.

Fig. 3 Fundus photography examples using different imaging techniques. a CF from FIRE dataset [24]; b FA from CF-FA dataset [25]; c OCT from ref. 
[26]; d OCTA from OCTA-500 dataset [27]



Page 6 of 23Nie et al. Visual Computing for Industry, Biomedicine, and Art            (2024) 7:21 

OCTA 
Figure 3d showcases OCTA, an emerging imaging tech-
nology that builds upon OCT. OCTA captures images of 
the vascular network with a higher resolution and smaller 
view than FA without invasiveness. Using the decorrela-
tion signal produced by moving blood cells, OCTA gen-
erates an image of the microvascular network. Recent 
studies have demonstrated the ability of OCTA to over-
come the limitations of assessing blood flow in the optic 
nerve, explain the vascular pathogenesis of glaucoma [22] 
and show impressive success in preclinical DR diagnosis 
[23].

Traditional registration methods
Researchers have developed increasingly sophisticated 
algorithms and resilient features during the initial image 
registration phase to achieve precise registration. This 
paper employs the phrase “traditional methods” to differ-
entiate between the techniques utilized before the advent 
of deep learning and those implemented thereafter.

Intensity‑based methods
Intensity-based methods treat this problem as an itera-
tive optimization problem. The basic steps of the inten-
sity-based registration are shown in Fig.  4. Initially, a 
random transformation T0 is selected, and an objective 

function is defined to measure the similarity between the 
transformed image Tk(A) and another image B. The goal 
is to find the optimal transformation T ∗ to maximize sim-
ilarity. At each step, the optimization algorithm applies a 
perturbation to the parameters in T based on the current 
similarity measure sim(Tk(A),T (b)) . The process is ter-
minated when the similarity satisfies the requirement, or 
converges with no further increase.

Researchers have mainly concentrated on develop-
ing various similarity functions, including (normalized) 
cross-correlation (CC), (normalized) mutual informa-
tion (MI), and sum of squared differences (SSD). These 
functions are typically calculated by using the difference 
between each corresponding pixel in an input image pair. 
MI is considered the most important and widely used 
function. The large-deformation diffeomorphic metric 
mapping [28] model is based on manifold learning the-
ory and uses the Euler-Lagrange equation for optimiza-
tion. It regards the image as a point on the manifold and 
achieves image registration by calculating the deforma-
tion between the manifolds. This model can handle large 
deformations and maintain the nonlinear structure of an 
image.

Recently, several studies have been conducted using 
intensity-based methods. Lange and Heldmann [29] 
proposed a normalized gradient field (NGF) distance 
measure for 2D-3D image registration. To overcome the 
drawback that standard similarity measures may lead to 
optimization problems with many local optima, Öfver-
stedt et  al. [30] adopted a symmetric, intensity-interpo-
lation-free similarity measure that combines intensity 
and spatial information. Castillo [31] proposed an inten-
sity-based deformable image registration optimization 
formulation that is easier to optimize. The similarity 
function is designed as a simple quadratic function that 
can be solved using a straightforward coordinate descent 
iteration.

Feature‑based methods
Feature-based methods are popular methods of match-
ing images based on their correspondence. These meth-
ods focus on the local structures and salient features of 
images, rather than on global information. The process 
is divided into three steps. First, features such as points, 
edges, and regions are extracted from the input images. 
Next, a descriptor is calculated for each feature. In the 
matching stage, the closest features of the two images 
are matched to establish potential correspondences. The 
idea is that the corresponding points should have similar 
descriptors. Finally, the transformation parameters are 
estimated based on the matching results. The primary 
challenge is to determine the most effective method for 

Fig. 4 General registration procedure using iterative optimization
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extracting and describing features. Figure 5 illustrates the 
keypoint-based registration process.

One pioneering work in feature-point-based registra-
tion is the scale-invariant feature transform (SIFT) [32]. 
SIFT transforms image data into scale-invariant coordi-
nates, identifies stable keypoints, assigns orientations to 
keypoints, and generates feature descriptors for each key-
point. The extracted features are invariant under varia-
tions in scale, brightness, and angle. However, the process 
is computationally expensive. To address this problem, 
various efforts [33–37] have been made to enhance 
the performance and efficiency of SIFT. For instance, 
speeded up robust features (SURF) [33] simplify the fil-
ter function to reduce the dimensions of descriptors and 
improve computational efficiency. Another method, ori-
ented FAST and rotated BRIEF (ORB) [36], integrates the 
FAST [38] keypoint detector and the BRIEF [39] descrip-
tor to solve the high computational cost of SIFT features 
and the lack of rotation invariance, scale invariance, and 
sensitivity to noise in the BRIEF feature. As a result, ORB 
is capable of delivering a speedup of up to two significant 
figures compared with SIFT. Other studies have focused 
on edge and contour features using classic edge detection 
[40, 41] and image segmentation [42] algorithms for fea-
ture extraction.

Deep learning‑based registration methods
Deep learning-based image segmentation has proven to 
be a robust tool for image segmentation since 2019 [43]. 
These methods can improve accuracy and efficiency by 
automatically learning high-level features from the input 
images. Registration tasks, similar to segmentation, have 
been developed using deep learning methods. They dif-
fer from feature-based approaches because they utilize 

deep neural networks to replace feature extractors, fea-
ture matching, and transformation processes. Rather 
than directly optimizing the transformation parameters, 
these methods indirectly optimize the registration model 
parameters, thereby revealing the true essence of their 
effectiveness.

Feature‑based methods
The CNN is a pioneering work in computer vision. It uses 
learnable convolution kernels and inductive biases, such 
as locality and translation equivariance, to detect learned 
patterns in local regions and extract high-level features. 
This characteristic makes CNNs particularly suitable for 
object detection and image registration tasks, where spa-
tial features are essential. Table 1 displays the prominent 
works on CNN-based registration methods, which have 
become the most popular approaches in the field since 
2016.

Patch‑based methods
Instead of the direct regression of registration parameters 
from the image pair, a patch-based approach is used to 
divide the image into smaller patches. The patch is uti-
lized in different ways depending on the predicted trans-
formation type. For linear transformations, the network 
establishes a match that can be used to derive the regis-
tration parameters. Conversely, a local displacement field 
is output and combined for nonlinear transformations. 
Various CNN models were proposed by Zagoruyko and 
Komodakis  [73] that output the similarity between two 
image patches as feature descriptors. Cao et al. [46] pro-
posed a similarity-steered CNN regression architecture 
that estimates the displacement vectors at each corre-
sponding location between linearly aligned brain MR 

Fig. 5 General keypoint-based registration procedure
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pairs. Interpolation is subsequently utilized to obtain a 
dense deformation. Lv et  al. [51] divided the signal into 
three bins and used a CNN to estimate the displace-
ment field for abdominal motion correction throughout 
the respiratory cycle. However, these methods typically 
require additional steps of patch selection and final reg-
istration, which can be time-consuming. In addition, the 
generation or manually labeling ground truth can be a 
limiting factor.

End‑to‑end CNN methods
Supervised end-to-end networks have been developed 
for direct registration owing to their increased comput-
ing power. The ground truth is obtained using traditional 
algorithms or manual labels. A general end-to-end deep 
learning registration framework is shown in Fig. 6. Miao 
et  al. [44] employed 2D/3D CNN regressors to directly 
estimate rigid transformation parameters in real time. 
Quicksilver [45] divides 3D brain MRI into 3D patches 
owing to the limitations of GPU memory; however, it 
can directly predict the deformation field for the input 
patches. To improve the performance of supervised 
methods, Chee and Wu [50] leveraged unlabeled data to 

generate a synthetic dataset, and trained an affine image 
registration network. BIRNet [55] was proposed as a 
hierarchical dual-supervised fully CNNs based on U-Net 
[74] in the following year, with a loss function designed as 
a combination of the difference in image intensity and the 
difference in predicted displacement and ground truth 
displacement in each layer of U-Net’s decoder. Wang and 
Zhang [63] introduced a low-dimensional Fourier repre-
sentation of diffeomorphic transformations to improve 
training and inference efficiency.

Weakly supervised registration methods take advan-
tage of additional semantic information to ensure mean-
ingful registration and overcome the challenge of the 
unavailability of ground truth transformations. These 
methods utilize additional information such as anatomi-
cal segmentation to perform registration. Hu et  al. [52] 
proposed a weakly supervised registration network for 
multimodal 3D prostate gland images using the ground-
truth segmentation labels of the gland and other ana-
tomical landmarks. Xu and Niethammer [56] proposed 
a deep learning framework called DeepAtlas that jointly 
learns networks for image registration and segmenta-
tion, which are trained alternately and complement each 

Fig. 6 The overall framework for end-to-end deep learning-based medical image registration methods. The moving image IM and the fixed image 
IF are sent into the registration network R, and the output is obtained as the predicted transformation T. SegM denotes the anatomical segmentation 
label of IM while SegF denotes the anatomical segmentation label of IF . The small circles denote performing transformation T on IM or SegM 
using STN [75], gaining warped moving image I′

M
 or warped label Seg′

M
 . Red, blue, and green lines denote the supervised, weakly-supervised, 

and unsupervised training strategies, respectively
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other to achieve better results with only a few labels for 
segmentation.

Unsupervised methods have also been studied to elimi-
nate the ground-truth labels. The spatial transformer 
layer (STL) [75], which is a differentiable module that can 
warp an input image, is the foundation of many unsu-
pervised registration methods. STL enables the trans-
formation of a moving image in a differentiable manner, 
allowing the application of conventional similarity meas-
urements between the transformed and fixed images 
during training as the loss function. In 2017, DIRNet 
[47] was introduced as the first end-to-end unsupervised 
deformable registration network that adopted STL. Sub-
sequently, VoxelMorph [60] was proposed as a U-Net-
based network that achieved faster runtime and better 
performance than traditional iterative-based methods, 
with only unsupervised training. Auxiliary anatomical 
segmentation can be performed under weakly super-
vised settings. In their subsequent study, Dalca et al. [61] 
adopted a probabilistic generative model to provide dif-
feomorphic guarantees. Dual-PRNet [62] extended Vox-
elMorph [60] by incorporating a pyramid registration 
module that uses multilevel context information and 
sequentially warps convolutional features. Dual-PRNet++ 
[69] further enhances the PR module in Dual-PRNet by 
computing the correlation features and using residual 
convolutions.

Deep similarity methods
Pixel-based similarity metrics, such as MSE and NCC, 
are commonly employed in deep learning. However, 
these metrics may encounter difficulties when dealing 
with low-intensity contrasts or noise. To address these 
issues, deep similarity methods that utilize custom simi-
larity measures have been developed. For example, Deep-
Sim [67] utilizes semantic information extracted by a 
pretrained feature extractor in a segmentation network 
to construct a semantic similarity metric. This specialized 
metric allows the network to learn and adapt to dataset-
specific features, thereby improving the low-quality 
image performance. IMSE [71] takes this a step further 
with a self-supervised approach to train a modality-
independent evaluator using a new data augmentation 
technique called shuffle remap, which can provide style 
enhancement. The evaluator then serves as a multimodal 
similarity estimator to train the multimodal registration 
network.

Cascade methods
Cascade methods were inspired by traditional itera-
tive registration methods. The cascade architecture, 
that is, stacking networks in series, can provide progres-
sive registration in a coarse-to-fine manner. DLIR [57] 

implemented a cascade architecture by stacking an affine 
network followed by multiple deformable networks, with 
each network being trained sequentially and the weights 
of the previous networks fixed. By contrast, Zhao et  al. 
[58, 59] proposed a recursive cascade architecture simi-
lar to DLIR but much more sophisticated. They jointly 
trained their cascade networks to learn the progressive 
alignments more effectively.

Consistency‑based methods
Consistency-based methods add consistency constraints 
based on the registration or transformation properties. 
In 2020, Mok  and  Chung [65]  addressed the challenge 
of deformable transformation invertibility by introduc-
ing a swift and symmetric diffeomorphic image-reg-
istration approach. The network was trained with an 
inverse-consistency constraint, which enabled it to learn 
the bidirectional transformations of the mean shape of 
two input images to produce topology-preserving and 
inverse-consistent transformations. In the following year, 
Kim et  al. [66] proposed CycleMorph, which utilizes 
cycle consistency as an additional constraint to enhance 
topology preservation and reduce folding issues. To reg-
ister images X to Y and Y to X, the method employs two 
CNNs: GX and GY  . The warped images from both net-
works are used as image pairs and sent to the networks 
themselves to ensure that they could be returned to their 
original state, maximizing the similarity between the 
original and reversed images.

Other methods
However, with the development of novel architectures, 
the number of parameters has increased significantly, 
making it more difficult to achieve real-time registration 
without high computing power. Tran et al. [70] attempted 
to solve this problem using knowledge distillation. They 
transferred meaningful knowledge of distilled defor-
mations from a pretrained high-performance network 
(teacher network) to a fast, lightweight network (student 
network). After training, only a lightweight student net-
work is used during the inference, allowing the model to 
achieve a fast inference time using only a common CPU.

Translation‑based methods
Multimodal image registration can be complex, because 
it involves aligning images of varying modalities with 
unique intensity distributions. This poses a challenge for 
unimodal methods. However, an innovative solution to 
this issue is to leverage image translation techniques. This 
solution transforms the multimodal registration prob-
lem into a more straightforward unimodal registration 
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problem, as shown in Fig. 7. Table 2 lists the most widely 
available translation-based registration algorithms.

GANs
A GAN [84] consists of two subnetworks, a generator 
and a discriminator, trained in a game-theoretic setting 
to generate synthetic data that are indistinguishable from 
the actual data. The generator generates synthetic sam-
ples, whereas the discriminator attempts to differentiate 
between natural and synthetic samples. The training pro-
cess continues until the generated samples are indistin-
guishable from the actual ones.

Mahapatra et al. [76] used a GAN to generate a reg-
istered image with a distribution identical to that of 
the moving image and deformation field. They also 
ensured that the structure of the generated image 
matched that of the reference image through a struc-
tural similarity loss. Qin et al. [77] proposed a method 

for decomposing images into a latent shape space and 
separate latent appearance space for both modalities, 
which were used to learn a bidirectional registration 
function.

CycleGAN [85], which is based on GAN, enables 
image-to-image (i2i) translation using unpaired images. 
It employs cycle consistency loss to ensure that the 
reconstructed images are consistent with the original 
input images. Several multimodal registration methods 
[78, 79] have used CycleGAN as the primary network 
for image translation. Xu et al. [78] introduced two addi-
tional losses to enforce structural similarity between 
translated and authentic images. They also jointly trained 
the translated unimodal and multimodal streams to com-
plement each other. Han et  al. [79] implemented image 
synthesis in both directions and predicted the associated 
uncertainty, providing the information used in the fusion 
of the two direction estimations.

Table 2 Overview of translation-based image registration methods

For the Type column, R: Rigid, A: Affine, P: Perspective, and D: Deformable

Methodology Reference Year Scene Dimension Modality Type Evaluation metric

GAN Mahapatra et al. [76] 2018 Retina/Heart 2D CF/FA/MR D Dice/HD/ASD

Qin et al. [77] 2019 Lung/Brain 2D CT/MR D Dice/MCD/HD/RMSE

Xu et al. [78] 2020 Kidney/Abdomen 3D CT/MR D Dice/TRE

Han et al. [79] 2022 Brain 3D MR/CT D Dice/SD/HD/TRE

Zhang et al. [80] 2023 Liver 3D US D TRE

Contrastive learning Casamitjana et al. [81] 2021 Brain 3D Histology/MRI D RMSE/Dice

Chen et al. [82] 2022 Thorax/Abdomen/Lung 3D CT/MRI D Dice/HD95

DDPM Kim et al. [83] 2022 Face/Brain 2D/3D Expression/MR D Dice/|Jφ |

Fig. 7 Overall framework for translation-based methods. The moving image IM is first sent into the translation network G which performs 
inter-modality translation and outputs the fake image Fake IM . Then, Fake IM and the fixed image IF are sent into the registration network R, 
and the output is obtained as the predicted transformation T. The small circles denote performing transformation T on Fake IM using STN [75], 
gaining warped fake moving image Fake I′

M
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Contrastive learning
Contrastive learning defines positive and negative sam-
ples, and the goal is to learn a representation space 
where positive samples are close to each other and 
negative ones are far away. A recent study by Park 
et al. [86] explored the integration of contrastive learn-
ing into image translation by introducing an addi-
tional loss called patchNCE to a naive GAN. This loss 
encourages the generated output patches to be closer 
to their corresponding image patches than to random 
ones. Casamitjana et  al. [81] used patchNCE loss to 
train an i2i translation network for transferring source 
images to the desired target domain. Subsequently, they 
applied an independently trained intramodality reg-
istration network to the target domain to predict the 
deformation field. Building on this work, Chen et  al. 
[82] proposed an end-to-end architecture that jointly 
trains registration and translation networks without 
requiring a discriminator.

Denoising diffusion probabilistic model
A new generative model called the denoising diffusion 
probabilistic model (DDPM) [87] was recently intro-
duced. This model is designed to learn Markov transfor-
mation from a simple Gaussian distribution to an actual 
data distribution. DDPM has been shown to generate 
images of higher quality than GAN [88]. In addition, 
Kim et  al. [83] developed DiffuseMorph, which is the 
first and currently the only registration network based 
on diffusion. The network estimates the score function 
by adding a diffusion network before a standard regis-
tration network, and even shows the image registration 
trajectory by scaling the conditional score. However, 
unlike translation between modalities, DiffuseMorph 

constructs a score function directly between the input 
image pairs.

Transformer‑based methods
Recently, Google explored a method to use a pure trans-
former architecture in vision tasks, known as a vision 
transformer (ViT) [89], achieving competitive perfor-
mance compared to existing CNN methods. ViTs split 
the image into patches and treat them as tokens, as in an 
NLP application, which has led to their successful appli-
cation in various computer vision tasks, including image 
registration. Table  3 presents transformer-based image 
registration methods.

Hybrid methods
Initially, researchers attempted to integrate Transform-
ers into CNN-based models. Chen et  al. [90] pioneered 
the use of ViT on high-level features extracted from the 
convolutional layers of moving and fixed images. Build-
ing on this approach, Song et al. [94] proposed TD-Net, 
which utilizes multiple transformer blocks for down-
sampling. Conversely, Zhang et  al. [91] introduced a 
dual transformer network comprising two branches, 
intra-image and inter-image, with transformers embed-
ded in both branches to enhance the features, similar to 
the approach in ref [90]. Wang et  al. [95] enhanced the 
UNet [74] architecture for registration by introducing 
a bilevel connection and a unique transformer block. 
TransMorph [93] was proposed as a hybrid transformer-
ConvNet model that utilizes Swin transformers [100] in 
the encoder and convolutional layers in the decoder. The 
authors demonstrated that positional embedding can be 
disregarded, leading to a flatter loss landscape for reg-
istration. The following year, Chen et  al. [98] proposed 
TransMatch, emphasizing the importance of inter-image 
feature matching. They employed a transformer-based 

Table 3 Overview of transformer-based image registration methods

For the Type column, R: Rigid, A: Affine, P: Perspective, and D: Deformable

Reference Year Scene Dimension Modality Type Net architecture Evaluation metric Loss function

Chen et al. [90] 2021 Brain 3D MR D Hybrid Dice MSE + Smooth

Zhang et al. [91] 2021 Brain 3D MR D Hybrid - -

Mok and Chung [92] 2022 Brain 3D MR A Pure Dice/HD NCC + Dice

Chen et al. [93] 2022 Brain/Heart 3D MRI/XCAT/CT A/D Hybrid Dice/|Jφ | / SSIM/HD (MSE/LNCC) + Dice + Smooth

Song et al. [94] 2022 Brain 3D MR D Hybrid Dice/|Jφ | (MSE/LNCC) + Smooth

Wang et al. [95] 2022 Brain 3D MR D Hybrid Dice LCC + Smooth

Shi et al. [96] 2022 Heart 3D CT D Pure Dice/|Jφ | Sim + Smooth

Zhu and Lu [97] 2022 Brain 3D MR D Pure Dice/|Jφ | MSE + Smooth + Determi-
nant + Inverse

Chen et al. [98] 2023 Brain 3D MR D Hybrid Dice/HD/|Jφ | (LNCC/MSE) + Smooth

Wang et al. [99] 2023 Brain 3D MR D Hybrid Dice/ASSD/|Jφ | NCC + Smooth
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encoder and matched the regions using their new local 
window cross-attention module. Recently, Wang et  al. 
[99] introduced a motion decomposition transformer 
based on a multihead neighborhood attention mecha-
nism that can model multiple motion modalities.

Pure transformer methods
An alternative method involves the integration of a pure 
transformer architecture into a network. In a recent 
study by Shi et  al. [96], a unique X-shaped transformer 
architecture called XMorpher was introduced. The 
researchers incorporated cross-attention between two 
feature extraction branches and a window-size constraint 
to enhance the information exchange and locality of the 
network. In another study, Swin-VoxelMorph [97] uti-
lized a fully Swin transformer-based 3D Swin-UNet and 
a bidirectional constraint to optimize both forward and 
inverse transformations. To fill this gap in affine image 
registration, Mok and Chung [92] proposed a Coarse-to-
Fine vision transformer, a pure transformer architecture. 
The researchers transformed the image pairs into small-
to-large resolutions and passed them through different 
stages of ViT to achieve the desired results.

Analysis
The evolution of image registration methods has been 
closely tied to advancements in computing power and 
deep-learning architectures. In the early stages, when 
computing power was limited, patch-based methods 
predominated. However, as computational capabilities 
and network diversity have expanded, it has become 
feasible to process entire images, and even 3D volumes, 
in a holistic manner. This shift facilitated the simultane-
ous and integrated performance of feature extraction 
and matching tasks. Concurrently, the feature extraction 
component of image registration has been progressively 
enhanced by the rapid development of deep-learning 
architectures.

Translation-based methods are effective in mitigat-
ing multimodal registration challenges by aligning image 
pairs within the same modality, thereby simplifying the 
registration process. Recently, there has been a surge in 
generative network-assisted registration methods that 
capitalize on the latest advancements in generative net-
work models. Although GANs have shown promise in 
modality translation, their training process is notably 
complex and demands meticulous manual hyperparam-
eter tuning for both the generator and discriminator 
components. Previously, contrastive learning dominated 
the unsupervised learning landscape; however, it requires 
extensive high-quality datasets for effective training. 
Diffusion models have recently emerged as promising 
image-generation techniques capable of producing highly 

realistic effects. However, its potential application in 
image registration remains an open research area.

In a CNN, the convolution operations are typically 
localized, focusing on extracting features from within 
a specific neighborhood. By contrast, the transformer 
architecture, with its self-attention mechanism, offers a 
distinct advantage by facilitating the exchange of infor-
mation across the entire image. This capability is a key 
factor driving the integration of transformer models into 
registration networks because it significantly enhances 
the feature extraction process by considering global con-
textual information. There is also a trend towards the 
development of pure transformer architectures that have 
exhibited remarkable performances in various visual 
tasks. However, adapting the attention mechanism to 
suit specific requirements of image registration remains 
a problem. Therefore, cross-attention transformers are 
being investigated for their potential to refine the feature 
extraction phase and improve the feature-matching stage. 
This tailored approach can lead to more effective and 
robust registration methods, particularly for complex 
multimodal imaging scenarios.

By shifting the focus to the architecture of neural net-
works, distinct preferences in medical-image registration 
were observed. For linear registration, the CNN regressor 
stands out as the favored architecture owing to its ver-
satility in both feature extraction and direct regression 
for obtaining linear registration parameters. By contrast, 
fully convolutional networks (FCN), particularly those 
resembling the UNet architecture [74], are favored for 
nonlinear registration. This is because of the FCN’s abil-
ity to produce a deformation field that corresponds to the 
size of the input image, making it exceptionally suitable 
for such tasks. The FCN architecture typically includes an 
encoder-decoder framework, with the encoder respon-
sible for feature extraction and the decoder responsible 
for analyzing these features to generate results. A skip 
connection between the encoder and decoder facili-
tates the integration of the extracted features, enhancing 
the predictive capabilities of the network. Interestingly, 
more recent transformer-based models, which have had 
a significant impact, often adhere to this fundamental 
structure.

Building upon the FCN, derivative models such as the 
Siamese network and dual-branch network have been 
developed. These models employ two encoders that inde-
pendently extract features from the input image and sub-
sequently interact with and merge these features. In the 
context of single-modal registration tasks, the Siamese 
network, which shares weights between two encoders, 
is commonly utilized for its efficiency. However, in mul-
timodal registration tasks, this approach diverges by 
employing two distinct encoders with separate weights 
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to adaptively extract consistent features from two differ-
ent modalities. Furthermore, to achieve a more robust 
deformation field, certain networks have been designed 
to output a pyramid of multiscale deformation fields. 
These fields are then integrated to form the final defor-
mation field. The advantage of this multiscale approach is 
that it incorporates features from various levels of detail, 
rather than relying solely on the features produced by the 
decoder’s final output.

Innovation in loss functions is a critical aspect in the 
development of neural networks for medical image reg-
istration. In supervised training, the MSE between the 
predicted and true transformation parameters is the 
prevalent choice for the loss function. This metric pro-
vides a straightforward quantification of prediction accu-
racy. When shifting to unsupervised training, in which 
ground-truth transformation parameters are unavailable, 
image-similarity measures become essential. The most 
widely utilized image similarity losses include the MSE 
and CC. The CC, in particular, is calculated as follows:

where Cov(X ,Y ) = 1

|�|
∑

x∈� X(x)Y (x)− 1

|�|2
∑

x∈� X(x)
∑

y∈� Y (y) is 
the covariance. In weakly supervised training scenarios, 
an additional loss function often comes into play-the dice 
loss, which is predicated on the segmentation labels of 
image pairs. This loss function is particularly adept at 
capturing spatial agreement between segmentations. 
Moreover, for nonlinear registration tasks, it is crucial to 
incorporate a smoothing penalty term into the loss func-
tion. This term encourages smoothness in the deforma-
tion field by promoting similarity in deformation 
quantities across adjacent positions. The most favored 
penalty term is the diffusion regularizer, which is mathe-
matically expressed as:

Furthermore, the incorporation of novel constraints 
that leverage the fundamental properties of the registra-
tion and transformation processes results in the creation 
of more refined output transformations. This approach 
is the cornerstone of consistency-based methods, which 
aim to ensure that the transformations generated by the 
network closely adhere to the underlying physical and 
geometrical principles of the registration task. In addi-
tion to these advancements, deep similarity methods 
have introduced the concept of training an evaluator or 
a custom similarity function to serve as a network’s loss 
function. This approach enables the network to automati-
cally learn an appropriate similarity metric that aligns 

(11)CC(X ,Y ) =
Cov(X ,Y )

√
Cov(X ,X)Cov(Y ,Y )

(12)Rdiff(φ) =
∑

||∇φ ||2

with the specific characteristics and requirements of the 
task.

While traditional methods require cumbersome itera-
tive optimization calculations, which result in signifi-
cant time consumption, deep learning-based approaches 
offer a notable efficiency advantage by allowing data to 
be input into the network during testing and providing 
results immediately after training. Furthermore, from 
a preprocessing standpoint, both traditional and deep 
learning-based methods require the downsampling of 
typically collected high-resolution medical images [101]. 
Utilizing the original scale would not only amplify the 
search space for the iterative optimization algorithm but 
also increase the number of parameters required by the 
deep learning network, imposing substantial overhead on 
both methodologies. Nevertheless, traditional methods 
have the advantage of delivering more stable outcomes 
and are convenient for plug-and-play applications. By 
contrast, deep learning-based methods require special-
ized training for each task. The trained model becomes 
obsolete when the application context shifts.

Registration application in retinal images
Traditional methods
First, intensity-based methods for retinal image regis-
tration were explored. The aforementioned intensity 
similarity metrics, such as MI [102–104] and CC [105], 
were used. Feature-based methods are more effective 
than intensity-based methods for retinal image registra-
tion. One popular approach is to use typical landmarks 
in retinal images. In 2003, Stewart et al. [106] introduced 
a Dual-Bootstrap Iterative Closest Point (Dual-Bootstrap 
ICP) algorithm for retinal image registration. This algo-
rithm begins by matching individual vascular landmarks 
and aligning images based on the detected blood ves-
sel centerlines. Other studies have utilized vascular fea-
tures [107–110] and optical discs [111] for registration 
purposes.

One potential solution is to enhance the capabilities of 
keypoint detectors and feature descriptors to improve 
their performance. Ramli et al. [112] designed a D-sadle 
detector capable of detecting feature points even in low-
quality regions. Yang et al. [113] built upon previous work 
[106] to create the generalized dual-bootstrap iterative 
closest point, which uses better initialization, robust esti-
mation, and strict decision criteria to align retinal images 
from different modalities. Chen et al. [114] implemented 
a Harris detector to identify corner points, extract partial 
intensity-invariant feature descriptors, and perform bilat-
eral matching between image pairs. The outliers are then 
removed, and the final transformation is applied. Ramli 
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et al. [112] improved the saddle detector to detect feature 
points in low-quality regions. Gharabaghi et al. [115] uti-
lized affine moment invariants as shape descriptors. By 
combining the domain knowledge, SIFT and its variants 
are used in refs [116, 117]. Li et al. [118] introduced ori-
entation-independent feature matching that uses a new 
circular neighborhood-based feature descriptor.

Deep learning‑based methods
In this subsection, we review deep learning-based meth-
ods for retinal applications, categorized as outlined in 
“Deep learning-based registration methods” subsec-
tion. Table 4 summarizes the deep learning-based retinal 
image registration methods.

Feature‑based methods
The identification of retinal landmarks has been a catalyst 
for the development of deep learning techniques. In par-
ticular, ref. [119] used handcrafted features, whereas [131, 
132] used CNNs. Specifically, Lee et  al. [119] employed 
a CNN to classify patches of various step patterns based 
on intensity changes. By contrast, Rivas-Villar et al. [131] 
used a CNN to produce a heatmap of blood vessels and 
bifurcations, and applied the maximum detection and 

feature matching method RANSAC [137] during test-
ing. Similarly, Kim et al. [132] used a vessel segmentation 
network and joint detection network to identify vascu-
lar landmark points for registration. The SIFT algorithm 
[32] is then used to compute the descriptors based on the 
regions around these points. Benvenuto et al. [129] used 
an Isotropic Undecimated Wavelet Transform to seg-
ment blood vessels and ocular shapes. Based on the seg-
mentation, the registration network adopted from U-Net 
is trained to perform registration. This year, Rivas-Villar 
et al. [135] explored deep learning registration methods 
for OCT 3D Scan. They first performed affine alignment 
on a 2D projection, followed by z-axis registration based 
on layer segmentation.

Recent studies explored the potential of end-to-end 
methods that utilize innovative network architectures. 
De Silva et al. [121] developed a model that employs a 
VGG 16 feature extractor, a correlation matrix, and a 
regression network to emulate the traditional feature-
based registration pipeline, encompassing feature 
extraction, matching, and computation of the registra-
tion transformation; the effectiveness of their model 
was evaluated on a multimodal retinal dataset. Tian 
et  al. [123] enhanced the U-Net architecture [74] by 

Table 4 Overview of deep learning-based retinal image registration methods 

For the TS (Training Strategy) column, S: Supervised, W: Weakly supervised, U: Unsupervised. For the MM (multi-modal) column, Y: Yes, N: No. For the Type column, R: 
Rigid, S: Similarity, A: Affine, P: Perspective, Z: Z-axis, and D: Deformable

Reference Year Modality Type TS MM Net architecture Evaluation metric Loss function

Lee et al. [119] 2019 CF/FA /OCT A U Y CNN regressor SR/RMSE/MAE/MEE -

Zhang et al. [120] 2019 CF/FA D W Y FCN Dice Style + Content + MSE + 
SSIM + Smooth

De Silva et al. [121] 2020 CF/F/IR A/D S Y Siamese + CNN regressor Reg. error Overlap + Displacement

Wang et al. [122] 2020 CF/IR P S Y Seg. + Det. and Desc. + 
Out. Rej.

SR/Dice CE + MSE + Dice

Tian et al. [123] 2020 CF/OCT D U Y FCN + Pyramid MSE/HD/MSSIM CC + Edge + Smooth

Zou et al. [124] 2020 CF D U N FCN + Pyramid PA/Dice/RMSE NCC + Smooth

Wang et al. [125] 2021 CF/FA/IR P S Y Seg. + Det. and Desc. + 
Out. Rej.

SR/Dice CE + MSE + Dice

Zhang et al. [126] 2021 CF/FA/IR A/D S Y Seg. + Det. and Desc. + Out. 
Rej. / FCN

Dice CE + MSE + Dice/Style + 
MSE

Sui et al. [127] 2021 MSI D W N FCN + Pyramid TRE/Dice Sim + Smooth

An et al. [128] 2022 CF/FA/IR R U Y Seg. + Det. and Desc. + 
Out. Rej.

SR/Dice Pos. + Desc. + Score + CE + 
(MSE/Dice)

Benvenuto et al. [129] 2022 CF D U N FCN MSE/SSIM/Dice NCC

López-Varela et al. 
[130]

2022 OCTA D U N FCN + Pyramid MSE/NRMSE/SSIM/VIF LNCC

Rivas-Villar et al. [131] 2022 CF S S N FCN RMSE/AUC MSE

Kim et al. [132] 2022 CF P S N FCN AUC CE + Focal + Smooth

Santarossa et al. [133] 2022 CF/FAF/FAG P S Y CNN regressor AUC Relaxed Ranking

Liu et al. [134] 2022 CF P S N Det. and Desc. EER Det. + Desc.

Rivas-Villar et al. [135] 2023 OCT A+Z U N Det. and Desc. Error Repeatability + Reliable

Liu and Li [136] 2023 CF P U N CNN + Attn. AUC/SR CE
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incorporating an image pyramid for multiscale input 
and introduced a novel edge similarity loss calculated 
through the correlation between the gradients of the 
fixed and moving images. However, based on U-Net, 
Sui et al. [127] further refined this approach by feeding 
an image pyramid of the original image and a ground 
truth vessel map into each layer of the encoder and 
decoder, respectively. Liu et  al. [134] proposed Super-
Retina, an end-to-end method with jointly trainable 
keypoint detector and descriptor.

It is worth noting that Wang et  al. [120, 122, 125, 
126, 128] made significant contributions to multi-
modal retinal image registration. They initiated their 
work using a deformable registration model compris-
ing a vessel segmentation network and a deformation 
field estimation network, as described in ref. [120]. In 
their subsequent study [122], they refined the vessel 
segmentation network from their prior work and inte-
grated a pretrained superpoint model [138] for feature 
detection and description, complemented by an outlier 
rejection network to facilitate perspective registration. 
This three-stage methodology, consisting of segmenta-
tion, detection, description, and outlier rejection, was 
subsequently employed in ongoing research. A notable 
advantage of this approach is its ability to bridge the 
intensity gap between different modalities; however, 
the complexity of the methodology remains a draw-
back. They further improved the segmentation network 
using pixel-adaptive convolution [125]. In ref. [126], the 
authors introduced perspective registration as a coarse 
step, followed by the addition of a deformable frame-
work for fine alignment to achieve remarkable accuracy. 
Most recently, ref. [128] transformed the three-stage 
approach into a self-supervised process.

Translation‑based methods
Although numerous studies have been conducted on i2i 
translation in various retinal modalities [139, 140], few 
studies on retinal image registration have used trans-
lation-based techniques. MedRegNet [133], which uti-
lizes CycleGAN [85] as an image-translation tool, is the 
only available method of its kind. However, it is primar-
ily employed as a generator of multimodal retinal data, 
rather than as a registration tool. The aforementioned 
work [120, 122, 125, 126, 128] can also be regarded as 
translation-based when addressing multimodal data. 
These studies capitalize on image segmentation to pro-
duce blood vessel segmentation maps, effectively con-
verting different modalities into a unified ‘mask’ modality 
for registration purposes.

Transformer‑based methods
Research on transformer-based retinal image registration 
methods is still in its infancy. GeoFormer [136] is the first 
method to adopt an advanced transformer-based atten-
tion blocks for detector-free feature matching on retinal 
images. It enhances coarse features by using geometri-
cally matched regions rather than entire images, resulting 
in more accurate coarse matches.

Analysis
In the domain of retinal image registration, traditional 
approaches have extensive applications and often employ 
various retinal modalities. Some studies have integrated 
domain-specific knowledge into general registration 
methodologies. However, these intensity-based methods 
can be sensitive to variations in illumination across image 
pairs, which may arise from differences in camera set-
tings, imaging modalities, or changes in the retinal back-
ground due to retinopathy. This sensitivity is a common 
challenge affecting feature-based methods that require 
robust feature descriptors to perform well. Moreover, a 
significant drawback of many conventional registration 
techniques is their long inference times.

Deep learning-based methods for retinal image regis-
tration emerged more recently in 2019 and can be cat-
egorized into two main approaches. The first approach 
leverages state-of-the-art network architectures within 
the framework of mainstream registration methods. 
Although these methods deliver exceptional perfor-
mance, their reliance on architectural design for domain-
specific insights is notable. By contrast, the second 
approach aims to address the registration challenge in a 
manner that is more tailored to the domain. This involves 
extracting or utilizing key features such as vessel segmen-
tation or vascular junctions for subsequent registration 
processes.

It has been observed that the diversity of approaches 
in retinal image registration appeared to be considerably 
lower than that in other areas of medical image registra-
tion. This can be attributed to several factors, including 
differences in the imaging principles and targets. For 
instance, imaging modalities such as CT and MR utilize 
X-rays and magnetic fields to generate images with high 
tissue contrast while maintaining consistent intensities 
across various acquisitions. By contrast, retinal image 
registration commonly relies on CF and FA images, 
which depend solely on white light illumination. The 
unique imaging principle of retinal imaging, combined 
with the natural movement of the subject’s eyeballs, 
can result in significant brightness variations within a 
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sequence of images. Furthermore, the imaging target 
itself differs, while CT and MR are often used to image 
areas rich in features, such as the chest, abdomen, and 
brain. Retinal images predominantly focus on the vas-
culature and the optic disc, which exhibit less distinctive 
features. Consequently, learning the robust features for 
retinal image registration using deep learning is inher-
ently challenging.

This survey revealed the scarcity of translation- or 
transformer-based approaches within the domain of 
retinal image registration. Notably, the majority of trans-
former-based studies have been conducted using MRI 
datasets. This trend can be attributed to the increased 
availability of public MRI datasets, which offer a wealth 
of data for research purposes. In addition, the ViT model, 
a prominent example of a transformer-based architec-
ture, requires a substantially larger dataset to surpass the 
performance of conventional CNN models. While strat-
egies such as data augmentation and the employment 
of pretrained models may offer provisional relief to this 
challenge, the crux of the solution lies in more publicly 
available data.

Discussion
Challenges in retinal image registration
Lack of public datasets
In artificial intelligence, many tasks rely on competi-
tion and public evaluations to make progress. These 

challenges offer a comprehensive and impartial plat-
form for researchers to compare the performance, 
computation time, and robustness of newly designed 
algorithms. The Learn2Reg challenge, for example, 
recently focused on registering medical imaging modal-
ities commonly used in the brain, abdomen, and tho-
rax [141]. The datasets currently available for retinal 
image registration are listed in Table 5. Sufficient public 
retinal image datasets have not been formed for each 
modality, nor has there been competition.

Different transformation type used from mainstream medical 
image registration
Based on articles using deep learning, the proportion of 
different transformation types used in the general medical 
image registration and the proportion of each type, spe-
cifically in the retinal image registration were calculated, 
as shown in Fig. 8. It was found that over 80% of studies 
on general medical image registration employed nonlinear 
transformations. On the contrary, linear transformation is 
the most commonly used method in retinal applications. 
This is because retinal images are primarily captured from 
a limited area of the retina while other commonly used 
modalities are 3D images with the subject completely 
contained in the image. Such difference in transformation 
types makes it difficult for retinal image registration to 
learn from mainstream medical image registration.

Table 5 Public retinal image registration datasets

Dataset Source Camera specifications Format Modality Resolution Size (pairs) Ground truth

FIRE [24] Papageorgiou Hospital, Aristotle 
University of Thessaloniki, Greece

Nidek AFC-210 fundus camera JPG CF 2912×2912 134 Control points

FLoRI21 [142] RECOVERY study [143] Optos California and 200Tx cameras TIFF UWF FA 3900×3072 15 Control points

CF-FFA [25] Unknown Unknown JPG CF & FFA 720×576 60 None

Fig. 8 Comparative analysis of deep learning-based method using different transformation types. Pie chart (a) illustrates the distribution 
of different transformation types in general medical image registration, while pie chart (b) displays the distribution in retinal image registration
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Poor similarity metric
Similarity metrics are used to optimize the registra-
tion network in an unsupervised manner or to evaluate 
the quality of the registration. The key technical chal-
lenge in medical-image registration is the selection and 
design of the most effective similarity measurement 
methods. Brightness changes may be the most signifi-
cant difficulty in unimodal image registration. One of 
the main obstacles to multimodal image registration 
is that images from different modalities have different 
resolutions, contrasts, and luminosities. Therefore, a 
newly designed similarity metric, or a completely dif-
ferent technical route for multimodal image registra-
tion, is urgently required.

Intractable retinopathy
During clinical treatments, most patients experience eye 
retinopathy; therefore, their retinas may be severely dam-
aged. Small bulges, swellings, or blood may cover the 
normal fundus and negatively affect photography. Some dis-
eases alter the retinal structure. Most samples in the public 
datasets are retinal images from ordinary people. However, 
when used for clinical diagnosis, the retinas of some patients 
are likely to have retinopathy. In this case, a network trained 
using normal images does not perform well.

Future scope
In this era of large models, it can be anticipated that a 
general large model for registration will soon emerge. 
With the ability to use human-marked point pairs or 
corresponding mask areas as registration prompts, this 
model can be trained on higher quality, broader types, 
and more extensive image registration datasets, allowing 
for better generalization.

There remain many areas in which retinal image regis-
tration can be explored. With multiple imaging modali-
ties, there is a pressing need for multimodal image 
registration. To address this issue, translation-based 
and disentangling representation methods may be new 
approaches. Interestingly, any pioneers attempting trans-
former-based retinal registration methods that could lead 
to even greater accuracy was not observed.

Moreover, data scarcity remains a significant challenge; 
however, this can be overcome through data generation 
or transfer learning. For instance, the dataset with image 
pairs could be supplemented through random translation, 
rotation, brightness, and contrast enhancement using reti-
nal images from other datasets. When employing transfer 
learning, endoscopic images from other parts of the human 
body can be trained or virtual datasets can be manually 
generated and fine-tuned for retinal image registration.

Conclusions
This study thoroughly analyzed medical image regis-
tration, focusing on its application in retinal imaging. 
The review compares general medical image registra-
tion techniques and their adaptation to retinal imaging, 
highlights gaps in the current research, and provides 
advice on avenues for future research. State-of-the-art 
medical image registration methods were also evaluated 
and the advantages and disadvantages of each method. 
Finally, challenges specific to retinal registration were 
identified and potential opportunities for further 
advancement discussed.
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