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Abstract 

Deep learning (DL) has proven to be important for computed tomography (CT) image denoising. However, such 
models are usually trained under supervision, requiring paired data that may be difficult to obtain in practice. Diffu-
sion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling. In particu-
lar, using the estimated unconditional score function of the prior distribution, obtained via unsupervised learning, 
one can sample from the desired posterior via hijacking and regularization. However, due to the iterative solvers used, 
the number of function evaluations (NFE) required may be orders of magnitudes larger than for single-step samplers. 
In this paper, we present a novel image denoising technique for photon-counting CT by extending the unsupervised 
approach to inverse problem solving to the case of Poisson flow generative models (PFGM)++. By hijacking and regu-
larizing the sampling process we obtain a single-step sampler, that is NFE = 1. Our proposed method incorporates 
posterior sampling using diffusion models as a special case. We demonstrate that the added robustness afforded 
by the PFGM++ framework yields significant performance gains. Our results indicate competitive performance 
compared to popular supervised, including state-of-the-art diffusion-style models with NFE = 1 (consistency mod-
els), unsupervised, and non-DL-based image denoising techniques, on clinical low-dose CT data and clinical images 
from a prototype photon-counting CT system developed by GE HealthCare.
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Introduction
X-ray computed tomography (CT) is a medical imaging 
modality used for the diagnosis and treatment planning 
of a wide range of diseases, including stroke, cancer, and 
cardiovascular diseases. However, because of the poten-
tial risks posed by even low doses of ionizing radiation, 
considerable efforts have been made to enable high diag-
nostic quality while maintaining a dose as low as reasona-
bly achievable [1, 2]. Photon-counting CT (PCCT), which 
is based on the latest generation of CT detector technol-
ogy, can reduce the dose via photon energy weighting 
and eliminate the effects of electronic noise. PCCT can 
also enable imaging with a higher spatial resolution and 
produce single-exposure energy-resolved images [3–6]. 
However, obtaining high resolution in either space or 
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energy decreases the number of photons in each voxel 
or energy bin, which increases the image noise. Thus, an 
excellent noise performance is required, possibly exceed-
ing the capabilities of today’s state-of-the-art denoising 
methods.

In recent years, deep learning (DL) methods have dem-
onstrated remarkable success in low-dose  CT (LDCT) 
and PCCT image denoising [7–19]. However, these 
methods are commonly trained using supervised learn-
ing, which requires paired data, which are not always 
available in practice. In particular, paired and perfectly 
registered clinical images are difficult to obtain, and 
methods for generating paired data based on simulating 
low-dose scanning [20] or adding noise maps from phan-
tom scans [21] may be sensitive to imperfect modeling of 
the systems or mismatches between patient and phantom 
geometries. In PCCT, pulse pileup affects high- and low-
dose scans differently, further confounding the training 
schemes. Therefore, unsupervised and self-supervised 
methods are becoming increasingly common [12, 13, 
15–17].

Diffusion-style models, such as diffusion and Poisson 
flow models, have demonstrated considerable success in 
unconditional [22–29] and conditional image generation 
[25, 30–33]. Notably, for medical imaging, this family of 
models lends themselves very well to inverse problem 
solving via posterior sampling and has already been dem-
onstrated on a range of inverse problems [17–19, 34, 35]. 
In particular, in the case of diffusion models, it is pos-
sible to manipulate the sampling process and retask the 
network, trained in an unsupervised manner, for inverse 
problem-solving [17, 31, 34, 35]. This is typically per-
formed in two steps. First, information from the prior 
distribution, that is, the ground truth data, is obtained by 
estimating its time-dependent score function via denois-
ing score matching, exactly as when training an uncondi-
tional generator. Once equipped with the estimated score 
function, samples can be drawn from the desired poste-
rior distribution by augmenting the sampling process 
with a data consistency step that regularizes the genera-
tive process and forces the sample to be consistent with 
the input (conditioning) image. Moreover, running the 
sampling process using the initial sample from a prior 
noise distribution is unnecessary. Indeed, it is even ben-
eficial to ‘hijack’ the sampling process by inserting a ver-
sion of the condition image at some stage of the reverse 
diffusion [31, 35]. Hijacking will not only help regularize 
the problem further but will also result in faster sam-
pling; a smaller number of function evaluations (NFE) 
are required to achieve the desired image quality. Note 
that this is an efficient strategy because the learned score 
function can be successfully used to solve a range of dif-
ferent inverse problems or downstream tasks without 

retraining [34, 35]. It is also possible to solve the inverse 
problem directly using supervised learning [18, 19]. 
However, the supervised approach requires paired data.

The NFE required for diffusion-style models, such as 
diffusion and Poisson flow models, may be of the order 
101–103 for both conditional (image-to-image) and 
unconditional (noise-to-image) generation. This lim-
its their use in applications where speed is critical, such 
as clinical CT image denoising. Efforts to reduce the 
required NFE include the use of efficient ordinary dif-
ferential equation (ODE) samplers [26] and distillation 
techniques [36]. Consistency models [37] build on the 
probability flow ODE formulation of diffusion models 
and learn a consistency network that maps any point 
on the trajectory to its initial point, including the final 
point, which is a sample from the prior noise distribu-
tion. Thus, it achieves single-step sampling (NFE = 1). A 
consistency model may be distilled from a pre-trained 
diffusion model using so-called consistency distillation 
(CD) or obtained as a stand-alone model using consist-
ency training.

This study presents a novel image denoising technique 
for low-dose and photon-counting CT that extends pos-
terior sampling Poisson flow generative models (PPFM) 
[19] to cases where paired data are not available. The 
PPFM is a diffusion-style posterior sampling image 
denoising method that exploits the added robustness of 
the PFGM++ framework to enable NFE = 1 while main-
taining high image quality. In particular, an unconditional 
PFGM++ was first trained for image generation on ran-
domly extracted patches from the prior, ground truth, 
and images. The sampling process was subsequently 
hijacked and regularized, as in PPFM, to ensure consist-
ency with the input, condition, and image. The main con-
tributions of this study are as follows. (1) Unsupervised 
PPFM, a novel image-denoising technique that extends 
PPFM [19] to the case when paired data are unavailable, 
is presented. (2) It is demonstrated that it is possible to 
efficiently train the network in an unsupervised manner 
on patches extracted from ground truth data and sub-
sequently manipulate the sampling process to denoise 
full-resolution images. Training on randomly extracted 
patches is more efficient in terms of graphics memory 
requirements and provides additional regularization. (3) 
The proposed method contains a posterior sampling dif-
fusion model (EDM [27]) as a special case when D → ∞. 
The results indicate that the added flexibility of choosing 
D as a hyperparameter results in improved performance 
when D → ∞ as is the case for diffusion models. (4) The 
proposed method was evaluated using clinical low-dose 
CT (LDCT) images and clinical images from a prototype 
PCCT system developed by GE Healthcare (Waukesha, 
WI, USA) [38]. It is demonstrated that the proposed 
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method performs competitively compared with current 
state-of-the-art diffusion-style models with NFE = 1 and 
consistency models [37]. Notably, the consistency model 
was trained in a supervised manner, whereas the pro-
posed method was unsupervised. Despite imposing a sig-
nificantly laxer data requirement, the proposed method 
performs both quantitatively and qualitatively. In addi-
tion to consistency models, the proposed method was 
compared with popular supervised, unsupervised, and 
non-DL-based image denoising techniques.

The code used in this study is available at: https://​
github.​com/​denni​shein/​pfgmpp_​PCCT_​denoi​sing.

Methods
Diffusion models and PFGM++ 
Diffusion models (EDM [27]) and PFGM++ [29] work 
by iteratively denoising images by following a physically 
meaningful trajectory inspired by nonequilibrium ther-
modynamics and electrostatics, respectively. Despite 
the widely different underlying physics, diffusion mod-
els and PFGM++ are intimately connected in theory 
and practice. The training and sampling processes of 
PFGM++ converge to those of the diffusion models in 
the D → ∞, r = σ

√
D limit [29]. Thus, diffusion mod-

els were incorporated as special cases of PFGM++. In 
addition, it is possible to reuse the training and sampling 
algorithms in the EDM [27] for PFGM++ using a simple 
change in variables and an updated prior noise distribu-
tion [29]. Expanding on the probability flow ODE formu-
lation in ref. [25], the EDM [25] writes the ODE as

where ∇xlogpσ(t)(x) is the time-dependent score function 
of the perturbed distribution and σ(t) is the noise scale. 
This ODE defines the trajectory between an easy-to-
sample prior noise distribution, a simple Gaussian distri-
bution, and the data distribution of interest. Intuitively, 
running the ODE forward or backward in time nudges 
the sample toward or away from the prior noise distribu-
tion. Notably, Eq.  1 depends only on the data distribu-
tion via the gradient of the log-likelihood, also known as 
the score function. Let p(y) represents the data distribu-
tion, p(σ) represents the distribution of noise scales, and 
pσ (x|y) = N

(
y, σ 2I

)
 the Gaussian perturbation kernel. 

The score function can then be estimated using a pertur-
bation-based objective:

where λ(σ) denotes a weighting function. Given the esti-
mation of the time-dependent score function, a sample 
was generated by solving Eq.  1, using an iterative ODE 

(1)dx = −σ̇ (t)σ (t)∇xlogpσ(t)(x)dt

Eσ∼p(σ )Ey∼p(y)Ex∼pσ (x|y)
[
�(σ )�fθ (x, σ)−∇xlogpσ (x|y)�22

]

solver, starting from an initial sample from the prior 
noise distribution.

PFGM++ [29] operates by treating N-dimensional data 
as electric charges in an (N + D)-dimensional augmented 
space. Let ỹ := (y, 0) ∈ R

N+D and x̃ := (x, z) ∈ R
N+D 

denote the augmented ground truth and perturbed data, 
respectively. The object of interest in high-dimensional 
electric fields is

where SN+D−1(1) is the surface area of the unit 
(N + D − 1)-sphere and p(y) is the ground truth and data 
distribution. However, owing to the rotational symme-
try of the D-dimensional cylinder,

∑D
i=1z

2
i = r2,∀r > 0 , 

dimensionality reduction is possible [29]. In fact, it 
suffices to track the norm of the augmented vari-
ables r = r

(
x̃
)
:= �z�2 . For notational brevity, 

ỹ := (y, 0) ∈ R
N+1 and  x̃ := (x, r) ∈ R

N+1 are redefined.
The ODE of interest is:

where E
(
x̃
)
x
 , and E

(
x̃
)
r , a scalar, denote the x and r 

components of E
(
x̃
)
 , respectively. Equation  3 defines 

a surjection between the data on the r = 0 hyperplane 
and an easy-to-sample prior noise distribution on the 
r = rmax hyper-cylinder [29]. For the diffusion models, 
PFGM++ employs a perturbation-based objective. Let 
p(r) be the training distribution over r and pr(x|y) be the 
perturbation kernel. Then, the objective of interest is

Now, if pr(x|y) ∝ 1/
(
�x − y�2

2
+ r2

)N+D
2  then it 

is possible to show that the minimizer of Eq.  4 
is f ∗θ

(
x̃
)
=

√
DE

(
x̃
)
x
· E

(
x̃
)−1

r
 . As for diffu-

sion models, a sample can be generated by solving 
dx/dr = E x

x
/E x

r
= f ∗θ x /

√
D , starting from an 

initial sample from the prior noise distribution, prmax , 
using an iterative ODE solver.

Problem formulation
The problem of obtaining a high quality reconstruc-
tion ỹ ∈ R

N of y ∈ R
N based on noisy observations 

c = F(y) ∈ R
N is treated as a statistical inverse problem, 

where F : RN → R
N is a ‘catch-all’ noise degradation 

operator, including factors such as quantum noise [7], and 
N: = n × n. Thus, it is assumed that the data follow a prior 
distribution y ∼ p

(
y
)
  and the objective is to enable sam-

pling from the posterior  p(y|c) . This approach to inverse 
problem-solving is referred to as posterior sampling. In this 

(2)E
(
x̃
)
=

1

SN+D−1(1)

∫
x̃ − ỹ

�x̃ − ỹ�N+D
p(y)dy

(3)dx = E
(
x̃
)
x
· E

(
x̃
)−1

r
dr

(4)Er∼p(r)Ey∼p(y)Ex∼pr (x|y)�fθ
(
x̃
)
−

x − y

r/
√
D
�
2

2

https://github.com/dennishein/pfgmpp_PCCT_denoising
https://github.com/dennishein/pfgmpp_PCCT_denoising
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study, y is treated as “ground truth” despite the fact that it 
may contain noise and artifacts.

Image denoising via posterior sampling
The proposed method has two main components: (1) A 
learned PFGM++ trained in an unsupervised manner for 
unconditional image generation. (2) A sampling scheme 
that regularizes the generative process and enforces con-
sistency with the input, conditions, and images. By com-
bining the information from the prior distribution, p(y), 
embedded in the learned empirical electric, the field can 
be sampled with a modified sampling scheme to ensure 
data consistency, and sampled from the desired posterior 
p(y|c), thus providing a solution to the inverse problem. 
This strategy has been successfully applied to diffusion 
models for a range of inverse problems [17, 31, 34, 35]. 
The key idea of this study was to extend this approach to 
the case of PFGM++. Direct extension to PFGM++ is 
feasible because of its intimate connection with diffu-
sion models. The theoretical analysis is left for future 
work and empirical support is provided for obtaining 
a sample from the desired posterior. In particular, it is 

demonstrated that ŷ ≈ y . Similar to PFGM++ [29], the 
proposed sampling algorithm is reused from ref. [27] 
with an updated prior noise distribution. This is feasi-
ble because of the hyperparameter translation formula, 
r = σ

√
D , x̃ := (x, r) , the fact that σ(t) = t in ref. [27], 

and by a change of variable dx = f ∗θ
(
x̃
)
/
√
Ddr = f ∗θ

(
x̃
)
dt 

since dr = dσ
√
D = dt

√
D . The proposed sampling algo-

rithm is detailed in Algorithm 1 with updates to sampling 
vs [29] highlighted in blue. The first update is hijacking, 
and instead of starting from an initial sample for the prior 
noise distribution, the reverse process is hijacked at some 
i = τ ∈ Z+ , τ < T and simply inject the condition image 
xτ = c. In addition to hijacking, data consistency, regulariza-
tion, and steps are considered. It must be updated for vari-
ous inverse problems. For image denoising, simply using an 
identity map is sufficient. Thus, xi+1 is simply mixed with 
xτ = c, where c is the condition image with weight w ∈ [0, 1]. 
Note that the proposed sampling algorithm is identical to 
that used in ref. [19] except that the network has now been 
trained using unsupervised learning and thus does not take 
the condition image c as an additional input.

Algorithm 1 Proposed PPFM sampling [29]

Experiments
Datasets
Mayo LDCT data: For training and validation, a pub-
licly available dataset from the Mayo Clinic used in 
the American Association of Physicists in Medicine 
(AAPM) Low-dose CT Grand Challenge [39] was 
used. This dataset contains images from ten patients 
reconstructed using medium (D30) and sharp (D45) 
kernels. Images were also available for 1  mm and 

3  mm slice thicknesses. All the images had a matrix 
size of 512 × 512. In this study, a slice thickness of 
1  mm and B30 reconstruction kernel were used. The 
first eight patients were used for training, yielding 
4800 slices, and the last two for validation, yielding 
1136 slices. Although paired normal-dose CT (NDCT) 
and LDCT images were available, only NDCT images 
were used for training the proposed method.
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PCCT data: As test data, the images of two patients 
from a clinical study (Swedish Ethics Review Agency 
2020–04638 and 2021–01092 and prospectively con-
sented IRB review UW-IRB: 2022–1043) of a pro-
totype silicon detector-based photon-counting 
system developed by GE Healthcare [38] were used. 
The patients were scanned at the Karolinska Insti-
tutet, Stockholm, Sweden (Case 1, effective diameter 
28  cm, CTDIvol = 10.12  mGy) and at the University 
of Wisconsin-Madison, Madison, WI (Case 2, effec-
tive diameter 36  cm, CTDIvol = 27.64  mGy) using 
scan parameters listed in Table  1. Virtual monoener-
getic images of 70  keV were reconstructed using fil-
tered backprojection on a 512 × 512-pixel grid with a 
0.42 mm slice thickness.

Implementation details
Each network, D ∈ {64, 128, 2048} and D → ∞, was 
trained with a batch size of 32 using Adam [40] and 
a learning rate of 2 × 10−4 for 105 iterations. The 
DDPM++ architecture was used with a channel mul-
tiplier of 128 channels per resolution [1, 1, 2, 2, 2, 2, 2] 
and self-attention layers at resolutions of 16, 8, and 4. 
The preconditioning, exponential moving average sched-
ule, and nonleaky augmentation suggested in ref. [27] 
with an augmentation probability of 15% were employed. 
Additionally, to prevent further overfitting, the dropout 
probability was set to 10%. To ensure efficient training, 
the network was trained on randomly extracted 256 × 256 
patches. In other words, the unconditional generator was 
not trained to generate full-resolution CT images but 
rather patches extracted from CT images. In addition to 
facilitating efficient training, this served to further aug-
ment the dataset and, therefore, helped prevent over-
fitting. To reduce the graphics memory requirements, 
mixed precision was used in the training. Note that the 
same configuration, but with 512 × 512 images, would 
exceed the memory available on an NVIDIA A6000 
48 GB GPU. To achieve NFE = 1, τ: = T − 1, was set. T and 
w, which are crucial hyperparameters in Algorithm  1, 
were set by grid search over T ∈ {4, 8, 16, 32, 64} and 
w ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} using Learned Perceptual 
Image Patch Similarity (LPIPS) [41] on the validation 

was set as the selection criteria. The lowest (best) LPIPS 
was achieved for T = 8 and w = 0.5. Because w = 0.5 is a 
corner case, was also tried w = 0.4. However, this did 
not improve the performance. The proposed method 
is referred to as ‘single-step’ despite including a second 
step, regularization, since the time required from this 
operation is negligible and NFE = 1.

Comparison to other methods
The results were compared with those of popular non-
DL-based, supervised, and unsupervised image-denoising 
techniques. For non-DL-based image denoising, a ver-
sion of BM3D [42] was chosen because it has been shown 
to be the best performing method in the non-DL cat-
egory for LDCT image denoising [7]. Bm3d.py (https://​
pypi.​org/​proje​ct/​bm3d/) was used, and the parameter 
σBM3D was set by measuring the standard deviation in 
a flat region-of-interest (ROI) in the LDCT validation 
data. For the supervised techniques, the WGAN-VGG 
[9], consistency models [37], and PPFM [19] were used. 
The WGAN-VGG was trained on randomly extracted 
64 × 64 from the LDCT training data with hyperparam-
eters, as specified in ref. [9]. The consistency models [37] 
are state-of-the-art diffusion-style models with an NFE of 
1. However, consistent models have been developed for 
generating unconditional images. Notably, ref. [19] was 
the first study to implement a consistency model for con-
ditional (image-to-image) generation. It is reasonable to 
surmise that the ‘trick’ of feeding the condition image as 
additional input to the network to directly learn a trajec-
tory to the posterior distribution of interest, a technique 
successfully used for diffusion models [30, 33, 43] and 
PFGM++ [19], will also work for CD. This hypothesis is 
empirically supported by ref. [19]. Minimal adjustments 
were made to the official implementation (https://​github.​
com/​openai/​consi​stency_​models) to feed conditional 
images as additional input. The network was trained on 
randomly extracted 256 × 256 patches from the LDCT 
data. Random rotations and mirrors were used for data 
augmentation. The hyperparameters for sampling and 
training were set as in the LSUN 256 × 256 experiments 
(https://​github.​com/​openai/​consi​stenc​ymode​ls/​blob/​
main/​scrip​ts/​launch.​sh), except for the batch size, which 
had to be reduced to four to fit in the memory of a single 
NVIDIA A6000 48  GB GPU. An EDM was first trained 
for 3 × 105 iterations and then distilled into a consistency 
model for 6 × 105 iterations. This model is referred to as 
CD. The training and sampling for the PPFM are specified 
in ref. [19]. The D = 64 case was used because this yields 
the best performance. The results for BM3D, WGAN-
VGG, CD, and PPFM were derived directly from ref. 
[19]. Finally, as an example of an unsupervised method, 
Noise2Void [44] was used. The same hyperparameters 

Table 1  Key parameters used for scanning patients on 
prototype PCCT systems

Parameter PCCT (Case 1) PCCT (Case 2)

Tube current 255 mA 290 mA

Helical pitch 0.990:1 0.510:1

Rotation time 0.6 s 0.7 s

kVp 120 120

https://pypi.org/project/bm3d/
https://pypi.org/project/bm3d/
https://github.com/openai/consistency_models
https://github.com/openai/consistency_models
https://github.com/openai/consistencymodels/blob/main/scripts/launch.sh
https://github.com/openai/consistencymodels/blob/main/scripts/launch.sh
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as those for the BSD68 dataset in the original paper were 
used, using code from the official repository (https://​
github.​com/​juglab/​n2v).

Evaluation methods
For quantitative image quality assessment, the structural 
similarity index (SSIM) [45], peak signal-to-noise ratio 
(PSNR), and LPIPS [41] were employed. SSIM and PSNR 
are well-established metrics in medical imaging litera-
ture, but these relatively simple metrics do not necessarily 
correspond well to human perception [41]. For instance, 
the PSNR is inversely proportional to the ℓ2 Euclidean 
distance, and this simple pixelwise metric correlates well 
with human perception. This was particularly evident 
in the case of over-smoothing. To overcome some these 
issues, ref. [41] suggests using pretrained convolutional 
neural networks (CNNs) as feature extractors, as is the 
case for perceptual loss functions. The resulting metrics, 
called LPIPS, were shown to correspond more closely to 

human perception than more traditional metrics such as 
SSIM and PSNR in a range of experiments. In this study, 
the official implementation of LPIPS (https://​github.​com/​
richz​hang/​Perce​ptual​Simil​arity) with AlexNet [46] was 
used as the feature extractor.

In addition to the evaluation with numerical metrics, 
two radiologists with 6 and 25 years of experience respec-
tively performed a visual assessment of the image quality 
of the denoised images. CD was used as the reference, 
and the observers were asked to grade the image quality 
resulting from each of the six denoising methods relative 
to the CD image for the LDCT image in Fig.  1 and the 
PCCT images in Figs. 4 and 6 (in total 18 comparisons). 
Grading was performed on a five-point Likert scale rang-
ing from -2 (significantly worse) to +2 (significantly bet-
ter) in five categories: noise, contrast, sharpness, artifacts 
and overall image quality. The unprocessed PCCT image 
and the regular LDCT and NDCT images are also dis-
played for reference.

Fig. 1  Results on the Mayo LDCT dataset. Abdomen image with a metastasis in the liver. a NDCT; b LDCT; c BM3D; d WGAN-VGG; e CD; f PPFM; g 
Noise2Void; h D → ∞; i D = 128. Yellow box indicating ROI shown in Fig. 2. 1 mm-slices. Window setting [-160, 240] HU

https://github.com/juglab/n2v
https://github.com/juglab/n2v
https://github.com/richzhang/PerceptualSimilarity
https://github.com/richzhang/PerceptualSimilarity
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Results
The quantitative results, mean, and standard deviation of 
the LPIPS [41], SSIM [45], and PSNR for the LDCT vali-
dation set are listed in Table  2. Additionally included is 
the average time, in seconds, to process a single slice. The 
notebook used from the official implementation of Noi-
se2Void does not utilize GPU acceleration, which should 
be considered when comparing the evaluation speeds. 
The overall top performer was PPFM. However, as men-
tioned above, SSIM and PSNR do not necessarily cor-
respond closely to human perception. As expected, the 
proposed method is bounded in performance by PPFM 
because it is unsupervised. Moreover, it can be seen that 
the proposed method for D = 128 and D = 64 is better in 
terms of LPIPS than WGAN-VGG, a supervised method. 
Compared with CD, a state-of-the-art diffusion style 
model with NFE = 1, the performance of the proposed 
method was slightly worse. Importantly, CD was trained 
in a supervised manner, whereas the proposed method 
was unsupervised. Thus, the proposed method with 
D = 128 performed competitively. Comparing the two 

Table 2  Mean and standard deviation of LPIPS, SSIM, and PSNR 
in the LDCT validation set, along with average time, in seconds, 
to evaluate a single slice

WGAN-VGG, CD, and PPFM are supervised methods. Noise2Void and proposed 
are unsupervised. BM3D is non-DL. ↓ means lower is better. ↑ means higher is 
better. Best results in bold

Method LPIPS (↓) SSIM (↑) PSNR (↑) Average time 
per slice (↓)

LDCT 0.075 ± 0.02 0.94 ± 0.02 41.5 ± 1.6

BM3D [42] 0.050 ± 0.01 0.97 ± 0.01 45.0 ± 1.6 3.38 × 100

WGAN-VGG [9] 0.019 ± 0.01 0.96 ± 0.01 43.2 ± 0.9 1.34 × 10–3

CD [37] 0.013 ± 0.00 0.96 ± 0.01 43.1 ± 1.0 4.44 × 10–2

PPFM [19] 0.010 ± 0.00 0.97 ± 0.01 45.4 ± 1.4 1.25 × 10–2

Noise2Void [44] 0.069 ± 0.02 0.94 ± 0.02 41.7 ± 1.6 1.04 × 101

Proposed

  D → ∞ 0.059 ± 0.02 0.96 ± 0.01 44.8 ± 0.9 1.21 × 10–2

  D = 2048 0.058 ± 0.02 0.96 ± 0.01 44.9 ± 0.9 1.20 × 10–2

  D = 128 0.014 ± 0.00 0.97 ± 0.01 45.3 ± 1.4 1.20 × 10–2

  D = 64 0.015 ± 0.00 0.97 ± 0.01 45.4 ± 1.4 1.21 × 10–2

Fig. 2  ROI in Fig. 1 magnified to emphasize details. a NDCT; b LDCT; c BM3D; d WGAN-VGG; e CD; f PPFM; g Noise2Void; h D → ∞; i D = 128. Yellow 
circle added to emphasize lesion. 1 mm-slices. Window setting [-160, 240] HU
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unsupervised methods, Noise2Void and the proposed 
method, it can be seen that the latter performs favora-
bly. Noise2Void yields only a marginal improvement 
over LDCT images. The qualitative results, along with 
LPIPS, SSIM, and PSNR, for a representative slice from 
the Mayo LDCT validation data are shown in Fig. 1. For 
brevity, the results for the proposed method are shown 
only for D → ∞, and the best performance, D = 128. The 
former is included as an interesting case because it cor-
responds to a diffusion model instead of PFGM++. This 
patient had liver metastasis, and magnification of the 
ROI were included, as shown in Figs. 2a and b for NDCT 
and LDCT images, respectively, for reference. BM3D, as 
shown in Fig. 2c, performed well in terms of noise sup-
pression while preserving the salient details. Neverthe-
less, this comes at the cost of artifacts that make the 
image appear smudgy. WGAN-VGG, CD, and PPFM, all 
supervised methods, as shown in Figs. 2d, e, and f, sup-
press noise effectively and keep the key details intact. A 
yellow arrow is overlaid to indicate the detail that appears 
in CD, shown in Fig. 2e, but in none of the other images, 
including NDCT and LDCT. It appears that CD has 
added a feature to the image that appears realistic, but 
that is not genuine, given that LDCT and NDCT images 
are used as references. Such inaccurate removal or addi-
tion of details is loosely referred to as a hallucination 
[2]. Noise2Void, shown in Fig. 2g, appears to essentially 
reproduce the LDCT image. However, quantitatively, 
there was only a marginal improvement. However, as 
shown in Fig.  2i, the proposed method (with D = 128) 
effectively suppressed noise while keeping the salient fea-
tures intact. Qualitatively, it is difficult to discriminate 
between the proposed method with D = 128, which is 

an unsupervised method, and PPFM, which is shown in 
Fig. 2f, a supervised method. Quantitatively, for this par-
ticular slice, it can be seen that PPFM performs slightly 
better. Comparing D → ∞, shown in Fig. 2h, with D = 128 
in Fig.  2i demonstrates the performance gains afforded 
by the PFGM++ framework. In particular, the proposed 
method with D → ∞ appeared over-smoothed and some-
what blurred.

The results of the ablation study of the proposed sam-
pler are shown in Fig. 3. Recall the problem formulation, 
the objective is to obtain an estimate ŷ ∈ R

N of y ∈ R
N 

based on a noisy observation c = F(y) ∈ R
N . By address-

ing this statistical inverse problem, the solution is a sam-
ple from the posterior ŷ ∼ p(y|c) . Figures 3a and b show 
the NDCT (y) and LDCT (c) images, respectively, for 
ease of reference. In Fig. 3c, the regularization (τ = T − 1, 
w = 1) is hijacked but omitted. This results in an image 
that has been very aggressively denoised. This is a direct 
consequence of the small T and corresponding large 
step size. This represents a further clean demonstration 
of how SSIM and PSNR fail to adequately penalize blur-
ring, as Fig. 3c appears blurry to a human observer, yet 
performs very well according to SSIM and PSNR. LPIPS, 
on the other hand, penalizes this heavily. In Fig. 3d, regu-
larization occurs, but no hijacking (τ = 0, w = 0.5). In this 
case, an initial sample from a prior noise distribution was 
first used. The amount of regularization in this setting 
appeared to be excessive, and an image where ŷ ≈ c was 
recovered. Finally, in Fig.  3e, hijacking and regulariza-
tion (τ = T − 1, w = 0.5) were employed, resulting in a very 
pleasing image, where ŷ ≈ y . Consequently, there was a 
significant reduction (improvement) in LPIPS. Hijacking 
and regularization allows re-purposing of the pre-trained 

Fig. 3  Ablation study of proposed sampler. a NDCT; b LDCT; c only hijacking; d only regularization; e hijacking and regularization. Yellow circle 
added to emphasize lesion. 1 mm-slices. Window setting [-160, 240] HU
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image generator for the task of image denoising. Condi-
tioning on the LDCT (c) image via hijacking and regular-
ization enforces a sample from the posterior ŷ ∼ p(y|c) , 
where ŷ ≈ y is the normal dose counterpart to c. In other 
words, a Bayesian inference is performed.

Qualitative results for a representative slice in the first 
PCCT scan are shown in Fig.  4 with a magnification of 
the indicated ROI in Fig. 5. Owing to the lack of “ground 
truth” images, qualitative evaluation is used. It is also dif-
ficult to discriminate signals from noise in small, low-
contrast details. Good performance is simply defined as 
accurately reproducing the unprocessed image, as shown 
in Figs. 4a and 5a, but with a lower noise level. BM3D, in 
Figs. 4b and 5b, appears to generalize poorly from LDCT 
data. This is likely due to the differences in noise charac-
teristics; one would need to re-estimate σBM3D. All other 
methods seem to generalize well in the sense that there 
are no major changes in performance. There is a sig-
nificant performance gain for the proposed method with 
D = 128 compared to D → ∞. This was most visible in the 
magnified ROI in Fig. 7 as D → ∞, shown in Figs. 4g and 

5g, is significantly more blurry than D = 128, shown in 
Figs.  4h  and 5h. The yellow arrow indicating the detail 
of interest has been overlaid. Because there is no ground 
truth and a single slice is considered, it cannot be defini-
tively stated that this is not just a noise spike. However, 
because it is clearly visible in an unprocessed image, it 
needs to be visible in the processed images. As can be 
seen, this is indeed the case with the notable exception 
of CD, shown in Figs. 4d and 5d. Moreover, the contrast 
of this detail appears to vary and seems to be much more 
well-defined for the proposed method with D = 128 than 
for WGAN-VGG, as shown in Figs. 4c  and 5c. Hence, it 
appears that the proposed method, despite being unsuper-
vised, can perform competitively, even when compared to 
supervised methods such as WGAN-VGG and CD.

The results of a representative slice in the second PCCT 
scan are shown in Figs. 6 and 7. Again, no “ground truth” 
is available. BM3D, in Figs. 6b and 7b, appeared to per-
form better than the first PCCT test case. The denoising 
performance is now more aligned with that observed for 
the LDCT validation data. This difference in performance 

Fig. 4  Results for first PCCT test case. a Unprocessed; b BM3D; c WGAN-VGG; d CD; e PPFM; f Noise2Void; g D → ∞; h D = 128. No ground truth 
available. Yellow box indicating ROI shown in Fig. 5. 0.42 mm-slices. Window setting [-160, 240] HU
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is likely due to the differences in noise characteristics 
and a lack of generalization. The lack of generalization 
does not appear to be an issue for any other method, as 
the performance is consistent across the validation and 
test data. A yellow arrow is again placed to indicate the 
details of interest, in this case, the fat in the back mus-
cle. The contrast is difficult to assess qualitatively when 
comparing the proposed method with D → ∞, shown in 
Figs.  6g  and 7g, and D = 128, shown in Figs.  6h  and 7h, 
owing to the large difference in the noise level. D → ∞ is 
definitely oversmoothed, and thus blurry; however, the 
contrast of this particular detail seems to be fairly well 
preserved. The proposed method with D = 128 again per-
forms very competitively compared with WGAN-VGG, 
as shown in Figs. 6c and 7c, as can be seen when consid-
ering the contrast of fat and muscle.

The results from the visual assessment are summarized 
in Table  3. Statistical significance was evaluated using a 
single-sample, two-tailed t-test without applying any mul-
tiple-comparison-based correction. From the total score 
in the table, it can be observed that the proposed method 

with D → ∞ performs on par with CD, whereas PPFM 
and D → ∞ are assigned somewhat lower scores and Noi-
se2Void, BM3D, and WGAN-VGG exhibit the worst per-
formances. The fact that D → ∞ performs on par with CD 
is remarkable because the latter is a supervised method, 
and therefore has access to more data during training. 
Furthermore, the proposed method has a smaller number 
of parameters than CD, which is reflected in its shorter 
inference time (Table  2). It can also be noted that the 
value D = 128 gives the optimal LPIPS, which measures 
the image fidelity in the feature space, whereas the visual 
assessment gives a higher score to the D → ∞ method 
because radiologists prefer its stronger noise suppression. 
The fact that adjusting D allows the optimization of the 
method for different performance metrics underscores 
the flexibility of the proposed method.

Discussion
Because image denoising was of interest, the simplest 
possible data consistency (or regularization) step was 
selected: the identity map. An interesting direction for 

Fig. 5  ROI in Fig. 4 magnified to emphasize details. a Unprocessed; b BM3D; c WGAN-VGG; d CD; e PPFM; f Noise2Void; g D → ∞; h D = 128. No 
ground truth available. Yellow arrow placed to emphasize detail. 0.42 mm-slices. Window setting [-160, 240] HU
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future research is to determine how well the proposed 
method generalizes to other inverse problems. It can be 
surmised that updating only the regularization step is 
sufficient, as is the case with similar techniques based 
on diffusion models [34, 35]. One interesting applica-
tion is the combination of image denoising and super-
resolution. However, it is possible that one also needs to 
update the hijacking method, because injecting the con-
dition image directly into the sampling process may fail 
to generalize beyond the problem of image denoising. 
Even within the two tasks of denoising LDCT and PCCT 
images, noise characteristics vary widely. CT images 
are routinely reconstructed using different kernels, slice 
thicknesses, fields of view, and matrix sizes. These fac-
tors may have resulted in reconstructed images with sig-
nificantly different noise characteristics. As shown in ref. 
[47], this may adversely affect the performance of image 
denoising techniques. Hence, it is possible that one needs 
to update the hyperparameters in the sampling algo-
rithm, including the consistency step, to attain good per-
formance over a wide range of settings.

Another interesting avenue for future research is the 
extension of the proposed method to 3D denoising. 
Given the structure of CT data, 2D denoising discards 
an abundance of rich information by not considering 
adjacent slices. It is possible that this additional infor-
mation can aid in the recovery of more details observed 
in NDCT images from LDCT data. In particular, using 
information from adjacent slices may help better differen-
tiate noise from signals. Extending the proposed method 
to 3D denoising has two effects. First, the network can be 
retrained using 3D data. The benefit of this approach is 
that it allows the network to optimize the use of infor-
mation from adjacent slices. However, a disadvantage of 
this approach is that it requires retraining. Another pos-
sibility is to update only the data consistency step. One 
can keep the learned prior retained from the 2D data, 
thus not requiring any retraining, and combined with a 
regularization step that utilizes information from adja-
cent slices. Finally, the two approaches were combined. 
In future studies, the proposed method will be extended 
for 3D denoising.

Fig. 6  Results for second PCCT test case. a Unprocessed; b BM3D; c WGAN-VGG; d CD; e PPFM; f Noise2Void; g D → ∞; h D = 128. No ground truth 
available. Yellow box indicating ROI shown in Fig. 7. 0.42 mm-slices. Window setting [-160, 240] HU
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In the current generation of PCCT scanners, spectral 
(materially resolved) CT are usually of interest. Hence, 
extending this method to spectral cases is of interest. 
Similar to the 3D case, one could allow the network to 
accept more channels, where the channels could be mate-
rial-basis images or virtual monoenergetic images at two 
or more energy levels. Another possibility is to train two 
separate networks for two different material bases or vir-
tual monoenergetic images at different energy levels.

Although strong correlation between LPIPS [41] 
and visual image quality can be observed, it should be 
noted that LPIPS is computed using a network trained 
on RGB natural images. Relative to natural images, 
grayscale CT images should be considered outside the 
distribution. Nevertheless, the results indicate that 
using these selection criteria yields visually pleasing 
images in a LDCT dataset. Furthermore, the results 
for the PCCT data indicate that the network with these 
sampling hyperparameters generalized well. These 

empirical findings strongly suggest the intrinsic nature 
of LPIPS features. One possible way to make LPIPS 
more interpretable is to retrain the underlying network 
in LPIPS on a large dataset of CT/PCCT images. This 
important work is beyond the scope of this study and is 
left to future research.

Conclusions
In practice, paired data are typically unavailable for 
denoising CT images. In this study, an unsupervised ver-
sion of the PPFM [19] was proposed and it was demon-
strated that despite imposing a significantly laxer data 
requirement, there is only a small drop in the overall 
performance. To achieve this, a PFGM++ [29] trained 
in an unsupervised manner for unconditional genera-
tion with a sampling scheme that enforces consistency 
was combined with the input or condition image to ena-
ble sampling from the desired posterior. The proposed 

Fig. 7  ROI in Fig. 6 magnified to emphasize details. a Unprocessed; b BM3D; c WGAN-VGG; d CD; e PPFM; f Noise2Void; g D → ∞; h D = 128. No 
ground truth available. Yellow arrows placed to emphasize detail. 0.42 mm-slices. Window setting [-160, 240] HU
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method includes a corresponding method based on dif-
fusion models (EDM [27]), and it was demonstrated that 
PFGM++, with D as an additional hyperparameter, yields 
significant performance gains. The results indicate com-
petitive performance compared with popular supervised, 
unsupervised, and non-DL-based image denoising tech-
niques, including state-of-the-art diffusion-style models 
with NFE = 1, consistency models, clinical LDCT data, 
and clinical images from a prototype PCCT system.
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