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Abstract

proposed method.

To overcome the topological constraints of non-uniform rational B-splines, T-splines have been proposed to define
the freeform surfaces. The introduction of T-junctions and extraordinary points makes it possible to represent
arbitrarily shaped models by a single T-spline surface. Whereas, the complexity and flexibility of topology structure
bring difficulty in programming, which have caused a great obstacle for the development and application of T-
spline technologies. So far, research literatures concerning T-spline data structures compatible with extraordinary points
are very scarce. In this paper, an efficient data structure for calculation of unstructured T-spline surfaces is
developed, by which any complex T-spline surface models can be easily and efficiently computed. Several
unstructured T-spline surface models are calculated and visualized in our prototype system to verify the validity of the
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Introduction

With a series of excellent mathematical and algorithmic
properties, non-uniform rational B-splines (NURBS) has
been widely used in the field of computer aided geometric
design for representing curves and surfaces. Nevertheless, in
modern industry, complex engineering models comprised of
multiple NURBS patches are always not watertight because
of the existence of gaps and overlaps along the interfaces of
trimmed NURBS surfaces. Thus, T-splines were firstly pro-
posed by Sederberg et al. [1, 2] in 2003 to conquer the limi-
tations of NURBS in practical engineering applications.

As a generalization of NURBS, T-splines introduce
T-junctions and extraordinary points into its control
mesh. Theoretically, a T-spline surface can represent any
arbitrarily shaped model no matter how complicated its
topology structure is. Compared with NURBS, the advan-
tages of T-splines can be reflected in the following aspects.
Firstly, a NURBS surface is defined in a rectangular topo-
logical grid. It requires a large number of superfluous con-
trol points to maintain the topological shape while
implementing refinement. This shortcoming can be over-
come by T-splines which can achieve local refinement
without introducing an entire row of control points. In
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addition, it is difficult to represent a complex model with
a single NURBS surface and the gaps along the common
boundary of two NURBS surfaces are unavoidable.
T-splines provide a promising way to breakdown these
barriers. In ref. [3], multiple trimmed NURBS patches are
merged into a single watertight T-spline surface. Li et
al.[4] studied the linear independence of T-spline blending
functions and proposed the notion of analysis-suitable
T-splines. Analysis-suitable T-splines satisfy a simple topo-
logical requirement and their blending functions are linear
independent [4-6]. So far, T-splines have been used in
many fields such as geometric modeling [7-9], isogeo-
metric analysis [10-15] and shape optimization [16—18].
In complex T-spline models, the extraordinary points
are always indispensable. T-splines containing extraor-
dinary points are called the unstructured T-splines [14].
When encountering an unstructured T-spline surface,
the knot interval vectors about the vertexes around the
extraordinary points are ambiguous. More details about
the concept of extraordinary points are presented in sec-
tion 2. Some methods have been developed to deal with
the problems caused by extraordinary points [14, 19,
20]. In the template method proposed by Wang et al.
[19], gap-free T-spline surfaces are generated by insert-
ing zero-interval edges around the extraordinary points.
Liu et al. [20] proposed a knot interval duplication and
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optimization method to obtain local knot vectors. In ref.
[14], Scott et al. introduced a linear interpolation scheme
to calculate Bézier control points from T-spline control
points, which is easy to understand and implement.

Since T-spline surfaces have flexible topology, con-
structing a robust and efficient data structures of
T-splines for storing and further data processing is a
challenging topic. Asche et al. [21] presented a T-spline
data structure implementation based on a half-edge
(HE) data structure and implemented the algorithms
with CGAL geometry programming library. Lin et al.
[22] developed the so-called extended T-mesh which can
be represented in an obj-like format file and converted
into the face-edge-vertex data structure conveniently.
With this method, each vertex in the extended T-mesh
has a knot coordinates, which cannot solve the situtation
with extraordinary points. Xiao et al. [23] also proposed
a set of new T-spline data models to obtain better data
storing and operating efficiencies. However, all the
T-spline data structures mentioned above cannot deal
with the T-splines with extraordinary points, ie., un-
structured T-splines. To the best knowledge of the au-
thors, there are no public research papers or open
sources which directly present the suitable approaches
to handle the unstructured T-splines from a view of pro-
gramming implementation.

In this paper, a new data structure for the unstructured
T-splines is proposed. An efficient local parameterization
algorithm which can accelerate the computation of
T-spline surface is also presented. Finally, several testing
examples of unstructured T-splines are demonstrated to
show the validity of the proposed data structures and
algorithm.

The rest of the paper is organized as follows. In sec-
tion 2, we give a brief introduction of T-splines and ex-
plain the concept of extraordinary points. Section 3 is
devoted to present the new data structure. In section 4,
we give the local parameterization algorithm. Finally,
complicated T-spline models are demonstrated in sec-
tion 5.

T-splines

A brief introduction of T-splines is reviewed in this sec-
tion. We give a description of some symbols and nota-
tions appear below as well. In this paper, we only
consider bicubic T-splines.

T-mesh

The T-mesh that contains the underlying topology infor-

mation is a fundamental concept of a T-spline surface.
As the example shown in Fig. 1, a T-mesh is composed

of faces, edges and vertexes. For bicubic T-splines, a

control point and related weight are aligned to each ver-

tex in the T-mesh. The T-junctions such as P; and P, in
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Fig. 1 A T-mesh

Fig. 1 make the topological structure of T-splines very
flexible. After a valid knot interval configuration being
assigned to the edges, the topology information of
T-splines is determined.

T-spline blending function

Each vertex in a T-mesh corresponds to a T-spline
blending function. We can construct the blending func-
tion from the knot interval sequences inferred from the
T-mesh. These knot interval sequences are called local
knot interval vectors.

The principles about how to deduce the local knot
interval vectors from the T-mesh are presented in refs.
[24, 25] in detail. In summary, as the brown lines shown
in Fig. 2, marching through the T-mesh in four different
topological directions until two vertices or perpendicular
edges are detected, the knot interval vectors can be de-
termined by the traversed distance. In normal condi-
tions, the knot interval is set to be be 0 if a T-mesh

Fig. 2 An example of the local knot interval vectors
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boundary is crossed. The process of constructing local
knot interval vectors for P; and P, is shown in Fig. 2.

As the example shown in Fig. 2, the influence domain
which is called local blending function domains (the blue
regions) corresponding to the control points can be de-
fined after achieving the knot interval vectors. Then we
can set up a local blending coordinate system attached to
corresponding vertexes. If there exists no extraordinary
point in a T-mesh, a larger global parametric coordinate
system can be established which can help us compare dif-
ferent blending functions in a common coordinate system.

The global parametric system of the T-mesh in Fig. 1
is shown in Fig. 3. Each vertex has only one pair of cor-
responding parameter coordinates. However, in the un-
structured T-splines which contain extraordinary points,
the situation is completely different and that is the main
difficulty of constructing an efficient T-spline data
structure.

The equation of a T-spline surface can be expressed
as:

1 = i PioilNi(i, v)
21 @iNi(, v)

where P; are control points, w; are weights, and N; are
blending functions, pt and v are knot values.

Extraordinary points

In some T-spline models such as the cube shown in
Fig. 4, the existence of extraordinary points is inevitable.
There are eight extraordinary points on the corners of
the cube.

In a T-mesh, the valence of a vertex is the number
of edges that touch the vertex. As the T-mesh shown
in Fig. 2, the T-junctions P; and P, have three va-
lences. The definition of extraordinary point is that
an interior vertex that is not a T-junction and of
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Fig. 3 A global parametric coordinate system
A
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Fig. 4 A cube T-spline model. An extraordinary point is marked in
the purple region
.

which the valence is not equal to 4 [14]. Spoke edge
is the edge connected to the extraordinary point. The
one-ring neighborhood of a vertex refers to the
T-mesh faces which touch the vertex. The faces that
touch the one-ring neighborhood form the corre-
sponding vertex’s two-ring neighborhood. The T-mesh
around the extraordinary point in the purple region
in Fig. 4 is shown in Fig. 5.

In Fig. 5, the valence of the extraordinary point
marked by purple circle is 3. The one-ring neighborhood
is represented by yellow and the two-ring neighborhood
is represented by green. From the unstructured T-mesh,
we can see that it is impossible to set up a common

Fig. 5 The T-mesh around the extraordinary point denoted by purple
in Fig. 4
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global coordinate system due to the existence of the
extraordinary point, which brings problems to the knot
interval vectors definition in their neighborhood.

Data structure for unstructured T-splines
Owing to the fact that extraordinary points are unavoid-
able in complicated models, we should reconsider the
existing T-spline data structures because with extraor-
dinary point appearing it is impossible to assign each
vertex a parameter coordinate in a common global para-
metric coordinate system.

The new data structure we proposed is inspired by the
classical HE data structures. Since this data structure
provides efficient retrieval of the topological information

Table 1 The data structure for the unstructured T-splines
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associated with the mesh, we can make some modifica-
tions to it to meet the requirements of storage and com-
putation of the unstructured T-splines.

The schematic of the proposed data structure (Table 1) is
illustrated in Fig. 6. The face marked in yellow region in the
upper T-mesh is composed of five HE. The HEs are denoted
by colorful arrows and the green lines represent edges. An
edge corresponds to two opposite HEs. Each HE starts from
a vertex. What calls for special attention is that in the un-
structured T-mesh, a HE doesn’t have a specific direction
and a vertex doesn’t have a corresponding global parameter
coordinate. This is the main difference between the proposed
data structure and those constructed in a global coordinate
system.

//the vertex structure

struct Vertex {

//knot interval vectors (anticlockwise start from direction_HE)

4dPoint control_point; // vertex corresponding control point and weight

HalfEdge* direction HE; // half-edge which decides the local blending coordinate system of the vertex
int vertex_type; // type of the vertex (T-junction, normal vertex, exordinary point)
double knot_interval vectors[4][2];

15

//the edge structure

struct Edge{

HalfEdge*  HEIL; // half-edge belongs to the edge

HalfEdge*  HE2; // half-edge belongs to the edge

double length; // the parameter length of the edge

15

//the half-edge structure

struct HalfEdge {

HalfEdge*  prev_HE; // previous half-edge around the face (anticlockwise)

HalfEdge*  next HE; //nexthalf-edge around the face (anticlockwise)

HalfEdge*  opp_HE; // opposite half-edge belongs to the same edge

Vertex*  start_vertex; // the vertex half-edge starts from

Edge* belong edge; // the edge half-edge belongs to

Face* belong face; // the face half-edge belongs to

int corner_type; // the status of the vertex on the belong_face. 0 for a corner, 1 for a T-junction
15

//the face structure

struct Face{

HalfEdge* direction HE;
Vertex* infected vertex[];
2dPoint infected vertex_coord[];

s

//half-edge which decides the face coordinate system
//vertexes that have an influences on the face calculation

//coordinates of the infected vertex in the face coordinate system
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Fig. 6 Schematic of the proposed data structure

Table 2 Local parameterization algorithm
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To facilitate the calculation of the faces in an unstruc-
tured T-mesh, a local coordinate system is established
for each face. As the example shown in Fig. 6, the HE
denoted by yellow is chosen to act as the u direction of
the face coordinate system. To make the calculation of
the faces more convenient, we can choose any HEs de-
noted by a black arrow inside the face to set up the face
parametric coordinate system, with the exception of the
one starts from a T-junction (the HE denoted by blue in
Fig. 6).

In order to save in-time computations of the T-spline
surface, some redundant data or pointers are stored in
the data structure. In order to search the vertexes that
have an impact on the faces in the T-mesh, it is essential
to select a HE to set up a local blending coordinate sys-
tem for each vertex (such as the local blending coordin-
ate system of P; in Fig. 6). For the faces, the infected
vertexes and their relative coordinates in face coordinate
systems are stored in the data structure.

Computation of the unstructured T-splines
An efficient data structure must not only be flexible for
data storing but also suitable for the development of re-
lated algorithms. In this section, we present an efficient
algorithm for the computation of the unstructured
T-splines based on the proposed data structure.

Because the faces in a T-mesh have one-to-one map-
ping relations with the patches in a T-spline surface, we
can tessellation the T-spline surface face by face. The
computation of the T-spline surfaces can be summarized
as the following steps.

1 For each vertex P; which is not the extraordinary points

2 | Obtain the knot interval vectors to determine the blending function domain D; and set up the local blending coordinate
system of P;

3 | Build a stack S and initialize S with eight half-edges according to the vertex type. (Refer to Fig. 6)

4 | while S is not empty

5 Pop the top of the stack to get the half-edge HE

6 if the face F which HE belongs to overlaps the blending function domain D;

7 Add the vertex P; and its relative coordinate in face coordinate system into F’s data structure

// Pay attention to the coordinate transformation between two coordinate system

8 Push the upper-HEs of HE into S (Refer to Fig. 7)

9 end

10 end

1lend




Wang et al. Visual Computing for Industry, Biomedicine, and Art (2020) 2:2 Page 6 of 9

- N

& les 184 leS lec

1 ) VTR ) o————o—¢
| e J —— o e . o
! = | Q9 10 11 QIZ

i P :I @ e e ¢
[ l R - o o o ¢

)\ ) v ¢ o o o
Pz Vv 4 e v
y Ql 2 3 Q4

L) L) L) L) . ‘ ‘ /.

e o (a)

Fig. 7 Initial half-edges in the local parametric algorithm

Step 1: Load the T-spline models. In this paper, the ¢ ¢
T-spline models are constructed in Rhinoceros and d e f

3 N
saved as TSM-files. ‘ Po Pc

Step 2: Construct the T-spline data structures. A o/

Step 3: For each vertex, establish a local blending co- e e
ordinate system in the parametric domain after obtain- b , ; b
ing the local knot interval vectors, as the example shown .6 Q.7
in Fig. 2.

Step 4: Find all the faces that overlap the local para- d e 7
metric domain of the vertex. Then obtain the coordinate Pa Ps )
of the vertex in different face parametric coordinate a a
systems. (b)

Step 5: For each face find in step 4, add the vertex and
coordinate into the face data structure.

Step 6: Compute the T-spline surface face by face by , ,
the computation formula. a Q.d Q.c a

In the unstructured T-splines, most of the time is spent
on step 4 during the surface computation due to the lack of o o
a global parametric coordinate system. Here we give an effi- O @ @ @
cient algorithm called local parameterization (Table 2) o/ o/
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Fig. 9 Scheme of calculating two-ring neighborhood of the extraordinary
Fig. 8 Schematic of the local parametric algorithm points [11]
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which can improve the efficiency of the calculation of
T-spline surfaces.

The main idea of the local parameterization algorithm
is to traverse all faces in the local blending function do-
main of each vertex and then obtain the coordinate of
the specific vertex in face coordinate systems. In the al-
gorithm, the whole traversal process of the domain is re-
alized from four directions represented by eight HEs.
These HEs can be obtained during the procedure of
obtaining the local knot interval vectors. If the vertex is
a T-junction such as P; shown in Fig. 7, we should
change the virtual HE marked by red dashed arrows to
the black solid arrows. The eight arrows (in black) are
the initial HEs.

To complete the traverse process, if a half-edge HE
is popped from the stack S in line 3 of the algorithm,
we should judge whether the face F it belongs to
overlap the blending function domain D; of the vertex
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Fig. 11 Helmet
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P;. In that case, the vertex P; and its coordinate in
face Fs coordinate system should be added into the
data structure of F firstly. Then the half-edges called
upper-HEs which parallel to HE and belong to the
faces above F should be pushed into the stack S. In
this way, we can make sure that all faces in the
blending function domain can be traversed without
any omissions.

As the unstructured T-spline with an extraordinary
point P, shown in Fig. 8, assume that the orange arrow
starting from Ps is the u direction of the local blending
coordinate system of P5 and the red arrow represents
the u direction of the face coordinate system denoted by
yellow region. The parameter length of the two
HEs marked by green and red are x and y, respectively.
After the initialization, if the HE denoted by green is
popped up from the stack, we can see the face (yellow
region) it belongs to obviously overlap the local blending
domain marked in blue. In the face coordinate system,
the parametric coordinate of Ps is (0,x). Then P5 and
the coordinate should be added into the face data struc-
ture because P has an effect on the calculation of the
yellow face. According to the content described in line 8
of the local parameterization algorithm, two HEs de-
noted by purple arrows (upper-HEs mentioned above)
should be pushed into the stack. Thus, we can accom-
plish the algorithm by repeating this process. The par-
ameter coordinate of the vertex Ps in different face
coordinate systems is easy to obtain through the connec-
tions between the half-edges.

In the neighborhood of the extraordinary points (the
grey and green regions around Pj in Fig. 8), the knot
interval vectors definition is a little tricky. Many litera-
tures have studied on this topic [19, 20, 26]. In order to
ensure continuity of the elements near the extraordinary
points for further application such as isogeometric ana-
lysis, in this paper, we choose the method proposed by
Scott et al. [14] to solve this problem. Through the
method described in ref. [14], two-ring neighborhood el-
ements are C> with adjoining three-ring neighborhood
elements, and C' with their other neighbors; and
one-ring neighborhood elements are G' with adjoining
one-ring neighborhood elements and C' with adjoining
two-ring neighborhood elements.

In the two-ring neighborhood of an extraordinary
point, the faces can be represented by the linear combi-
nations of the T-spline control points. They can be cal-
culated as patches of Bézier elements and the
procedure is simply described in Fig. 9. Each bicubic el-
ements contains 16 Bézier control points which can be
classified into face points (solid green circles), edge
points (solid blue circles) and vertex points (solid red
circles). Each face point denoted by a superscript f can
be represented in terms of T-spline control points
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(denoted by purple circles). Each edge point denoted by
a superscript e is written in terms of face points and
each vertex point denoted by a superscript v is repre-
sent by the face points. The formulas are defined as.
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Results and discussion

In this section, as given in Figs. 10, 11, 12, and 13 some
T-spline models are shown to verify the feasibility of the
proposed data structures and the local parameterization
algorithm. All the models are built from unstructured
T-splines which include the extraordinary points except
for the gearbox. We can download them from the offi-
cial site of Rhinoceros [27].

Conclusion

In this paper, an efficient data structure for the unstruc-
tured T-splines is proposed. With this data structure,
the topology information of the T-splines can be accur-
ately stored. In addition, a valid local parameterization
algorithm which can improve the efficiency of the calcu-
lation of T-spline surfaces is developed. Some unstruc-
tured T-spline surface models are presented to verify the
feasibility of data structures. All the data structures and
algorithms presented in this paper have been imple-
mented in our CAD/CAE/OPT integration software
Archytas. In the future, the local refinement and the
other correlative algorithms will be developed based on
the proposed data structures.
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