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Abstract

We have developed a computer-aided diagnosis system based on a convolutional neural network that aims to
classify breast mass lesions in optical tomographic images obtained using a diffuse optical tomography system,
which is suitable for repeated measurements in mass screening. Sixty-three optical tomographic images were
collected from women with dense breasts, and a dataset of 1260 2D gray scale images sliced from these 3D
images was built. After image preprocessing and normalization, we tested the network on this dataset and
obtained 0.80 specificity, 0.95 sensitivity, 90.2% accuracy, and 0.94 area under the receiver operating characteristic curve
(AUC). Furthermore, a data augmentation method was implemented to alleviate the imbalance between benign and
malignant samples in the dataset. The sensitivity, specificity, accuracy, and AUC of the classification on the augmented
dataset were 0.88, 0.96, 93.3%, and 0.95, respectively.
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Introduction
Breast cancer is the most common cancer among
women. To reduce the mortality of breast cancer, early
detection and an accurate diagnosis are important [1].
Thus, a promotable and sensitive detection technology
with efficient statistical analysis methods are necessary
for mass screening for breast cancer.
There are currently several clinical methods for breast

cancer detection including X-ray mammography, mag-
netic resonance imaging (MRI), and ultrasound. X-ray
mammography is the most commonly used method for
breast detection; however, it may cause damage owing to
ionization, making it unsuitable for repeated mass
screening measurements [2, 3]. MRI can offer excellent
images of breast tissue with higher sensitivities; however,
MRI incurs high costs, low specificities, and is not very
convenient, which greatly limits its application [4–6]. As
a relatively inexpensive and nonionizing radiation

method, ultrasound can differentiate between benign
and malignant masses; however, it has a low sensitivity
and is highly dependent on the skill of the technician [4,
7]. Other methods, such as photoacoustic imaging, are
also emerging as diagnostic techniques for breast cancer
detection [8–10]. Diffuse optical tomography (DOT) is
an emerging method for breast tumor diagnosis that
provides optical properties of breast tissue correlating to
the tumor’s physiological signatures [11, 12]. As an im-
aging modality with endogenous contrast, DOT has the
potential to overcome the limitations of the abovemen-
tioned modalities, particularly when screening dense
breasts, in terms of safety, cost, portability, sensitivity,
and specificity. DOT also allows for improved discrimin-
ation between malignant and benign lesions, making it a
competitive mass screening method for breast cancer.
Thus far, several studies have applied computer-aided

diagnosis (CAD) techniques to breast cancer detection;
these techniques include the use of artificial neural net-
works [13–15], fuzzy logic [16, 17], Bayesian networks
[18, 19], decision trees [20, 21], and k-means clustering
[22, 23]. However, few researchers have implemented
CAD methods with DOT to diagnose breast cancer. A
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study analyzed the absorption, scattering, and refractive
index images obtained by a phase-contrast diffuse op-
tical tomography system and demonstrated the sensitiv-
ity and specificity to be 0.82 and 0.92, respectively, with
a support vector machine (SVM) classifier [24]. Another
study proposed a semi-automatic detection method of
malignant breast lesions in DOT images using logistic
regression of three optically measured physiological pa-
rameters; this method had an average sensitivity and
specificity of 0.89 and 0.89, respectively [25].
Recently, convolutional neural networks (CNNs) have

been proven to work well in the differentiation between be-
nign and malignant breast lesions [26–30]. Compared with
traditional methods, CNNs reduce the steps involved in
image feature extraction; alternatively, they feed image data
directly into the network that can learn discriminative fea-
tures automatically. CNN architecture is particularly adapted
to take advantage of the 2D structure of the input image.

In this work, a dataset of DOT breast images with 63
biopsy-confirmed tumor-bearing dense breasts were
used. Dense breasts are common among young women
and cannot be examined by existing mammography im-
aging systems [31]. All images were collected from a
DOT system and reconstructed with a finite element al-
gorithm [32]. In our previous work, an SVM classifier
was used to classify breast tumors and achieved an ac-
curacy of 71.7%. This study develops an optimized CNN
adapted to the characteristics of diffusion tomography

Fig. 1 Examples of diffuse optical tomography breast images. a 3D image of a benign breast tumor with a size of 3.0*1.3*1.3, b 2D image sliced from
Fig. 1a, c 3D image of a malignant breast tumor with a size of 2.4*1.3*1.2, d 2D image sliced from Fig. 1c

Table 1 2D diffuse optical tomography image dataset and its
division into training and test sets

Benign Malignant

Training set 645 300

Test set 215 100
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images; this proposed CNN shows a high accuracy on
the breast cancer dataset.

Methods
CNNs require a large amount of training data to achieve
high accuracies. However, it is difficult to build a com-
prehensive dataset with a large number of breast tumor
images. The collected 3D images are gray scale images
with a size of 91 × 91 × 31. Figure 1 illustrates DOT im-
ages of a benign tumor-bearing breast and a malignant
tumor-bearing breast. It is difficult to distinguish tumor
and normal tissue from the images owing to the high
breast density. We found that most tumors are distrib-
uted in the range of 6 to 25 on the Z-axis of the 3D
image by matching the biopsy result to the image and
chose to slice images from this range. A total of 20 slices
in each 3D image was used for this dataset. The total
dataset consisted of 1260 2D images, obtained from sli-
cing the 63 3D images. Each 2D image is resized to a
size of 32 × 32 and normalized for CNN input. The data-
set was randomly divided into training and test groups
that contained 75% and 25% of the data, respectively, as
shown in Table 1.
A CNN-based CAD method was proposed to classify

breast mass lesions. The architecture of our network is
summarized in Fig. 2. It contains five learned layers in-
cluding two convolutional, two batch normalization, and
one fully-connected layer. The input of the network is a
32 × 32 Gy scale image. The first convolutional layer, C1,
filters the 32 × 32 input gray scale image with six kernels
of size 5 × 5 with a stride of 1 pixel. The second convo-
lutional layer, C4, takes the normalized and pooled out-
put of the first convolutional layer as its input and filters
it with 12 kernels of size 5 × 5.
Each convolutional layer is followed by a batch

normalization layer, which aims to stabilize the distribu-
tions of layer inputs by controlling the mean and vari-
ance [33]. It adds two extra parameters per activation to
preserve the representation ability of the network. Be-
cause of batch normalization, the network can tolerate
increased training rates and often does not require drop-
outs for regularization. The normalized results then pass

through a sigmoid nonlinear function as an output for
these layers.
Pooling layers perform local averaging and subsamp-

ling, thereby reducing the resolution of the feature map
and the sensitivity of the output to shifts and distortions.
Pooling layers have a filter size of 2 × 2 pixels and output
the average value offour inputs in each local region.
A simple logistic classifier is used in the final layer of

the network. Malignant and benign are represented with
2-bit one-hot encoding as (1,0) and (0,1) in the output
layer. The mini-batch stochastic gradient descent mo-
mentum is used for training. We also adopted an early
stopping strategy to monitor the test misclassification
rate (MCR), where training is terminated if no progress
is noted on the test set. Optimum results were obtained
by tuning the hyper parameters through an extensive set
of trial and error experiments; finally, we used a learning
rate of 0.3, mini-batch size of 83, and maximum epochs
of 500.
Owing to the imbalance between the number of be-

nign and malignant samples in the dataset, we use two
groups of sets for training. The first set is the original
training set and includes 945 images, and the second set,
which includes 1245 images, is the augmented version of
the first group where the number of malignant images
was doubled by flipping the images. The distribution of
the augmented dataset is given in Table 2. Training im-
ages are used to train the network and the remaining
ones are used for testing. The network predictions and
the biopsy results were compared using a receiver oper-
ating characteristic (ROC) analysis. Differences in per-
formance are evaluated by computing the area under the
ROC curves (AUC).

Fig. 2 Architecture of the convolutional neural network

Table 2 Augmented dataset and its division into training and
test sets

Benign Malignant

Training set 645 600

Test set 215 100
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Results
Our results on the DOT breast dataset are summarized in
Table 3. Sensitivity and specificity are statistical indexes of
the performance of a binary classification test; they meas-
ure the proportion of correctly identified positives and
negatives. Our network achieves a test accuracy rate of
90.2%, a specificity of 0.80, and a sensitivity of 0.95 com-
pared with the original data. More satisfactory results are
obtained when the network is trained on the augmented
data, with a test accuracy rate of 93.3%, a specificity of

0.88, and a sensitivity of 0.96; this is the best performance
achieved in this study. The MCR curve of the training and
test sets during training is shown in Fig. 3a. The test set
was checked during training to monitor progress and to
apply the early stopping strategy when a plateau was
reached. The proposed network can be trained faster
and requires fewer training steps (four times) to
achieve the same accuracy compared with a simple
CNN without batch normalization. The minimum test
MCR was achieved after approximately 200 epochs
during training. There was no obvious overfitting
when data augmentation and batch normalization are
used. The ROC curve comparing the performance of
the network trained on the original and augmented
data is shown in Fig. 3b. The AUC is 0.94 for the
network trained on the original data and 0.95 for one
trained on the augmented data.

Table 3 Comparison summary of the convolutional neural
network performance on original and augmented data

Accuracy Specificity Sensitivity Area under curve

Original data 90.2% 0.80 0.95 0.94

Augmented data 93.3% 0.88 0.96 0.95

Fig. 3 a Misclassification rate curve of training set and testing set during training, b Receiver operating characteristic (ROC) comparison of
original data and augmented data, c ROC comparison of convolutional neural network (CNN) with different learning rate, d ROC of CNN
evaluated by a 10-fold cross-validation
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The network is also trained in five groups of learning
rates to obtain the best performance. The learning rate
defines the speed at which the weight is updated on each
epoch in the neural network. A network may learn fast
but may be unstable and exhibit a very high learning
rate. Conversely, a network that learns slowly may be
easily susceptible local minimum trapping. Comparing
the ROC curves in Fig. 3c, the suitable learning rate is
determined to be 0.3.
During the study, we repeated the experiment several

times and found that the test results show subtle differ-
ences. Thus, we trained and evaluated the CNN using a
10-fold cross-validation for robust testing. The ROC
curve obtained is shown in Fig. 3d and the average AUC
is found to be 0.93 (±0.03). This gives a sensitivity of
0.79 and a specificity of 0.97. It indicates that the CNN
model is robust and is reliable for breast tumor classifi-
cation. The average test accuracy rate reaches 91% with
a standard deviation of 1.66%; this is a promising result
achieved with little sample data.

Conclusions
Our results in this work show that it is possible to
achieve a satisfactory result on breast cancer diagnosis
using a CNN trained with DOT breast images. A DOT
breast dataset is built; it includes 63 patient samples
with malignant or benign tumors, for a total of 1260 2D
gray scale images. Although it is an arduous task to de-
tect a dense breast with a small set of data, the proposed
8-layer CNN has a good capability of classifying image
patterns while achieving a specificity and sensitivity of
0.88 and 0.96, respectively. This technique has the po-
tential to assist radiologists in diagnosing breast cancer
and improving the diagnostic rate that furthermore pro-
motes mass screening for breast cancer.
In future studies, more samples will be collected to

improve generalization as the accuracy can be further
improved with a larger dataset. It is important to care-
fully select a better convolutional network architecture
and optimization algorithm. We would like to train a 3D
CNN on 3D data, where spatial structures can provide
information that may be missing or is far less obvious in
2D images. Unsupervised pre-training is also being con-
sidered for our diagnosis method in the future.
The images used in this study are reconstructed with

optical absorption distribution of tissue; however, DOT
not only provides the optical absorption coefficients but
can also determine the optical scattering coefficients. As
a functional optical imaging system, DOT can quantify
the tumor hemoglobin concentration and blood oxygen
saturation; these are directly related to tumor angiogen-
esis. The focus of our next research study will be how to
make full use of this information.
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