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Abstract

Traditional 3D printing is based on stereolithography or standard tessellation language models, which contain
many redundant data and have low precision. This paper proposes a slicing and support structure generation
algorithm for 3D printing directly on boundary representation (B-rep) models. First, surface slicing is performed by
efficiently computing the intersection curves between the faces of the B-rep models and each slicing plane. Then,
the normals of the B-rep models are used to detect where the support structures should be located and the
support structures are generated. Experimental results show the efficiency and stability of our algorithm.
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Background
Recently, 3D printing has been widely used. However,
printing quality and speed issues of 3D printing remain
unsolved.
Slicing is a foundational operation of 3D printing. It

requires computing the intersection curves of models
and slicing planes. This operation is time-consuming,
and is a key factor that affects printing quality.
Most slicing algorithms work on standard tessellation

language (STL) models [1–4], as STL is a standard file
format for 3D printing. However, the data in the STL file
format is a discretized form of the 3D models, which
contain discretization errors. Thus, many studies consid-
ered a slicing algorithm on the original data of the 3D
models.
Chen et al. [5] used the AutoSection toolkits provided

by PowerSHAPE to directly slice computer aided design
(CAD) models. Cao and Miyamoto [6] implemented sli-
cing on the entity models in AutoCAD. Starly et al. [7]
performed slicing operations directly on non-uniform
rational basis spline models in the standard for the ex-
change of product model data format. Pandey et al. [8]
proposed a slicing procedure for fused deposition mod-
elling (FDM), based on a real-time edge profile of depos-
ited layers.

Support structure generation is another foundational
operation of 3D printing. It affects printing quality and
material consumption. If the necessary support struc-
tures are missed, then 3D printing will fail. In addition,
unnecessary support structures mean more required ma-
terials and more printing time.
Alexander et al. [9] proposed a method for support

generation based on the orientation and size of the patch
in the STL model. This method is adopted by several
commercial 3D printers, but the support structures that
it generates can be reduced, practically.
Some research [10–14] aimed to produce better struc-

tures to reduce the quantity of support structure. Wang et
al. [11] proposed a support structure consisting of some
thin rods. These thin rods are from different directions as
compared to a simple vertical direction [9], with much
fewer support structures. Chen et al. [5, 15] presented an
optimized thin rod structure. The optimized structure has
better printability and stability. The thin rods are easier to
remove from the surface. Vanek et al. [13] proposed an
algorithm to generate a tree-like support structure. This
algorithm used thin rods to form a tree-like structure,
which is more stable. Dumas et al. [12] presented a scaf-
folding support structure. This structure has better sup-
port strength and stability than the tree-like structure.
The contributions of our study are a slicing algorithm

for boundary representation (B-rep) models and a support
structure generation algorithm. The slicing algorithm
is directly based on B-rep models that reduce the
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error produced from discretization. The support
structure generation algorithm focuses on detecting
the hanging edges and points of the model, which
will probably appear as draping in printing. The sup-
port for the hanging edges and points is to ensure
the printing quality of the model.
The remaining parts of this paper are arranged as

follows. Section 2 briefly introduces the framework of
the algorithm, then it presents the detail of model sli-
cing and support structure generation separately. The
experimental results are presented in Section 3. Sec-
tion 4 provides conclusions for the study.

Methods
Overview
Model slicing and support structure generation are two
key steps in 3D printing. The framework of our slicing

and support structure generation algorithm is illustrated
in Fig. 1.
First, we calculate all slicing planes according to

the size of the B-rep model. Then, we compute the
intersection curves between the faces of the B-rep
model and each slicing plane, as well as the intersec-
tion points between the edges of the B-rep model
and each slicing plane. These intersection points are
used to split the intersection curves into several seg-
ments, where the intersection curves only intersect
each other, at most, at endpoints. Thus, the intersec-
tion points become endpoints of the intersection
curves. Lastly, we analyze the intersection curves to
obtain a contour curve of the B-rep model on each
slicing plane.
For support structure generation, we compute the

grid points of the B-rep model. With the normals of

Fig. 1 Framework of the algorithm
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the grid points we compute the supporting region
inside, in which hanging points and edges are also
detected, to obtain supporting areas for each slicing
layer. Lastly, we generate support structures for 3D
printing.

Model slicing
Our slicing operations work directly on B-rep models.
The workflow is as follows.

Generate slicing planes
We compute the height of the B-rep model along the
slicing direction. We generate the slicing planes ac-
cording to the distance between two neighbor slicing
layers.

Calculate intersections
We compute the intersection curves between each face
in the B-rep model and each slicing plane, as well as the
intersection points between each edge in the B-rep
model and each slicing plane.

Generate contour curve for each layer
We analyze the intersection curves to obtain a contour
curve of the B-rep model on each slicing plane.

Generate slicing planes
The slicing direction is perpendicular to the slicing
planes. We rotate the B-rep model for the Z axis to
be in the slicing direction. Then, we calculate the
height of the B-rep model along the Z axis. The
number of slicing planes is the height of the B-rep

model divided by the distance between the two neigh-
bor slicing planes. We set the Z-coordinate of the
lowest point of the B-rep model to be 0. All the
equations representing slicing planes are obtained as
follows:

Z ¼ i dsp;

where dsp is the distance between the two neighbor sli-
cing planes, i = 0, 1, …, bhBdspc , hB is the height of the

B-rep model along the Z axis, and ⌊∙⌋ is the floor func-
tion, which produces the greatest integer less than the
given number. Here, dsp is given by the user before 3D
printing.

Calculate intersections
In model slicing, the most difficult step is computing
the intersection results between faces or edges of the
B-rep model and each slicing plane. In the B-rep
model, faces are usually made by trimmed surfaces.
Therefore, computing the intersection curves between
a face in the B-rep model and a slicing plane can be
divided into two steps. First, the intersection curves
Cis are computed between the untrimmed surface of
the face and the slicing plane. Second, the intersec-
tion curves Cis are cut by the boundary of the face.
To speed up computing the intersection curves Cis

between the untrimmed surface and the slicing plane,
we develop several intersection functions, each of
which works on a type of surface, such as a plane,
sphere, ellipsoid, cylinder, elliptical cylinder, cone, and
elliptical cone. The resultant intersection curves

Fig. 2 Intersection results depend on directions of surfaces and slicing planes

Fig. 3 Intersection results depend on directions of edges and slicing planes
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depend on the directions of surfaces and slicing
planes, as illustrated in Fig. 2. The intersection curves
Cis are directly discretized during the process of
intersection, and thus are converted into a set of
polylines {Pi | Pi = {p1, p2, …, pn}}, where Pi is a poly-
line, pk (k = 1, 2, …, n) is a discrete point, and n is
the number of discrete points in the polyline Pi.
Computing the intersection results is a difficult

task. Numerous cases exist, and these cases should be
considered separately. Figure 3 depicts some cases of
computing intersection points between the edges of
the B-rep model and slicing planes. The results de-
pend on the directions of edges and slicing planes.
The flowchart for computing intersection points

between the edges of the B-rep model and a slicing
plane is presented in Fig. 4. First, we determine
whether an endpoint of the edge is an intersection
point. Thus, we find two adjacent edges of the point.
If the two adjacent edges are on the same side of

the slicing plane (Fig. 3b, then we abandon the inter-
section point. If the two adjacent edges are on dif-
ferent sides of the slicing plane (Fig. 3c), then we
store the intersection point. If the intersection point
is on an edge but is not the endpoint of the edge,
then the intersection point divides the edge into two
segments. If the two segments are on the same side
of the slicing plane (Fig. 3d), then we abandon the
intersection point. If the two segments are on differ-
ent sides of the slicing plane (Fig. 3a), then we store
the intersection point. If the edge is on the slicing
plane (Fig. 3e), then we store two endpoints of the
edge.

Generate contour curve
Before generating contour curves, we use the inter-
section points between the edges and each slicing
plane to split the intersection curves between the
faces and each slicing plane into several segments,

Fig. 4 Flow chat of computing intersection points between edges and a slicing plane
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such that each intersection curve segment intersects each
other segment, at most, at endpoints. An intersection
point should be at least on an intersection curve because
an edge should be on a face. Thus, the splitting can be
performed. We then connect the intersection curve seg-
ments of the splitting results to form loops, which are the
contour curves on the B-rep model and the slicing planes.

Support structure generation
For fused-deposition 3D printing, support structure gener-
ation is necessary for hanging parts of models. Otherwise,

3D printing may fail because of gravity. Our support
structure generation can be performed automatically. The
workflow is as follows.

Generate Grid Points: Grid points are sampled directly
on the B-rep models, and the normals, height, and sup-
port type information are stored.
Detect Hanging Edges/Points: Hanging edges and
points that may be missing during sampling are
detected.
Generate Supporting Areas: Supporting areas are
generated according to the results of the above two
steps.

Supporting types
In our support structure generation, supporting is classi-
fied into the following three types.

None: Indicates that the grid point has no specific
supporting type.
ForceSupport: Indicates that the grid point is a forced
supporting point.
ForceNoSupport: Indicates that no support can be
imposed on the grid point.

The three supporting types can be manually set on
some grid points. As support structures may make touch
points on models less smooth, it is necessary to manu-
ally set the supporting types on some grid points, so as
to guarantee the quality of some parts of models.

Generate grid points
We create points evenly along the X-axis and Y-axis.
Then, we project these points on the B-rep models
along the Z-axis to generate the grid points on the
B-rep models. These grid points are also the sample
points on the B-rep models. We calculate the normals
and the height values at the grid points, and store
the support types at the grid points.

Detect hanging edges and points
Given that edges and vertices are crucial on the
B-rep models, they must also be detected. If we find
that edges or vertices on the B-rep models are hang-
ing, then we will set them with the supporting type
ForceSupport. The edges that are hanging are called
hanging edges, and the vertices that are hanging are
called hanging points. The flowcharts for detecting
hanging edges and points are presented in Figs. 5
and 6, respectively.
As shown in Fig. 5, we judge whether an edge has 2

adjacent faces. If the edge has 2 adjacent faces, we judge
whether the angle of these adjacent faces is smaller than

Fig. 5 Flow chat of detecting hanging edges
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a threshold cos_angle. Then, we discretize the edge and
judge whether the discrete point is pointing downwards.
We calculate the angle between the normal of the
discrete point and the vector (0, 0, − 1). If the angle is
smaller than cos_angle, we consider the point as point-
ing downwards, and mark the point as ForceSupport.
The value of cos_angle is π/3.
As shown in Fig. 6, there are two kinds of vertices

which are hanging points. The first one is the cone apex.
If the vertex is the cone apex and the vertex is pointing
downwards, we mark this vertex as ForceSupport. The
algorithm for determining whether the vertex is pointing
downwards is described above. The second kind of ver-
tex, which is a hanging point, is a vertex in which all of
its adjacent edges are above it. We calculate all the end-
points of its adjacent edges, and if the z values of these
endpoints are not smaller than the z value of the vertex,
we mark the vertex as ForceSupport.

Generate supporting areas
We add all grid points with the supporting type
ForceSupport, hanging edges, and hanging points
into the supporting areas. We calculate the angles

between the normals of grid points with the support-
ing type None and the X-axis. If angles are greater
than a threshold, then the grid points are added to
the supporting areas. Lastly, we remove all the grid
points with the supporting type ForceNoSupport
from the supporting areas. Support structures are
generated after the final supporting areas are
obtained.

Results
We conducted numerous experiments to test our sli-
cing and support structure generation algorithm.
This section shows some typical experimental
results.

Model slicing
The experimental results of the six models are pre-
sented in Fig. 7 and Table 1. As shown in Fig. 7, the
gray models are six B-rep models, and the red sliced
models are the slice results of the respective B-rep
models above them by our model slicing algorithm.
Table 1 shows the face and slice numbers of these six
models. The third column in the table shows that

Fig. 6 Flow chat of detecting hanging points
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these B-rep models have different face types. It proves
that our model slicing algorithm can handle different
face types in different B-rep models.
The experimental results of the six models are pre-

sented in Fig. 7 and Table 2. We compare our algo-
rithm with the algorithms in Slic3r [16] and Cura
[15]. Our algorithm works directly on the B-rep
models, whereas Slic3r and Cura work on STL
models converted from the same B-rep models. For a
fair comparison, we require the same 3D printing
precision, which is 0.1 mm, and the same number of
layers. According to Table 2, our algorithm consumes
considerably less time than Slic3r and Cura.

Support structure generation
In this study, the support generation algorithm gener-
ates the support of the model hanging edge and the
suspension point. One way to accomplish this is to
automatically generate the corresponding support at
the bottom of the suspension edge and the suspen-
sion point by detecting the suspension edge and the
suspension point. In this study, we first used the
Repetier-Host software to visualize the model support
generation. The support generation algorithm in this
study is shown in Fig. 8. The left and right in Fig. 8
are the hanging edge and point examples with the
support generation results of Slic3r, Cura, and our

Fig. 7 Slicing result of different B-rep models
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support generation algorithm, respectively. Slic3r is
generated by default support, and the Cura support
generated suspension angle is set to π/3, the same as
with our detecting algorithm. The support area fill
types are both set to a straight-line fill. As shown in
Fig. 8, Slic3r can detect a hanging edge well, but can-
not handle a hanging point well. The support gener-
ated by Slic3r for the hanging point example is very
redundant. Cure can detect a hanging point well, but
cannot detect a hanging edge. Our algorithm can
detect both the hanging edge and the hanging point
in the model, and the support structures are
well-generated, with almost no redundancy.
The examples shown in Fig. 8 prove that our algo-

rithm can generate support structures well for hang-
ing edges and points. After the step of support
generation, we print the two examples in Fig. 8 with
Slic3r and with our algorithms, respectively. The
comparison of print results with our algorithm and
the Slic3r is shown in Fig. 9. For the two examples, the support structures generated by Slic3r cannot

support 3D printing well. Some parts of the models
fail to be printed. By comparison, our algorithm can
work well on the two examples. The triangle and the
cone in the middle of the models are well-printed.

Discussion and conclusion
This paper proposes a slicing and support structure
generation algorithm that can work directly on B-rep
models. The experimental results show that our algo-
rithm can improve the efficiency and stability of 3D
printing. Our algorithm also allows users to specify

Fig. 8 Examples of supporting structure generation with
different methods

Table 2 Time cost of different algorithm

Model Time

Ours Slic3r Cura

Finger Plate 0.037 s 5.239 s 0.124 s

Wristband 0.180 s 15.323 s 0.484 s

Christmas tree 0.020 s 1.958 s 0.031 s

Cup 0.128 s 14.044 s 0.671 s

Pen Holder 0.271 s 35.633 s 1.607 s

Bowl 0.022 s 1.893 s 0.047 s

Table 1 Time cost of different B-rep models

Model Face Face type Slice Time

Bunny 700 B-Spline 700 425 1.464

Dog 322 B-Spline 322 378 3.588

Tooth 8 B-Spline 8 343 1.153

Gear 206 Plane 2 260 1.082

Cylinder 68

Cone 70

B-Spline 66

Vase 43 Plane 3 606 5.645

Torus 6

B-Spline 20

Rational B-spline 14

Lamp 23 Plane 3 635 2.732

Cylinder 4

Sphere 2

Rational B-spline 14
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the supporting types, thus increasing the flexibility of
3D printing.
In the future, we will continue to improve the effi-

ciency of 3D printing. We will attempt to find some new
ways of reducing the cost of support structures while
retaining the stability.
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