
ORIGINAL ARTICLE Open Access

Scalable point cloud meshing for image-
based large-scale 3D modeling
Jiali Han1,2 and Shuhan Shen1,2*

Abstract

Image-based 3D modeling is an effective method for reconstructing large-scale scenes, especially city-level
scenarios. In the image-based modeling pipeline, obtaining a watertight mesh model from a noisy multi-view
stereo point cloud is a key step toward ensuring model quality. However, some state-of-the-art methods rely on
the global Delaunay-based optimization formed by all the points and cameras; thus, they encounter scaling
problems when dealing with large scenes. To circumvent these limitations, this study proposes a scalable point-
cloud meshing approach to aid the reconstruction of city-scale scenes with minimal time consumption and
memory usage. Firstly, the entire scene is divided along the x and y axes into several overlapping chunks so that
each chunk can satisfy the memory limit. Then, the Delaunay-based optimization is performed to extract meshes for
each chunk in parallel. Finally, the local meshes are merged together by resolving local inconsistencies in the
overlapping areas between the chunks. We test the proposed method on three city-scale scenes with hundreds of
millions of points and thousands of images, and demonstrate its scalability, accuracy, and completeness, compared
with the state-of-the-art methods.

Keywords: Mesh-generation, Delaunay-based optimization, Large-scale scenes

Introduction
3D modeling of large-scale scenes has attracted exten-
sive attention in recent years. It can be applied in many
ways such as virtual reality, urban reconstruction, and
cultural heritage protection. Nowadays, there are many
techniques for obtaining the point cloud of large scenes;
the laser-scanner-based and image-based methods
appear to be the most widely used. Terrestrial laser
scanners can efficiently obtain billions of points [1–3].
The image-based method takes multi-view images as the
input, and produce per-pixel dense point clouds using
the structure-from-motion (SfM) and multi-view stereo
(MVS) algorithms [4–7]. For city-scale scene reconstruc-
tions, the image-based modeling approach is more
convenient and cost-effective, because of the rapid
developments of drones and oblique photography. How-
ever, noise and outliers are unavoidably included in the
MVS point cloud. Thus, extracting a watertight mesh

model from noisy MVS point clouds is a key step toward
ensuring the 3D model’s quality.
Surface reconstruction from point clouds has exten-

sively been researched in the field of computer graphics,
and there are various reconstruction methods in terms
of the input point clouds. The Poisson surface recon-
struction (PSR) (such as refs. [8–10]) is a popular point
meshing algorithm. It frames the surface reconstruction
as a spatial Poisson problem, defines an indicator func-
tion to represent the surface model, and uses the points
and estimated normal vectors to obtain the solution of
the function by solving the Poisson equation. Finally, the
approximate surface model with the entity information
is obtained by extracting the isosurface directly. The
PSR is a global optimization method, and the recon-
structed mesh model based on it is watertight, with
detailed characteristics. Another traditional surface re-
construction method is marching cubes [11], which uses
the divide-and-conquer strategy. It fits the surface into a
cube, and processes all the cubes sequentially. For each
cube, the surface intersections are identified via linear
interpolation, and the inner isosurface is approximated
by triangles. Finally, a polygonal mesh can be extracted.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: shshen@nlpr.ia.ac.cn
1National Laboratory of Pattern Recognition, Institute of Automation, Chinese
Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

Visual Computing for Industry,
Biomedicine, and Art

Han and Shen Visual Computing for Industry, Biomedicine, and Art
 (2019) 2:10
https://doi.org/10.1186/s42492-019-0020-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-019-0020-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:shshen@nlpr.ia.ac.cn

There are many variations of this method (such
as refs. [12–15]).
In addition, there are several image-based methods for

surface reconstruction. One of the most important
methods is based on the Delaunay triangulation [16], a
global optimization algorithm and the basis for several
other methods (such as refs. [5, 17–25]). This approach
considers the inevitable noise and outliers in the MVS
point cloud and exploits the visibility information of
cameras, thereby producing a better surface than the
traditional approaches. As a state-of-the-art algorithm in
image-based surface reconstruction, ref. [5] defines sur-
face reconstruction as a global optimization problem,
and obtains a complete result. However, as the size of
the point cloud increases, problem-solving will consume
so much time and memory that impedes the efficiency
of the computer. This study aims to solve this challenge.
When applied to large-scale point clouds, the trad-

itional approaches encounter bottlenecks due to the
drastic increase in time and memory. Some studies have
been conducted to address these problems. Using the
marching cubes and the results obtained in ref. [26],
Wiemann et al. [27] handled large-scale data using an
octree-based optimized data structure and a message-
passing-interface (MPI)-based distributed normal esti-
mation provided by the Las Vegas surface reconstruction
toolkit that can assign the data to a computing cluster
[28]. They incorporated parallelization into it, and pro-
posed a grid-extrusion method to replace the missing
triangles by adding new cells dynamically. Subsequently,
Wiemann et al. [2] used a collision-free hash function in
place of the octree structure to manage the voxels in a
hash map to obtain better results. This function can in-
stantaneously identify the adjacent cells under certain
conditions. Wiemann et al. [2], when handling the data,
serialized them into chunks that are geometrically re-
lated; then, the partitions are sent to the slave nodes to
be rebuilt in parallel. However, this method may have
the undesirable effect of generating more triangles than
necessary in the mesh.
Gopi et al. [29] proposed an unique and fast project-

based method to incrementally develop an interpolatory
surface. Although, their approach has linear-time per-
formance, it cannot effectively handle the sharp curva-
ture variation. Marton et al. [30] circumvented some of
the challenges [29] cannot handle. Their method is
based on incremental surface growing [31], an approach
that does not require interpolation, and can preserve all
the points. However, their approach is a greedy type, and
it is not guaranteed to obtain the same result as the glo-
bal optimal solution. More recently, Er et al. [32] pro-
posed a new approach whereby the data is sampled and
reconstructed based on the witness complex method
[33], using the original data as the constraint. After

sampling, although the size of the data may be smaller, it
is difficult to approximate the sampling rate for the dif-
ferent datasets, which affects the final reconstruction re-
sult. Ummenhofer and Brox [34] and Fuhrmann and
Goesele [35] have also researched large-scale reconstruc-
tions. The former proposed a global energy cost func-
tion, and they extracted the surface by conducting energy
minimization on a balanced octree. However, this method
does not solve the scale problem that characterizes large-
scale reconstruction due to its global formulation. The
latter proposed a local approach that is parameter-free for
datasets, and applicable to large, redundant, and poten-
tially noisy point clouds. However, this local approach will
generate many gaps, and cannot fill larger holes. Recently,
Mostegel et al. [36] proposed a scalable approach that can
process enormous point clouds. They used an octree to
divide the data, and run meshing method locally. The final
surface can be obtained by extracting overlaps and filling
the holes with a graph-cut algorithm. This method is able
to obtain a watertight mesh for extremely large point
clouds. However, the octree structure necessitates several
repetition of the calculation to obtain enough overlaps,
thereby increasing time consumption and memory usage.
To circumvent the limitations of current state-of-the-

art methods, we propose a scalable point-cloud meshing
approach that can efficiently process city-scale scenes
based on MVS points with minimal memory usage. As
shown in Fig. 1, we first divide the entire scene into
several chunks with overlapping boundaries along the x
and y axes, following which we perform the Delaunay-
based optimization to extract the mesh for each chunk
in parallel. Finally, the local meshes are merged by
resolving the inconsistencies in the overlapping areas be-
tween the chunks. The main contributions of this study
are as follows:

� We propose a practicable and efficient scalable
meshing approach to handling MVS points with
minimal and adjustable memory that can obtain a
reconstructed surface similar to that generated by
the global-based method [5].

� We achieve a region-partition method that can
divide the scene into chunks with overlapping
boundaries, each chunk being compatible with the
computer memory. In this method, each overlapping
grid is calculated two or four times, thus eliminating
some redundant computations in ref. [36].

Methods
In this study, we deal with a large-scale point cloud
computed from images that are generated using the SfM
and MVS algorithms. Without any auxiliary sensor in-
formation, the point cloud generated from the SfM and
MVS lies in an arbitrary coordinate. However, for

Han and Shen Visual Computing for Industry, Biomedicine, and Art (2019) 2:10 Page 2 of 9

outdoor scenes, it can easily be transformed according to
the geographical coordinates using the camera’s in-built
GPS information, or using the ground control points for
greater precision. This study mainly focuses on outdoor
city-scale scenes; thus, we assume that the MVS point
cloud has already been geo-referenced. Therefore, it is rea-
sonable to partition the scene on the ground plane (x-y
plane), but not along the vertical axis (z-axis).
The pipeline of the proposed method is shown in

Fig. 2; it has three main steps: region partition, local sur-
face reconstruction using Delaunay-based optimization,
and surface merging. All three steps are detailed in the
following subsections.

Region partitioning
Region partitioning is a straightforward strategy for solv-
ing memory limitation problems by partitioning large
point clouds into chunks, and processing each one
individually before merging them. Our point-cloud parti-
tioning process incorporates the region partitioning into
the approach of Mostegel et al. [36]. In ref. [36], they
divide the point cloud into voxels managed by an octree
structure, and run local computation on all the voxel
subsets to extract the surface hypotheses. However, their
process inevitably results in the repetition of many
facets. Consequently, for large-scale scenes, there will be
several voxels, and the computation on a voxel will be
repeated many times, leading to redundancy. To circum-
vent this limitation, we propose region partitioning.
We first divide the point cloud into regular grids on

the x-y plane; each grid contains all the points whose x
and y coordinates are within it. The grid is treated as the
smallest unit. Given the maximum number of points

that a single computer node can handle, the challenge of
partitioning the grids accordingly into chunks arises.
Here, we extract the grids along the x and y axes, and
the scene can be divided into portions. The extracted
grids will be incorporated into their adjacent parts as
boundaries; extraction will be performed repeatedly and
adjusted until the number of points in each part falls
below the maximum we set (designated Nmax). Finally,
we can obtain a group of chunks with overlapping
boundaries and limited number of points that will be
processed in parallel (Fig. 3).

Delaunay triangulation and minimum s-t cut
We run the Delaunay-based optimization algorithm lo-
cally on each chunk to obtain the local surfaces, after
which the local mesh is cleaned to obtain more consist-
ent local surfaces.

Local Delaunay-based surface computation
The local surface-reconstruction algorithm is based on the
method by Vu et al. [5]. First, the Delaunay triangulation
is performed using the point cloud. Then, the visibility of
the points and the quality of the surface are used to build
the energy function representing the energy for extracting
the final surface that can be obtained using the global
minimizing function with the minimum s-t cut algorithm.
The energy function is defined as follows:

E Sð Þ ¼ Evis Sð Þ þ λ � Equal Sð Þ ð1Þ

where S is the final surface and λ is a balance factor.
In this study, we use λ = 0.5, which can achieve

Fig. 1 City-scale scene surface modeling using the proposed scalable point-cloud-meshing method. The left is the input point cloud and two
enlarged building areas. The middle is the result of incorporating region partitioning into local meshes, and the right is the final merged mesh
with texture

Fig. 2 The pipeline of the proposed scalable point-cloud-meshing method

Han and Shen Visual Computing for Industry, Biomedicine, and Art (2019) 2:10 Page 3 of 9

favorable results across all the experiments; this value is
also the default setting in OpenMVS [37].
In Eq. 1, the visibility term Evis(S) conforms to the

principle that the line of sight from the cameras to the
points should not cross the final surface. Thus, it fully
exploits the visibility of points, and can effectively filter
out outliers. Besides, the quality item Equal(S) is defined
to penalize triangles with improper size or edge length,
both of which tend to have less visibility than the others
on dense surfaces. The evaluation criterion of the trian-
gles is related to the angle between a triangle and its
empty circumspheres.
Following the minimum s-t cutting, every tetrahedron

is labeled as inside or outside; the triangles that lay be-
tween both constitute the surface. Note that not all the
points are inserted during Delaunay triangulation. A
point can only be inserted when the re-projection dis-
tance between it and the other points that have been
inserted exceeds a certain distance [38] that is set to be
compatible with the computer memory and, effectively
reconstruct the places with overly dense points.

Local mesh clean up
Some extent of cleaning is performed to eliminate noise
after local surface reconstruction for each chunk, which
includes removing non-manifold and overly long edges,
isolating components and vertexes connected to a single
facet or none, and filling the holes. The cleaning process
is necessary because the Delaunay-based method cannot
obtain the most complete and consistent surface at once;
furthermore, cleaning is not as time-consuming as the
other steps. It may be observed that hole filling is neces-
sary, because some facets may be removed in the process

of removing edges that are too long. The hole-filling al-
gorithm here is implemented by the Visualization and
Computer Graphics Library (VCG) [39] and is a heuris-
tic algorithm that can fill holes with the specified side
length as far as possible.

Surface merging
Once the local surfaces for each chunk are generated,
using the overlapping boundaries as an intermediate, we
merge them by extracting proper facets, and resolving
the inconsistencies in the overlapping areas.

Consistent triangle extraction
The local surfaces are computed individually, and incon-
sistent facets exist mainly in the boundary grids. To
resolve these inconsistencies, we first extract the trian-
gles located in the internal grids (not boundary grids)
that are computed just once. Then, we extract the trian-
gles that span the internal and boundary grids, because
in the areas between the internal and boundary grids,
these triangles are farther from the outer boundaries of
the chunk than the triangles generated by the other
chunks, and the Delaunay tetrahedralization will be
more stable. These triangles are more suitable for selec-
tion and are consistent with the first kind of triangles
extracted.
Following this, we focus on extracting the triangles

within the boundaries, and they are computed two or
four times. We extract repeated triangles that are re-
peated the same number of times as the grids where
they are located. These repeated triangles are also con-
sistent, because they are the same in all adjacent chunks.
Based on the efficiency of the Delaunay-based method,

Fig. 3 An example of region partition. We mark the extracted grids with different colors (the left) that will be incorporated into their adjacent
parts as the boundaries. The order of grid extraction is green, purple, and blue; in the end, the scene is divided into several overlapping chunks
(the right)

Han and Shen Visual Computing for Industry, Biomedicine, and Art (2019) 2:10 Page 4 of 9

most triangles in the boundaries are repeated ones, thus,
simplifying the subsequent hole-filling task to an extent.

Hole filling
By combining the selected consistent triangles above, we
can obtain a surface mesh with some holes in the
boundary grids. Then, to minimize these inconsistencies,
we attempt to fill these holes. This step is similar to the
method in ref. [36]. We remove triangles that will inter-
sect the surface or generate non-manifold edges if they
are added first, and then cluster the rest by the edge
connectivity in each chunk. Specifically, we put the
triangles that can merge to form only one connected do-
main in a chunk, and refer to each group of triangles
after clustering as a patch. The patch will be used as the
smallest unit for hole filling. It is better to prioritize
patches that are farther from the outer boundaries of a
chunk, because Delaunay tetrahedralization is more
stable in these regions, compared to those close to the
outer boundaries. We use the centroid of a patch to rep-
resent the average position of all the points in the patch,
and find the outer boundaries of the chunk where the
patch is located. The farther the centroid is from these
outer boundaries, the higher its selection priority. We
define the offset of a patch P as follows:

offset Pð Þ ¼ min minbx∈Bx cx−bxj jð Þ; minby∈By cy−by
�
�

�
�

� �� �

ð2Þ

Where cx and cy are the x and y coordinates of the cen-
troid of P and Bx and By are the x-and-y-coordinate sets
of the outer boundaries of the chunk where P is located.
We sort the patches by their offset in descending order

and visit them sequentially. If a patch does not cross the
surface and generate non-manifold edges, it will be
added to the final surface. Note that patches are used in-
stead of single triangles for hole filling because using the
former can reduce the number of required checks
(checks for intersections or generation of non-manifold
edges). This step can effectively fill the holes caused by
inconsistent boundary computation.
Finally, we remove the non-manifold vertexes using

VCG [39] and apply HC-Laplacian smoothing [40] as a
post-processing step to obtain a smoother surface. These
tasks were not performed when the local meshes were
being cleaned, because they displace the points and
change the topology of meshes, thereby greatly reducing

the number of repeated facets in boundaries. Note that
we cannot theoretically guarantee that the final result
has no holes (likewise in the global optimization based
method [5]), but from the experimental results, most
areas of the surface are watertight; occasionally, there
may be few small holes where noise is particularly large.
Besides, when the input point cloud contains isolated
outliers somewhere (for example, for the aerial photog-
raphy of urban scenes, some outliers may appear deep
below the ground plane, which although being very rare
cannot be completely ruled out), we may incorporate
them into our final surface. However, this problem is not
difficult to resolve. We can eliminate the noise using the
visibility information by finding the visibility of the
points in the cameras of points. If a point is not visible
in any of the cameras that has acquired it, it can be
considered big noise and removed.

Results and discussion
The proposed method is evaluated by varying the parti-
tion numbers, and comparing it with other state-of-the-
art approaches. Here, we used a 20-core workstation
with 2.4 GHz CPU and 128 GB RAM. The API develop-
ment environment of our experiments is Ubuntu 18.04,
64 bit.

Datasets and parameters
We use three large-scale datasets, Temple, City1, and
City2, all obtained using drone aerial photography. For
all three datasets, the points are computed from the
images using off-the-shelf SfM [41, 42] and MVS [37]
algorithms. A detailed description of the datasets is
shown in Table 1, and the illustration of the point
clouds, as well as the cameras, is shown in Fig. 4.
The proposed algorithm has two main parameters:

grid size, δ, and maximum number of points in one
chunk, Nmax. δ is set according to the size of objects in
the scene, and we set δ as 6 m for all the datasets. The
Nmax values are determined by the limits of the comput-
ing resources (mainly the memory).

Evaluation of different partition numbers
The partition numbers are affected by the upper limit of
the number of points in a chunk. To verify the robust-
ness of the proposed algorithm against the number of
chunks, we modify Nmax from 1.3 ×107 to 9.0 × 106, and
6.0 × 106, to vary the number of partitions, and evaluate

Table 1 The description of our datasets

Dataset No. of images No. of points Area (km2) Scene features

Temple 2854 67 Million 0.06 Ancient Chinese buildings, Forests

City1 930 96 Million 1.68 City buildings, Squares, Roads

City2 7450 126 Million 0.81 Houses, Streets

Han and Shen Visual Computing for Industry, Biomedicine, and Art (2019) 2:10 Page 5 of 9

the results on the Temple dataset. As may be seen in
Fig. 5, as the number of points in a chunk decreases, al-
though the reconstruction result is still good, the com-
pleteness and accuracy are relatively compromised. With
different partition numbers, we record the running time
of the main steps in our method and the peak memory
consumption, as shown in Table 2. As may be observed,
as the Nmax decreases, the algorithm consumes less
memory, and the local Delaunay-based computation is
less time-consuming; however, surface merging (mainly
hole filling) becomes more time-consuming. Therefore,
our method is more advantageous when the partition
numbers are relatively small. We prefer to choose Nmax

based on the memory limit of the computer, because the
number of partitions obtained is directly proportional to
the number of holes to be filled and the required com-
putation time.

Comparison with state-of-the-art approaches
In this part, we qualitatively compare our method with
the state-of-the-art methods [5, 34, 35, 43] for the three
datasets. First, we compare our method with the global
Delaunay-based optimization method [5] (hereafter re-
ferred to as “Global”). We also compare our method
with the global dense multiscale reconstruction (GDMR)
[34, 43] and the floating scale surface reconstruction

(FSSR) [35]. These two methods are based on the impli-
cit functions, and instead of visibility information, they
deploy a scale parameter that affects the time and mem-
ory consumption and reconstruction completeness.
FSSR and GDMR are 64-bit executable programs pro-
vided respectively by refs. [44, 45]. Global is the codes in
OpenMVS [37]. In our method, we use Nmax = 1.3 × 107;
for FSSR and GDMR, we use the same scale parameters
according to the length of the edges from one point to
its neighbors; thus, for both, we use 0.08 on the Temple
dataset, 1.5 on the City1 dataset, and 1.0 on the City2
dataset, which yield the optimal results we try.

Completeness
We first compare the reconstruction completeness of
these methods. We can see in Fig. 6 that the FSSR does
not effectively fill larger holes; Global and our method
outperform it in this aspect. Furthermore, Global and
our method can also retain more details with less noise
than GDMR and FSSR.

Time and memory consumption
All the methods are run on the CPU. The local recon-
struction work in the proposed method is run in parallel,
while that of Global is run sequentially. When we run
the executable programs of FSSR and GDMR, we find

Fig. 4 Illustration of the point cloud and cameras of the Temple, City1 and City2 datasets; the yellow marks represent the positions of the cameras

Fig. 5 Comparison between Nmax = 1.3 × 107 and Nmax = 6.0 × 106. The first row is the results for Nmax = 6.0 × 106, and the second is for Nmax =
1.3 × 107. When Nmax = 6.0 × 106, the quality of merged surface is reduced to some extent, compared with the results obtained when Nmax =
1.3 × 107 is used in some areas, which reflects the balance between memory consumption and reconstruction completeness

Han and Shen Visual Computing for Industry, Biomedicine, and Art (2019) 2:10 Page 6 of 9

that parallel computations are added when certain
operations are performed. The time consumption and
memory usage of the different methods can be seen in
Table 3, from which it may be observed that our method
outperforms Global in memory usage and time con-
sumption. FSSR and GDMR run faster sometimes be-
cause they do not utilize the visibility information of the

points and cameras; however, there is a tradeoff between
this speed and the capacity to retain details and scene
completeness. Thus, in terms of detail retention and
scene completeness, our method and Global outperform
FSSR and GDMR.

Conclusions
In this paper, we propose a scalable point-cloud meshing
approach to image based 3D modeling that can enable
the reconstruction of large-scale scenes with minimal
memory usage and time consumption. Different from
the current distributed points meshing algorithms [36]
based on the regular voxel partition of the scene, we
propose a region-partitioning method that can divide a
scene into several chunks with overlapping boundaries,
each chunk satisfying the memory limit. Then, the
Delaunay-based optimization is used to extract the mesh

Table 2 Results for different Nmax

Nmax(× 106) T1 (s) T2 (s) T3 (s) Peak memory
consumption
(GB)/per process

13 1408 113 829 5

9 957 140 1409 4

6 809 148 1599 4

T1 represents the duration of parallel local surface reconstruction, T2 is the
duration of extracting consistent triangles, and T3 is the duration of hole filling

a

b

c

Fig. 6 Comparison of the different methods on the Temple, City1, and City2 datasets. In all [(a), (b) and (c)], the top row, from left to right, are
the reconstruction results of our proposed method, Global, GDMR, and FSSR, respectively. The next row contains two details of the surface, and
the columns in the two details represent the result of our method, Global, GDMR, and FSSR, respectively. The red circles highlight the surface
quality of our approach, demonstrating that our proposed method and Global can obtain similar results. Both methods outperform GDMR and
FSSR in surface details and completeness

Han and Shen Visual Computing for Industry, Biomedicine, and Art (2019) 2:10 Page 7 of 9

for each chunk in parallel. Finally, local meshes are
merged by resolving local inconsistencies on the overlap-
ping areas between the chunks. We evaluate the pro-
posed method on three city-scale scenes with hundreds
of millions of points and thousands of images, and
demonstrate its scalability, accuracy, and completeness,
compared with the state-of-the-art methods.
In this study, the hole-filling task was performed as a

sequential computation. However, in future work, we
will mainly focus on achieving simultaneous parallel
computation when filling the holes to further improve
the running speed and efficiency of our method.

Abbreviations
FSSR: Floating scale surface reconstruction; GDMR: Global dense multiscale
reconstruction; MPI: Message-passing-interface; MVS: Multiple view stereo;
PSR: Possion surface reconstruction; SfM: Structure-from motion;
VCG: Visualization and Computer Graphics Library

Authors’ contributions
All authors read and approved the final manuscript.

Funding
This work was supported by the Natural Science Foundation of China
(Nos. 61632003, 61873265)

Availability of data and materials
The datasets used and/or analysed during the current study are available
from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Received: 5 May 2019 Accepted: 18 July 2019

References
1. Wang WX, Zhao WS, Huang LX, Vimarlund V, Wang ZW (2014) Applications

of terrestrial laser scanning for tunnels: a review. J Traffic Trans Eng 1(5):
325–337 https://doi.org/10.1016/S2095-7564(15)30279-8

2. Wiemann T, Mitschke I, Mock A, Hertzberg J (2018) Surface reconstruction
from arbitrarily large point clouds. In: Abstracts of IEEE international
conference on robotic computing. IEEE, Laguna Hills, https://doi.org/10.11
09/IRC.2018.00059

3. Li RH, Bu GC, Wang P (2017) An automatic tree skeleton extracting method
based on point cloud of terrestrial laser scanner. Int J Opt 2017:5408503

4. Frahm JM, Fite-Georgel P, Gallup D, Johnson T, Raguram R, Wu CC, et al
(2010) Building Rome on a cloudless day. In: Daniilidis K, Maragos P, Paragios N
(eds) Computer Vision - ECCV 2010 11th European conference on computer
vision, Heraklion, September, 2010. Lecture notes in computer science (Lecture
notes in artificial intelligence), vol 6314. Springer, Heraklion, Crete

5. Vu HH, Labatut P, Pons JP, Keriven R (2012) High accuracy and visibility-
consistent dense multiview stereo. IEEE Trans Pattern Anal Mach Intell
34(5):889–901

6. Furukawa Y, Curless B, Seitz SM, Szeliski R (2010) Towards internet-scale
multi-view stereo. In: Abstracts of IEEE computer society conference on
computer vision and pattern recognition. IEEE, San Francisco

7. Furukawa Y, Ponce J (2010) Accurate, dense, and robust multiview
stereopsis. IEEE Trans Pattern Anal Mach Intell 32(8):1362–1376 https://doi.
org/10.1109/TPAMI.2009.161

8. Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In:
Abstracts of the fourth eurographics symposium on geometry processing.
ACM, Cagliari, Sardinia

9. Zhou K, Gong MM, Huang X, Guo BN (2008) Highly parallel surface
reconstruction. Microsoft Research Asia, Beijing

10. Kazhdan M, Hoppe H (2013) Screened poisson surface reconstruction. ACM
Trans Graph 32(3):29 https://doi.org/10.1145/2487228.2487237

11. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface
construction algorithm. ACM Siggraph Comput Graph 21(4):163–169

12. Hill S, Roberts JC (1995) Surface models and the resolution of N-
dimensional cell ambiguity. In: Paeth AW (ed) Graphics gems V. Elsevier, San
Diego, pp 98–106. https://doi.org/10.1016/B978-0-12-543457-7.50023-1

13. Chernyaev EV (1995) Marching cubes 33: construction of topologically
correct isosurfaces. Europen Organization for Nclear Research, Geneva

14. Lewiner T, Lopes H, Vieira AW, Tavares G (2012) Efficient implementation of
marching cubes’ cases with topological guarantees. J Graph Tools 8(2):1–15

15. Nielson GM (2003) MC*: star functions for marching cubes. In: Abstracts of
IEEE visualization. IEEE, Seattle. https://doi.org/10.1109/VISUAL.2003.1250355

16. Delaunay B (1934) Sur la sphère vide. A la mémoire de georges voronoï.
Bull l'Académie Sci l'URSS 6:793–800

17. Chen ZG, Wang WP, Lévy BO, Levy B, Liu LG, Sun F (2014) Revisiting optimal
Delaunay triangulation for 3d graded mesh generation. SIAM J Sci Comput
36(3):A930–A954 https://doi.org/10.1137/120875132

18. Jancosek M, Pajdla T (2011) Multi-view reconstruction preserving weakly-
supported surfaces. In: Abstracts of IEEE conference on computer vision and
pattern recognition. IEEE, Colorado Springs

19. Labatut P, Pons JP, Keriven R (2007) Efficient multi-view reconstruction of large-
scale scenes using interest points, Delaunay triangulation and graph cuts. In:
Abstracts of the IEEE 11th international conference on computer vision. IEEE,
Rio de Janeiro. https://doi.org/10.1109/ICCV.2007.4408892

20. Hiep VH, Keriven R, Labatut P, Pons JP (2009) Towards high-resolution large-
scale multi-view stereo. In: Abstracts of IEEE conference on computer vision
and pattern recognition. IEEE, Miami, pp 1430–1437 https://doi.org/10.1109/
CVPR.2009.5206617

21. Labatut P, Pons JP, Keriven R (2009) Robust and efficient surface
reconstruction from range data. Comput Graph Forum 28(8):2275–2290.
https://doi.org/10.1111/j.1467-8659.2009.01530.x

22. Dey TK, Goswami S (2006) Provable surface reconstruction from noisy
samples. Comput Geom 35(1–2):124–141

23. Dey TK, Goswami S (2003) Tight cocone: a water-tight surface reconstructor.
In: Abstracts of ACM symposium on solid modeling and applications. ACM,
New York, pp 127–134

24. Amenta N, Choi S, Dey TK, Leekha N (2002) A simple algorithm for
homeomorphic surface reconstruction. Int J Comput Geom Appl 12(1–2):
125–141 https://doi.org/10.1142/S0218195902000773

25. Amenta N, Bern M, Kamvysselis M (1998) A new voronoi-based surface
reconstruction algorithm. In: Abstracts of the 25th annual conference on
computer graphics and interactive techniques. ACM, New York

26. Wiemann T, Annuth H, Lingemann K, Hertzberg J (2013) An evaluation of open
source surface reconstruction software for robotic applications. In: Abstracts of
2013 16th international conference on advanced robotics. IEEE, Montevideo

27. Wiemann T, Mrozinski M, Feldschnieders D, Lingemann K, Hertzberg J
(2016) Data handling in large-scale surface reconstruction. In: Menegatti E,
Michael N, Berns K, Yamaguchi H (eds) Intelligent autonomous systems 13.
Advances in intelligent systems and computing, vol 302. Springer, Cham, pp
499–511. https://doi.org/10.1007/978-3-319-08338-4_37

28. Wiemann T, Nüchter A, Hertzberg J (2012) A toolkit for automatic
generation of polygonal maps-Las Vegas reconstruction. In: Abstracts of
ROBOTIK 2012; 7th German conference on robotics. IEEE, Munich, pp 1–6

29. Gopi M, Krishnan S (2002) A fast and efficient projection-based approach for
surface reconstruction. In: Abstracts of XV Brazilian symposium on computer
graphics and image processing. IEEE, Fortaleza-CE

Table 3 The different methods and the time (min) and peak
memory consumption (GB) for the three datasets

Global Proposed method FSSR GDMR

Temple Time 50 40 105 50

Memory 16 5 10 9

City1 Time 71 39 27 29

Memory 93 18 6 7

City2 Time 57 32 37 25

Memory 108 8 8 7

Han and Shen Visual Computing for Industry, Biomedicine, and Art (2019) 2:10 Page 8 of 9

https://doi.org/10.1016/S2095-7564(15)30279-8
https://doi.org/10.1109/IRC.2018.00059
https://doi.org/10.1109/IRC.2018.00059
https://doi.org/10.1109/TPAMI.2009.161
https://doi.org/10.1109/TPAMI.2009.161
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1016/B978-0-12-543457-7.50023-1
https://doi.org/10.1109/VISUAL.2003.1250355
https://doi.org/10.1137/120875132
https://doi.org/10.1109/ICCV.2007.4408892
https://doi.org/10.1109/CVPR.2009.5206617
https://doi.org/10.1109/CVPR.2009.5206617
https://doi.org/10.1111/j.1467-8659.2009.01530.x
https://doi.org/10.1142/S0218195902000773
https://doi.org/10.1007/978-3-319-08338-4_37

30. Marton ZC, Rusu RB, Beetz M (2009) On fast surface reconstruction methods
for large and noisy point clouds. In: Abstracts of IEEE international
conference on robotics and automation. IEEE, Kobe. https://doi.org/10.1109/
ROBOT.2009.5152628

31. Mencl R, Muller H (1997) Interpolation and approximation of surfaces from
three-dimensional scattered data points. In: Abstracts of conference on
scientific visualization. IEEE, Dagstuhl

32. Li E, Zhang XP, Chen YY (2014) Sampling and surface reconstruction of
large scale point cloud. In: Abstracts of the 13th ACM SIGGRAPH
international conference on virtual-reality continuum and its applications in
industry. ACM, Shenzhen

33. Guibas LJ, Oudot SY (2008) Reconstruction using witness complexes.
Discrete Comput Geom 40(3):325–356

34. Ummenhofer B, Brox T (2017) Global, dense multiscale reconstruction for a
billion points. Int J Comput Vis 125(1–3):82–94 https://doi.org/10.1007/
s11263-017-1017-7

35. Fuhrmann S, Goesele M (2014) Floating scale surface reconstruction. ACM
Trans Graph 33(4):46 https://doi.org/10.1145/2601097.2601163

36. Mostegel C, Prettenthaler R, Fraundorfer F, Bischof H (2017) Scalable surface
reconstruction from point clouds with extreme scale and density diversity.
In: Abstracts of IEEE conference on computer vision and pattern
recognition. IEEE, Honolulu

37. OpenMVS (2015): Open multi-view stereo reconstruction library.
https://github.com/cdcseacave/openMVS

38. Jancosek M, Pajdla T (2014) Exploiting visibility information in surface
reconstruction to preserve weakly supported surfaces. Int Sch Res Notices
2014:798595 https://doi.org/10.1155/2014/798595

39. Cignoni P Ganovelli F (2016) The visualization and computer graphics library
(VCG). http://www.vcglib.net/

40. Vollmer J, Mencl R, Müller H (1999) Improved laplacian smoothing of noisy
surface meshes. Comput Graph Forum 18(3):131–138 https://doi.org/1
0.1111/1467-8659.00334

41. Schönberger JL, Frahm JM (2016) Structure-from-motion revisited. In:
Abstracts of conference on computer vision and pattern recognition. IEEE,
Las Vegas

42. Schönberger JL, Zheng EL, Frahm JM, Pollefeys M (2016) Pixelwise view
selection for unstructured multi-view stereo. In: Leibe B, Matas J, Sebe N,
Welling M (eds) Computer vision - ECCV 2016. 14th European conference on
computer vision Amsterdam, October, 2016. Lecture notes in computer
science, (Lecture notes in artificial intelligence), vol 9907. Springer, Amsterdam

43. Ummenhofer B, Brox T (2015) Global, dense multiscale reconstruction for a
billion points. In: Abstracts of IEEE international conference on computer
vision. IEEE, Santiago. https://doi.org/10.1109/ICCV.2015.158

44. Fuhrmann S, Langguth F, Goesele M (2014) MVE - a multi-view reconstruction
environment. In: Klein R, Santos P (eds) Eurographics workshop on graphics
and cultural heritage. The Eurographics Association, Germany

45. Ummenhofer B, Brox T (2015) Global, Dense multiscale reconstruction for a
billion points. https://lmb.informatik.uni-freiburg.de/people/ummenhof/
multiscalefusion/

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Han and Shen Visual Computing for Industry, Biomedicine, and Art (2019) 2:10 Page 9 of 9

https://doi.org/10.1109/ROBOT.2009.5152628
https://doi.org/10.1109/ROBOT.2009.5152628
https://doi.org/10.1007/s11263-017-1017-7
https://doi.org/10.1007/s11263-017-1017-7
https://doi.org/10.1145/2601097.2601163
https://github.com/cdcseacave/openMVS
https://doi.org/10.1155/2014/798595
http://www.vcglib.net/
https://doi.org/10.1111/1467-8659.00334
https://doi.org/10.1111/1467-8659.00334
https://doi.org/10.1109/ICCV.2015.158
https://lmb.informatik.uni-freiburg.de/people/ummenhof/multiscalefusion/
https://lmb.informatik.uni-freiburg.de/people/ummenhof/multiscalefusion/

	Abstract
	Introduction
	Methods
	Region partitioning
	Delaunay triangulation and minimum s-t cut
	Local Delaunay-based surface computation
	Local mesh clean up

	Surface merging
	Consistent triangle extraction
	Hole filling

	Results and discussion
	Datasets and parameters
	Evaluation of different partition numbers
	Comparison with state-of-the-art approaches
	Completeness
	Time and memory consumption

	Conclusions
	Abbreviations
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

