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Abstract

In this study, we propose a deep-learning-based method to correct motion artifacts in optical resolution
photoacoustic microscopy (OR-PAM). The method is a convolutional neural network that establishes an end-to-end
map from input raw data with motion artifacts to output corrected images. First, we performed simulation studies
to evaluate the feasibility and effectiveness of the proposed method. Second, we employed this method to process
images of rat brain vessels with multiple motion artifacts to evaluate its performance for in vivo applications. The
results demonstrate that this method works well for both large blood vessels and capillary networks. In comparison
with traditional methods, the proposed method in this study can be easily modified to satisfy different scenarios of
motion corrections in OR-PAM by revising the training sets.
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Introduction

Optical resolution photoacoustic microscopy (OR-PAM) is a
unique sub-category of photoacoustic imaging (PAI) [1-3].
Via the combination of sharp-focused pulsed laser and high-
sensitivity detection of rapid thermal expansion-induced
ultrasonic signals, OR-PAM offers both an optical-diffraction
limited lateral resolution of micrometers and an imaging
depth of millimeters. With these special features, OR-PAM
is extensively employed in the studies of biology, medicine,
and nanotechnology [4]. However, high-resolution imaging
modalities are also extremely sensitive to motion artifacts,
which are primarily attributed to the breath and heartbeat of
animals. Motion artifacts are nearly inevitable for imaging
in vivo targets, which cause a loss of key information for the
quantitative analysis of images. Therefore, the exploration of
image-processing methods that can reduce the influence of
motion artifacts in OR-PAM is necessary.

Recently, several motion-correction methods have been
proposed for PAI to obtain high-quality images [5-8]. The
majority of existing algorithms are primarily based on
deblurring methods that are extensively employed in
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photoacoustic-computed tomography (PACT) and only
suitable for cross-sectional B-scan images [5, 6]. Schwarz
et al. [7] proposed an algorithm to correct motion artifacts
between adjacent B-scan images for acoustic-resolution
photoacoustic microscopy (AR-PAM). Unfortunately, the
algorithm needs a dynamic reference, which is not feasible
in high-resolution OR-PAM images. A method presented
by Zhao et al. [8] has the capability of addressing these
shortcomings but can only correct the dislocations along
the direction of a slow-scanning axis. Recent methods that
are based on deep learning have demonstrated a state-of-
the-art performance in many fields, such as natural lan-
guage processing, audio recognition and visual recognition
[9-14]. Deep learning discovers an intricate structure by
using a backpropagation algorithm to indicate how a net
should change its internal parameters, which are used to
compute the representation in each layer from that in the
previous layer. A convolutional neural network (CNN) is a
common model for deep learning in image processing [15].
In this study, we present a fully CNN [16] to correct mo-
tion artifacts in a maximum amplitude projection (MAP)
image of OR-PAM instead of a volume. To evaluate the
performance of this method, we conduct both simulation
tests and in vivo experiments. The experimental results
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Fig. 1 Mapping processes of convolutional neural network
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indicated that the presented method can eliminate displace-
ments in both simulations and in vivo MAP images.

Methods

Experimental setup

The OR-PAM system in this study has been described
in previous publications [17]. A high-repetition-rate
laser serves as an irradiation source with a repetition
rate of 50 KHz. A laser beam is coupled into a single
mode fiber, collimated via a fiber collimation lens
(F240FC-532, Thorlabs Inc.), and focused by an object-
ive lens to illuminate a sample. A customized micro-
electro-mechanical system scanner is driven by a multi-
functional data acquisition card (PCI-6733, National In-
strument Inc.) to realize fast raster scanning. We detect
photoacoustic signals using a flat ultrasonic transducer
with a center frequency of 10 MHz and a bandwidth of
80% (XMS-310-B, Olympus NDT). The original photo-
acoustic signals are amplified by a homemade pre-
amplifier at ~ 64 dB and digitized by a high-speed data
acquisition card at a sampling rate of 250 MS/s (ATS-
9325, Alazar Inc.). The imaging reconstruction is per-
formed using Matlab (2014a, MathWorks). We derived

the envelopes of each depth-resolved photoacoustic sig-
nal using the Hilbert transform and projected the max-
imum amplitude along the axial direction to form a
MAP image. We implemented our algorithm for mo-
tion correction using a tensor flow package and trained
this neural network using Python software on a per-
sonal computer.

Algorithm of CNN

Figure 1 illustrates an example of the mapping pro-
cesses of CNN. In this case, the input is a two-
dimensional 4 x 4 matrix, and the convolution kernel
is a 2 x2 matrix. First, we select four adjacent ele-
ments (a, b, e, f) in the upper right corner of the in-
put matrix, multiply each element with the
corresponding element in the convolution kernel,
and sum all calculated elements to form S1 in the
output matrix. We repeat the same procedure by
shifting the 4 x 4 matrix by one pixel in either direc-
tion of the input matrix to calculate the remaining
pixel values in the output matrix. The CNN is classi-
fied by two major properties: local connectivity and param-
eter sharing. As depicted in Fig. 1, the element S1 is not
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Fig. 2 Structure of motion correction based on convolutional neural network
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Fig. 3 Results of simulation experiment

(b)

associated with all elements in the input layer; it is only asso-
ciated with a small number of elements in a spatially local-
ized region (a, b, e, f). A hidden layer has several feature
maps, and all hidden elements within a feature map share
the same parameter, which further reduces the number of
parameters.

The structure of the CNN in this work is illustrated in
Fig. 2. The images with the motion artifacts used for
training were obtained from the ground-truth image. As
depicted in Fig. 2, the method consists of three convolu-
tional layers. The first convolutional layer can be
expressed as

Gl = Relu(Wl*I -+ Bl) (1)

where the rectified linear unit (Relu) is a nonlinear func-
tion max(0,z) [18], W is the convolution nucleus, = de-
notes the convolution operation, I is the original image, and
B, is the neuron bias vector. The second convolutional
layer, which is a nonlinear mapping, can be defined as

G2 = Relu(Wz*Gl -+ Bg) (2)

where Relu, W,, B, and = are defined according to the
previously defined expression. In comparison with the

Fig. 4 Results of correcting motion artifacts in horizontal and vertical dislocation. a MAP image that corresponds to the raw data of a rat brain. b
MAP image after motion correction. ¢ and d Enlarged images of the two boxes in (a). e and f Enlarged figures of corresponding areas in (b)
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Fig. 5 Results of correcting motion artifacts in an arbitrary dislocation. a Maximum amplitude projection (MAP) image that corresponds to the
raw data of a rat brain. b MAP image after motion correction. ¢ Enlarged image of the box in (a). d Enlarged figure of corresponding areas in (b)
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first two layers, a nonlinear function does not exist in
the last layer, which is used to reconstruct the output
image. The last layer can be defined as follows:

O = (Wg*Gg + Bg) (3)

Similarly, W5 and Bj; are defined according to the pre-
viously defined expression. In this study, the input and
output images have one channel; thus, the size of the
convolution nucleus W;, W,, and W3 are set to [5, 5, 1,
64], [5, 5, 64, 64], and [5, 5, 64, 1], respectively. The size
of the neuron bias vectors B, By, and Bj are set to [64],
[64], and [1], respectively.

Training

Learning the end-to-end mapping function M requires
estimation of the network parameters ® = { W, W,
W3, By, By, B3 }. The purpose of the training process is
to estimate and optimize the parameters W;, W,, W,
B,, B,, and B3, which is achieved by minimizing the error

between the reconstructed images M(O; @) and the cor-
responding input images I. Given a set of motion images
and their corresponding non-motion images, we use the
mean squared error as the loss function:

L@) = 13" M0 )1 (4)

where 7 is the number of training samples. The error
is minimized using the gradient descent with standard
backpropagation [19]. To avoid changing the image size,
all convolutional layers are set to the same padding.

Results

After the training, we conducted a series of experi-
ments to evaluate the performance of the method. In the
simulation, we created a displacement along the direc-
tion of the Y axis, which is denoted by a white arrow
(Fig. 3(a)). We processed the image with the trained
CNN and obtained the results, as depicted in Fig. 3(b).
In comparison with the images before and after the
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Fig. 6 Results using different kernel sizes
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processing, we observe that the displacement has been
corrected, which demonstrates that our algorithm works
well in simulation cases.

We created both horizontal artifacts and vertical mo-
tion artifacts, as depicted in Fig. 4(a). Figure 4(c) and (d)
illustrate an enlarged view of the motion artifacts in the
blue rectangle and yellow rectangle, respectively. Figure
4(b) depicts the corrected MAP image via the proposed
method, in which both the horizontal artifact and the
vertical motion artifact have been corrected, as depicted
in Fig. 4(e) and Fig. 4(f).

To demonstrate that our method can adequately cor-
rect motion artifacts in an arbitrary direction, we estab-
lished two complicated motion artifacts, as depicted in
Fig. 5(a) and (c). Figure 5(b) and (d) illustrate the cor-
rected MAP images, in which both displacements in the
vertical and tilted directions have been corrected.

We evaluated the network performance using different
kernel sizes. We conduct three experiments: (1) the ker-
nel size in the first experiment has a size of 3 x 3; (2) the
kernel size in the second one has a size of 4 x 4; and (3)
the kernel size in the third experiment has a size of 5 x
5. The results in Fig. 6 suggest that the performance of
this algorithm can be significantly improved by using a
larger kernel size. However, the processing efficiency will
decrease. Thus, the choice of the network scale should
always be a trade-off between performance and speed.

Conclusions

We experimentally demonstrated the feasibility of the pro-
posed method using a CNN to correct motion artifacts in
OR-PAM. In comparison with the existing algorithms [5-8],
the proposed method demonstrates a better performance in
eliminating motion artifacts in all directions without any ref-
erence objects. Additionally, we verified that the perform-
ance of the method improves as the kernel size increases.
Although this method is designed for OR-PAM, it is capable
of correcting motion artifacts in other imaging modalities,
such as photoacoustic tomography, AR-PAM, and optical
coherence tomography, when the corresponding training
sets are used.
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