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Sparse-view tomography via displacement
function interpolation
Gengsheng L. Zeng1,2

Abstract

Sparse-view tomography has many applications such as in low-dose computed tomography (CT). Using under-
sampled data, a perfect image is not expected. The goal of this paper is to obtain a tomographic image that is
better than the naïve filtered backprojection (FBP) reconstruction that uses linear interpolation to complete the
measurements. This paper proposes a method to estimate the un-measured projections by displacement function
interpolation. Displacement function estimation is a non-linear procedure and the linear interpolation is performed on
the displacement function (instead of, on the sinogram itself). As a result, the estimated measurements are not the
linear transformation of the measured data. The proposed method is compared with the linear interpolation methods,
and the proposed method shows superior performance.
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Introduction
Low-dose computed tomography (CT) can be achieved
by using either lower current or fewer projection views.
Sparse-view tomography thus can find applications in
low-dose CT [1]. Another application is in fast magnetic
resonant imaging (MRI) when radial k-space sampling
scheme is utilized [2]. In sparse-view tomography, mea-
surements are under-sampled, which usually result in
severe aliasing artifacts as streaking lines in the recon-
structed images. The phrase “sparse-view” means that
the number of views in data acquisition is significantly
smaller than the value that is met by Shannon’s sampling
theorem, which requires [3].

Np ≈ Dmin ð1Þ

where Np is the number of views over 180° and Dmin is
the minimum number of detector bins to cover the
object at one view. Many systematic studies lead to more
efficient sampling criteria [4–8], where more compli-
cated two-dimensional interpolations are discussed.
According to compressed sensing theory, sparse-view

tomography may still be possible if some image domain

constraints are used to compensate for the missing data
[9–15]. However, this paper focuses on analytic filtered
backprojection (FBP) reconstruction. Iterative recon-
struction methods and machine learning methods are
beyond the scope of this paper.
Sometimes the unmeasured views can be approxi-

mately estimated by interpolation methods [16–19].
Recently, machine learning methods are popular and
successful in sparse-view data estimation [20–22].
In this paper, we argue that interpolation with linear

convolution approaches simply introduce slightly rotated
images to the main image. By the “main” image, we
imply the image that is reconstructed by only the mea-
sured sparse data. The results of machine learning
methods depend on the training sets; therefore, the
results may not be applicable to all applications. Here
we propose a nonlinear method to estimate unmeasured
projections by using displacement functions, which will
be discussed in Section II. The linear interpolation
method assumes that the unmeasured value is the aver-
age of its neighbors. On the other hand, the deformation
method assumes that the unmeasured value has the
same value as one of its neighbor’s value. The deform-
ation method is nonlinear and is able to avoid or reduce
the rotational interpolation artifacts. Comparison simu-
lations will be presented in Section III, and Section IV
concludes the paper.
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Methods
The rotation effect of the linear interpolation method
As a simple example to illustrate the main motivation,
this paper first considers a naïve linear interpolation
approach that doubles the number of views in tomog-
raphy. Let the sinogram be p(n, m), where p is the line
integral of the object, n is the detector bin index and m
is the view angle index. In this example, when m is odd,
the p(n, m) is measured. When m is even, the p(n, m) is
not measured and needs to be estimated. A simple linear
interpolation scheme to estimate p(n, 2m) from p(n, 2
m-1) and p(n, 2m + 1) is

p n; 2mð Þ ¼ 0:5� p n; 2m−1ð Þ þ p n; 2mþ 1ð Þ½ � ð2Þ

The ultimate effect of this interpolation scheme is
exaggeratingly illustrated in Fig. 1 as an outline drawing,
where the under-sampling streaking artifacts are not
shown. Figure 1a shows the main image reconstructed
from the original sinogram, while Fig. 1b shows the
image reconstructed from the interpolated sinogram
using (2). It is interesting to observe from Fig. 1b that
the reconstructed image from the interpolated sinogram
is a combination of three components: the main recon-
struction using the original under-sampled sinogram
(with a weighting factor of 1), a rotated version of the
main reconstruction by Δγ (with a weighting factor of
0.5), and a rotated version of the main reconstruction by
-Δγ (with a weighting factor of 0.5). Here 2Δγ is the
angular gap between two adjacent views in the original
under-sampled sinogram.
An intuitive way to understand this phenomenon is to

consider a different example that copies the available
measurements at view 2m + 1 to view 2m, i.e., p(n,
2m) = p(n, 2m + 1). Using the extended sinogram, the re-
constructed image will be the summation of two images:
one is the original image and the other is a rotated
version of the original image.

In general, sinogram interpolation via convolution
yields an image that is a combination of the main recon-
struction and some rotated versions of the main recon-
struction. Similar phenomena are expected for other
sinogram estimation methods that based on linear
interpolation.
These two simple examples imply that in order to

significantly improve the sinogram estimation, we must
use some sort of nonlinearity. The idea of non-rigid
deformation may be borrowed, altered, and applied to
our sinogram estimation [23–25]. Another non-linear
way is to use sine wave approximation [17]. This paper
proposes a displacement function interpolation method.

Use the deformation function for non-linear interpolation
The main idea of our algorithm is illustrated below. A
pair of measured sinogram views is provided: p(n, m1)
and p(n, m2), where n is the index along the radial direc-
tion and m1 and m2 are two angular indices. The goal is
to estimate p(n, m) with m between m1 and m2.
The first step of the proposed method is to find a

displacement function u(n) to connect p(n, m1) and p(n,
m2) so that

p n;m2ð Þ ≈ p nþ u nð Þ;m1ð Þ ð3Þ
It is desired to find a displacement function u(n) by

minimizing the objective function

Fn ¼ ½p n;m2ð Þ−pðnþ n uð Þ;m1�2 ð4Þ
for each n. Since n is an index, we could require n(u) to
be an integer.
It is fairly flexible how to define an objective function

F. As another example, we can add the sign function of
the finite difference to the objective function as.

F ¼ p n;m2ð Þ−p nþ u nð Þ;m1ð Þ½ �2

þλ½ sign p n;m2ð Þ−p n−1;m2ð Þð Þ− signðp nþ u nð Þ;m1ð Þ
−p nþ u nð Þ−1;m1ð ÞÞ�2

ð5Þ
where λ is a pre-set parameter to balance the weight-

ing between constraints in the objective function F. We
set λ = 0.01 in our implementation of (5). The purpose
of the sign function is to encourage that the slopes of
the deformed function p(n + u(n),m1) and the target
function p(n,m2) have the same sign.
If we restrict u(n) to be integers in [−N, N] with N be-

ing a pre-set positive integer, it is efficient to evaluate
the objection F with all possible u(n) values in [−N, N]
and use a “min” function to determine the optimal dis-
placement function u(n). Here, “min” is a built-in func-
tion in Matlab® to find the minimum value in an array.
The motivation of using the “min” function instead of an

Fig. 1 Outline diagrams for images reconstructed (a) from the
original under-sampled sinogram and (b) from
interpolated sinogram
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iterative algorithm (such as the gradient decent algo-
rithm) is to make the algorithm more efficient. The
“min” function method only evaluates the deformed
function 2N + 1 times, while an iterative method evalu-
ates the deformed function at least equal to the number
of iterations, which is much greater than 2N + 1.
After the displacement function u(n) is found, in the

second step, the un-measured sinogram p(n, m) with m
between m1 and m2 can be readily obtained by linearly
interpolating the displacement function u(n). For ex-
ample, if m2 – m1 =M + 1, we can estimate M views
between m1 and m2 as

p n;mð Þ ≈ p nþm−m1

M
u nð Þ;m1

� �
ð6Þ

for m =m1, m1 + 1, …, m2 − 1. We must point out that
in (6) n + u(n) × (m −m1)/M is most likely not an integer.
Let

n1 ¼ nþm−m1

M
u nð Þ

j k
ð7Þ

and

α ¼ nþm−m1

M
u nð Þ−n1 ð8Þ

where ⌊x⌋ is the largest integer that is not greater than
x. Then (6) cab be expressed as

p n;mð Þ ≈ 1−αð Þp n1;m1ð Þ þ αp n1 þ 1;m1ð Þ ð9Þ

for m =m1, m1 + 1, …, m2 − 1.
An illustrative example for the proposed estimation

procedure is shown in Fig. 2, where we have two sino-
gram measurements: p(n, 2m + 1), as a broken curve,
and p(n, 2m-1), as a solid curve. Our proposed algo-
rithm discussed above gives a displacement function,
u(n), as shown in Fig. 3, so that

Fig. 2 Projections at two adjacent view angles from the original under-sampled sinogram. One is shown as a broken curve. The other is shown
as a solid curve

Fig. 3 A typical displacement function, u(n), that deforms projection values from one measured view to its adjacent measured view in the
original under-sampled sinogram. The vertical axis represents the displacement, u (n). The horizontal axis represents the pixel indices, n
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p n; 2mþ 1ð Þ ≈ p nþ u nð Þ; 2m−1ð Þ ð10Þ

The unmeasured p(n,2m) is then estimated as

p n; 2mð Þ ≈ p nþ 0:5� u nð Þ; 2m−1ð Þ ð11Þ

Since 0.5u(n) may not be an integer, linear
interpolation is required as suggested by (9). Similarly,
p(n, 2m) can be estimated by the measurement at view 2
m + 1 with a displacement function v(n), or by the
combined measurements at both view 2m-1 and view 2
m + 1 as

p n; 2mð Þ ≈ p nþ 0:5� u nð Þ; 2m−1ð Þ þ p nþ 0:5� v nð Þ; 2mþ 1ð Þ
2

ð12Þ

Computer simulations and patient study
This proposed sinogram extension method was applied
to two computer simulation cases and one real patient
case. In the computer simulations, the image size was
256 × 256, and the detector size was 367. In this paper,
the word “sinogram” is used in a general sense, and the
“sinogram” can be parallel projections and can be fan-
beam projections or in other geometries.
In computer simulations, the original under-sampled

sinogram was generated analytically without noise. We

Fig. 4 FBP reconstructions reconstructed by a 360 measured views, b 60 measured views, c 120 measured views, d 360 views created from 60
views by sinc function interpolation, e 360 views created from 60 views by linear interpolation, f 360 views created from 60 views by proposed
deformation method, g 360 views created from 120 views by sinc function interpolation, h 360 views created from 120 views by linear
interpolation, and i 360 views created from 120 views by proposed deformation method
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can better observe the image distortion in noiseless stud-
ies. In the first computer simulation study, the original
measured number of views was 60 over 360°. After sino-
gram extension, the number of views was increased to
180 over 360°. In the second computer simulation study,
the original measured number of views was 120 over

360°. After sinogram extension, the number of views was
increased to 360 over 360°. The absolute error image be-
tween the estimated sinogram and the true sinogram
was calculated and reported in the next section.
In the patient study, the sinogram data was obtained

by a CT scan using 500 mAs. The detector was curved,

Fig. 5 Iterative Landweber reconstructions with 1000 iterations reconstructed by a 60 measured views, b 120 measured views. Iterative
Landweber reconstructions with 2000 iterations reconstructed by c 60 measured views, d 120 measured views

Fig. 6 Absolute error between the estimated sinogram and the true sinogram, using a linear interpolation method, b sinc function interpolation
method, and c non-rigid deformation method. The original data sets have 120 views and the estimated data sets have 360 views
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and the imaging geometry was cone-beam. The central
slice of the cone-beam data was used as the fan-beam
data. The data set had 896 detector bins at one view and
1200 views over 360°.
In this paper, an under-sampled data set was a subset

of the original data set by using only 400 fan-beam views
over 360°. After sinogram extension with displacement
interpolation, there were 1200 views over 360°.
Sinogram estimation results using two-adjacent-view

linear interpolation was also obtained and reported in
the next section.
The root mean square error (RMSE) between the re-

construction and the true image was calculated for all
reconstruction images. The RMSE is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Ri−Tið Þ2
s

ð13Þ

where Ri is the reconstruction pixel value and Ti is the
true image value. For the patient study, the true image
was not available and is substituted by the reconstruc-
tion with the full data set using 1200 views.

For the comparison purposes, an iterative Landweber
algorithm was also used in image reconstruction [26].
The iterative Landweber algorithm can be expressed as

X kþ1ð Þ ¼ X kð Þ þ αAT AX kð Þ−P
� �

ð14Þ

where A is the projection matrix, AT is the backprojec-
tion matrix, α is a relaxation parameter (or step size), P
is the projection sinogram re-formatted in the vector
form, and X(k) is the reconstructed image at the kth iter-
ation re-formatted in the vector form. The parameter α
in this paper is chosen as 0.01.

Results
Rotation displacement artifacts due to sinogram linear
interpolation
Linear interpolation between sinogram views is equiva-
lent to linear combination of the images from the ori-
ginal sparse-view reconstruction and rotated versions of
the sparse-view reconstruction. These effects are illus-
trated by an exaggerated sketch in Fig. 1. The rotational
artifacts become more severe at locations away from the
center-of-rotation in the image. The observation of these
artifacts motivated the investigation of a nonlinear sino-
gram interpolation method.

Using function deformation for sinogram interpolation
Figure 2 shows two curves p(n, m1) and p(n, m2), one
being a solid curve and the other being a broken curve.
These two curves represent two sinogram measurements
at view indices m1 and m2. A displacement function u(n)
was estimate according to (3) so that the deformed ver-
sion of one function approximately equal the other func-
tion (p(n,m2) ≈ p(n + u(n),m1)) . The displacement
function is shown in Fig. 3.
Using the displacement function u(n) for sinogram

interpolation was realized as follows. A missing view at
the angle exactly between the two measured views can
be estimated by replacing u(n) by 0.5 × u(n).

Computer simulations
Figure 4 shows the results from the computer simula-
tions with the FBP reconstruction algorithm. In this set,
measurements from 360 views over 360° are considered

Table 1 Computer simulation sinogram estimation errors

Initial
data
set

Methods Maximal absolute errors in
the expanded sinogram

Sum of absolute
errors in the
expanded sinogram

60
views

Linear
interpolation

0.8635 6419.9

Sinc
interpolation

0.1698 390.2537

Proposed 0.1254 268.4655

120
views

Linear
interpolation

0.1015 108.0924

Sinc
interpolation

0.0898 142.4612

Proposed 0.0776 97.0789

Table 2 Computer simulation FBP reconstruction errors in RMSE

Initial data set Methods RMSE

60 views Raw under-sampled data 0.0612

Linear interpolation 0.0640

Sinc interpolation 0.0536

Proposed 0.0385

120 views Raw under-sampled data 0.0407

Linear interpolation 0.0354

Sinc interpolation 0.0351

Proposed 0.0282

Table 3 Computer simulation iterative reconstruction errors in
RMSE

Sinogram views Number of iterations RMSE

60 views 1000 0.0364

2000 0.0362

120 views 1000 0.0681

2000 0.0680
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as a full sinogram, and measurements from 60 views
over 360° and 120 views over 360° are considered as
under-sampled. Figure 4a, b and c show the FBP recon-
struction results from the full and under-sampled
sinograms, respectively. Fig. 4d, e and f show the results
with linear convolution sinogram interpolation methods:
sinc function interpolation and linear interpolation, as
well as the proposed deformation method, respectively;
the initial data set had 60 views. Figure 4g, h and i show
the results with linear convolution sinogram interpolation
methods: sinc function interpolation and linear
interpolation, as well as the proposed deformation
method, respectively; the initial data set had 120 views.
The linear interpolation method is equivalent to the tri-
angle function convolution method. Figure 4f and i show
the results of the proposed non-linear method.

There are two pairs of small black-and-white dots in
the phantom. The pair at the bottom is blurred more
than the pair at the center be the estimation algorithms.
We also observe that for the linear methods there is a
circular region and the background noise texture is
different within and outside this region.
The iterative Lanweber algorithm was used to recon-

struct the image using under-sampled data. The recon-
struction results are shown in Fig. 5 for the data set with
60 views and the data set with 120 views, respectively.
The estimated sinograms and the true sinogram are

compared in terms of the absolute value of the differ-
ence in Fig. 6 for the estimation methods used in Fig. 4.
A summary of the absolute errors in the estimated sino-
grams is listed in Table 1. A summary of the RMSE in
the FBP reconstructions is listed in Table 2. Table 3 lists

Fig. 7 (Gold standard) FBP reconstruction using full sinogram with angular gap = 0.3° (1200 views over 360°). Left image display window: [min,
max]. Right image display window: [− 400, 400] HU

Fig. 8 FBP reconstruction using original under-sampled sinogram with angular gap = 0.9° (400 views over 360°). Left image display window: [min,
max]. Right image display window: [− 400, 400] HU
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the RMSE in the iterative reconstructions. The recon-
struction errors for the iterative algorithm reconstruc-
tions depend on the iteration number, which is chosen
by the user according to the applications. A lower iter-
ation number gives a blurrier image, but less streaking
artifacts.
There are two types artifacts: the under-sampling

streaking texture in the uniform areas and the blurry
artifacts due to sinogram interpolation. The blurring
artifacts can be easily detected by the pair of black-and-
white dots at the bottom of the image. All methods
perform poorly for the data set that has only 60 views.
The study results using the patient CT data are shown

in Figs. 7, 8, 9, 10, 11, 12. In this study set, measure-
ments from 1200 views over 360° are considered as a full

sinogram, and measurements from 400 views over 360° are
considered as an under-sampled sinogram. The detector
had 896 bins for each view. The reconstructed image size
was 800 × 800. Figure 7 shows the FBP reconstruction with
this 1200-view full data set and is considered to be the gold
standard for other reconstructions to compare with.
Figure 8 shows the FBP reconstruction with 400 views.

This image contains lots of streaking artifacts due to
angular aliasing. For patient images, all images are
displayed twice using two different display windows:
[min, max] and [− 400, 400] Hounsfield units (HU).
Figure 9 shows the FBP reconstruction result from

linear interpolation method. Severe rotation artifacts are
observed in the image. The most severe rotation artifacts
are observed at the outer regions inside the patient.

Fig. 9 FBP reconstruction using linearly interpolated sinogram with old angular gap = 0.9° and new angular gap = 0.3° (1200 views over 360°).
Some rotation artifacts are observed. Left image display window: [min, max]. Right image display window: [− 400, 400] HU

Fig. 10 FBP reconstruction using non-rigid deformation interpolated sinogram with old angular gap = 0.9° and new angular gap = 0.3° (1200 views
over 360°). This result does not suffer from the rotation artifacts. Left image display window: [min, max]. Right image display window: [− 400, 400] HU
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Figure 10 shows the result of proposed method that
uses a non-rigid deformation technique. The rotation ar-
tifacts are no longer present. However, this image is not
perfect. Compared with the gold standard shown in
Fig. 7, some shadow artifacts are observed along the high
contrast boundaries, and the spatial resolution is some-
what degraded.
In order to appreciate the improvements of the pro-

posed method, a small rectangular sub region at the right
part of the original image is cut out and is displayed in a
larger format in Fig. 11 for images in Figs. 7, 8, 9, 10.
Figure 12 show three iterative reconstruction images

obtained with 500, 1000, and 1500 iterations, respect-
ively. The number of views was 400 over 360°. The
image resolution improves as the number of iteration in-
creases. At the 1500th iteration, the reconstructed image
is still blurry. RMSEs for the iterative reconstrction re-
sults are presented in Table 4 for the patient study.

Conclusions
Few-view tomography in CT is an open problem. This
paper made an observation that linear convolution-
based sinogram interpolation methods may produce

rotational artifacts. To overcome this problem, this
paper suggests a nonlinear method to estimate the un-
measured views. In this proposed method, two adjacent
views in the original under-sampled sinogram are used
to estimate the missing views between them. A displace-
ment function is estimated by a non-iterative method. A
fraction of the displacement function is used to estimate
the missing views between the original measurements.
One advantage of the proposed method is that the resultant
FBP reconstruction using the estimated sinogram does not
have the rotation artifacts. Our estimated sinogram is
more accurate than the sinogram estimated by linear
convolution-based methods, which is demonstrated by the
absolution errors as shown in Tables 1, 2 and 3.
In our patient study, there are 400 views over 360° and

there are 896 bins on the detector. The number of view
angles is extremely small, about 1/4.5 of the value
required by the Shannon’s sampling theorem. The
proposed algorithm produces fewer artifacts than the
linear interpolation method as demonstrated in Fig. 11.
The iterative Lanweber algorithm is also used for the

under-sampled data image reconstruction. However, it
requires a large number of iterations to produce high

Fig. 11 Zoom-in images of a sub rectangular region at the right of each image in Figs. 8, 9, 10, 11 from a to d. Left images display window:
[min, max]. Right images display window: [− 400, 400] HU. Rotation artifacts can be clearly seen in the third column. a Using full sinogram (Gold
standard). b Using sparse sinogram. c Using linear interpolation. d Using proposed method

Fig. 12 Iterative Landweber algorithm reconstruction using 400 views with iteration number of a 500, b 1000, and c 1500, respectively. The
images are still blurry at 1500 iterations
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resolution images. At the 1500th iteration, the recon-
structed image is still blurry.
When the number of views is extremely low, as in the

computer simulation with 60 views, the proposed algo-
rithm is not effective, and the reconstructed image is
rather blurry even though the streaking artifacts are
significantly reduced. It is still an open problem to
effectively reconstruct an image with extremely under-
sampled data.

Abbreviations
CT: Computed tomography; FBP: Filtered backprojection; HU: Hounsfield
units
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Table 4 Patient study iterative reconstruction errors in RMSE

Sinogram views Number of iterations RMSE

400 views 500 0.2705

1000 0.2703

1500 0.2703
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