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Improved computer-aided detection of
pulmonary nodules via deep learning in
the sinogram domain
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Abstract

Computer aided detection (CADe) of pulmonary nodules plays an important role in assisting radiologists’ diagnosis
and alleviating interpretation burden for lung cancer. Current CADe systems, aiming at simulating radiologists’
examination procedure, are built upon computer tomography (CT) images with feature extraction for detection and
diagnosis. Human visual perception in CT image is reconstructed from sinogram, which is the original raw data
acquired from CT scanner. In this work, different from the conventional image based CADe system, we propose a
novel sinogram based CADe system in which the full projection information is used to explore additional effective
features of nodules in the sinogram domain. Facing the challenges of limited research in this concept and
unknown effective features in the sinogram domain, we design a new CADe system that utilizes the self-learning
power of the convolutional neural network to learn and extract effective features from sinogram. The proposed
system was validated on 208 patient cases from the publicly available online Lung Image Database Consortium
database, with each case having at least one juxtapleural nodule annotation. Experimental results demonstrated
that our proposed method obtained a value of 0.91 of the area under the curve (AUC) of receiver operating
characteristic based on sinogram alone, comparing to 0.89 based on CT image alone. Moreover, a combination of
sinogram and CT image could further improve the value of AUC to 0.92. This study indicates that pulmonary
nodule detection in the sinogram domain is feasible with deep learning.
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Introduction
According to American Cancer Society, lung cancer is by
far the leading cause of cancer-related deaths in the
United States. In 2019, there are about 228,150 new cases
(116,440 in men and 111,710 in women) of lung cancer
being diagnosed. An estimated 142,670 deaths (76,650 in
men and 66,020 in women) from lung cancer will occur
[1]. Currently, the reported 5-year survival rate for lung
cancer is only 19%. Early detection of lung cancer is the
key to prevent lung cancer and improve survival rate.
Computer aided detection (CADe) system has been de-

veloped as a second reader to help radiologists to efficiently
locate and diagnose pulmonary nodules, thus reducing

human interpretation burden. Traditional CADe systems
for lung nodule detection are based on hand engineered
features. Most commonly used engineered features include
three types of features: intensity-based statistical features,
geometric features, and gradient features [2]. Messay et al.
[3] evaluated 245 of the above features. Among them, the
geometric features are computed based on the shape and
position information of lung nodules, whereas the intensity
and gradient features are computed from computer tomog-
raphy (CT) images using the boundaries defined by nodule
candidates mask. Cascio et al. [4] proposed a stable 3-di-
mensional (3D) mass spring model, in which the directed
contour information and shape knowledge have been uti-
lized to automatically detect lung nodules. Choi et al. [5] in-
troduced a novel 3D shape-based feature descriptor to
detect pulmonary nodule candidates, which were further
refined using an iterative wall elimination method. Han
et al. [6] proposed a fast and adaptive CADe scheme for

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: jerome.liang@stonybrook.edu
†Yongfeng Gao and Jiaxing Tan contributed equally to this work.
1Department of Radiology, State University of New York, Stony Brook, NY
11794, USA
Full list of author information is available at the end of the article

Visual Computing for Industry,
Biomedicine, and Art

Gao et al. Visual Computing for Industry, Biomedicine, and Art            (2019) 2:15 
https://doi.org/10.1186/s42492-019-0029-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-019-0029-2&domain=pdf
http://orcid.org/0000-0001-6169-3478
http://creativecommons.org/licenses/by/4.0/
mailto:jerome.liang@stonybrook.edu


lung nodule detection, in which ten geometric or shape fea-
tures, sixteen intensity features, fifteen gradient features,
and eight Hessian eigenvalue based features are extracted
for false positive (FP) reduction. Peña et al. [7] proposed a
minimal characteristics extraction technique for lung nod-
ule detection. After applying 3D blob algorithm associated
with a connectivity algorithm to select the initial nodule
candidates (INCs), they extracted eight minimal representa-
tive characteristics of the possible candidates for detection
of lung nodules. Though hand engineered features have
been proven very effective, studying and extracting those
features are time consuming and expensive. It also requires
expert knowledge in the studied domain and is inflexible
for transfer learning.
Recently, deep learning has emerged as an effective

method for analyzing CT images for lung nodule detec-
tion. Different from hand engineered feature-based CADe
system, deep learning utilizes its self-learning power to
automatically extract features from the input image [8].
Shin et al. [9] exploited the factors on deep convolutional
neural networks (CNNs) architecture, dataset characteris-
tics, and transfer learning by evaluating the performance
of CNN on two CADe applications: thoraco-abdominal
lymph node detection and interstitial lung disease classifi-
cation. Setio et al. [10] proposed a CADe system for
pulmonary nodules using multi-view convolutional net-
works (ConvNets), in which the discriminative features for
nodule classification were automatically learnt from the
training data. 3D CNNs for FP reduction via encoding
multilevel contextual information in CADe of pulmonary
nodules has been reported [11, 12]. Gruetzemacher et al.
[13] further proposed 3D deep learning for both INC gen-
eration and FP reduction. Jiang et al. [14] introduced an
effective CADe scheme for lung nodule detection based
on multigroup patches, which were cut out from the CT
images and enhanced by the Frangi filter. Kim et al. [15]
proposed a multi-scale gradual integration CNN such that
the feature representations of lung nodules were learned
from multi-scale inputs with a gradual feature extraction
strategy. Research work on integrating traditional features
into deep learning based models to further improve the
performance of detection and diagnosis of pulmonary
nodules has also been reported [16–18].
Currently, most common deep leaning methods for

CADe system take patches of the nodule CT images as
inputs. For patch-based inputs, it is essential to select a
proper input size for all nodules. In general, we need se-
lect the smallest input size that could include the largest
region of interest (ROI) of the nodule candidates in the
dataset. However, this will result in small nodules being
a tiny fraction in the patch. Considering such problem,
in this paper, we propose a study to project the CT
image to the sinogram domain and explore additional ef-
fective features of nodules from the sinogram domain.

Different from commonly developed CADe system
which is designed to learn features using CT images, we
propose a novel CNN-based CADe system directly ap-
plied in the sinogram domain to perform a self-directed
learning of the effective features of lung nodules.
The remainder of this paper is organized as follows.

Section 2 describes details of the proposed CADe sys-
tem. Section 3 reports our experiment design and evalu-
ation results of the proposed CADe system using the
largest publicly available database built by the Lung
Image Database Consortium and Image Database Re-
source Initiative (LIDC–IDRI). Finally, discussion and
conclusions of our work, as well as future studies are
given in Sections 4.

Methods
Our proposed CADe scheme for pulmonary nodules in
CT images contains two steps, INCs detection and FP
reduction by sinogram-based nodule classification. Given
a CT scan, the first step is to locate suspicious nodule
candidates in order to narrow down detection scope.
The next stage is to classify the identified INCs from the
previous step. In the rest of this section, we will intro-
duce these two steps in details accordingly.

INCs detection
Given a CT scan, the task of the first step is to reduce
the inspection area from the whole CT scan to a small
number of suspicious areas, which were named as INCs.
A principle for this task is to achieve a sensitivity of nod-
ule detection to be close to 100% while keeping FP rate
as low as possible.
To accomplish this task, we adopted our previously

proposed hierarchical vector quantization (VQ) scheme
to achieve a fast and adaptive detection of initial candi-
dates of pulmonary nodules [6]. Different from the com-
monly used thresholding method [19], we first applied a
high level VQ method for an accurate extraction of the
lung volume. In this work, the first-order 3D neighbors
were chosen for constructing a local intensity vector
with seven elements. Through Karhunen-Loeve transform-
ation [20], we selected the first few principal components
that summed up at least 95% of the total variance for opti-
mizing and reducing the dimensions of the feature vectors
via the principal component analysis [21]. Then we applied
a self-adaptive online VQ algorithm to these feature vectors
for classification the lung volume. The proposed VQ algo-
rithm is more robust to image noise comparing with the
thresholding method. For the chest body volume, we classi-
fied it into two classes, where the lung volume was corre-
sponding to the low-intensity class. Then several additional
operations were applied to refine the extracted lung vol-
ume: (1) flood-fill operation [22]: fill the holes inside the ex-
tracted lung mask; and (2) morphological closing operation
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[23]: close the boundary on the parenchyma wall for juxta-
pleural nodules.
Then, a more diversified low level VQ was employed

to detect and segment INCs inside of the lung volume.
As we pointed out before, the task of detection of INCs
requires our algorithm to be able to accurately classify
all suspected nodules with sensitivity as close to 100%
and a low rate of FPs. In order to achieve this task, we
first studied the image intensity distribution inside of the
lung volume and observed four class Gaussian mixtures
corresponding to the low-intensity parenchyma, the
high-intensity parenchyma, blood vessels, and INCs.
Therefore, we set the maximum class number as four
for performing the VQ algorithm which yielded the best
segmentation results for INCs detection. An example of
the INCs detection procedure was demonstrated in
Fig. 1. The contour provided by LIDC database (red in
Fig. 1) serves as the ground truth of locations for each
nodule and will be used as the label for following FPs
reduction.

FP reduction by sinogram-based nodule classification
After acquiring the INCs, the next step is to further re-
move FPs. This can be achieved by nodule classification.
One key problem for patch-based classification is to

select a proper input size. One straightforward way is to
select the smallest input size that could include the lar-
gest ROI of nodules in the dataset. However, it will re-
sult in small nodules being too subtle in the patch to be
detected. Tan et al. [18] proposed a proportional patch
extraction method, in which each ROI is centered using
ration-cut and has the same object/background ratio as
a patch size. That is, each patch is resized to the same
size. However, this adaptive ratio-cut method still en-
counters a problem of missing nodule size information,
which is very important in nodule classification. In this
work, we propose to analyze the ROI of each patch in
the sinogram domain via Randon transform [24] so as to
unify input size with little information loss. Raw sino-
gram data contains multiple “projections” of the object
being scanned, which are the Radon transformation of
the structure of the object and contain additional rich
information. Facing the challenges of limited research in
this concept and unknown effective features in the sino-
gram domain, we design a CNN model using its auto-
mated feature learning power to explore effective
sinogram features.
After a ROI of a nodule is located, we first convert it

to the sinogram domain via Randon transform. Let ƒ(x,
y) be a continuous function on R2 (two-dimensional

Fig. 1 Examples of the initial nodule candidates detection
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space). The Radon transform is an integral transform de-
fined by the line integral as shown in Eq. (1).

Rd f ϕ; sð Þ ¼
Z

L ϕ;sð Þ
f x; yð Þdl ð1Þ

where L(ϕ,s) = {(x, y)∈ R2: xcosϕ + ysinϕ = s}and ϕ is the
projection angle.
Sinogram has two dimensions, representing number of

bins and number of views. The number of bins is decided
by the size of detector, while views are decided by the
angle per each move. In this work, we designed the bin
number to be 40 and modified different view numbers for
performance comparison. The detected INCs are first cen-
tered and then resized to 40 × 40. The INCs centering and
isolating follows the method proposed in ref. [14]. Based

on each INC mask detected by VQ, we first locate each
ROI and make sure it in the center patch. Then we re-
move all the surroundings based on the mask and resize
each ROI to 40 × 40. Here 40 is one tradeoff between large
and small nodule candidates. Since the CT ROI of size
40 × 40, the bin number of sinogram is chosen as 40. The
view number is scanned from 40 to 640 to explore the ef-
fect of view numbers. Examples of the INCs in CT image
domain and sinogram domain are shown in Fig. 2 with
bin to be 40 and view number to be 640. Comparing INCs
with different sizes and shapes by its CT and sinogram,
we observed that sinogram contains shape and size infor-
mation about the INCs, which are two important indica-
tors for nodule classification. To be noted, the sinogram is
scaled down for display purpose. Each sinogram has the
same height with the CT image, which is 40.

Fig. 2 Examples of the nine typical initial nodule candidates in image domain (left) and sinogram domain (right)

Fig. 3 General workflow of our proposed sinogram based nodule detection method. The network contains 2 convolution layers with kernel sizes
7 × 7 and 5 × 5, with max-pooling layers following each convolution. Softmax is used as the final layer for generating risk probability
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For CT projection, more views mean that each view
covers a smaller angle so that the projection will contain
more detailed information. On the other hand, too many
views will augment input size with redundant information
presenting in the neighbor projection views, making it hard
for the detection system to extract features and patterns. Re-
garding this, in order to capture the detailed information
with more views as well as minimize redundancy, we design
to convert the single channel sinogram into multi-channels
for overcoming input size and increasing contrast among lo-
cations. For example, we convert 40 × 640 (bins × views) to
40 × 40 × 16 (bins × views × channels) as input for multiple
channel model, which considers the size of CT ROI as refer-
ence. One straightforward way for this converting is to cut
the whole sinogram image into several equal sized patches
(direct-cut). However, such design will result in low
channel-wise relevancy because the same location on differ-
ent channels has little relevancy. Inspired by the concept of
sparse-view CT [25], we design an interleave-cut where each
channel includes views by a step size of k. In this way, each
channel is actually a “sparse-view” of the original scan. Each
channel contains the original neighbor views that are de-
scriptors of the same location with correlated information,
thus increasing contrast among each channel.

Results
Experiment setting
The proposed CADe system was validated on 208 patient
cases from the publicly available LIDC-IDRI database.
Each case contains at least one juxta-pleural nodule lo-
cated at the lung boundary. We extracted INCs from the
original CT images and centered them to construct a
patch size of 40 × 40 as introduced in the method section.
Based on the CT INCs, we then obtained its sinogram as
input for the proposed CADe model.
Figure 3 illustrates the general workflow of our pro-

posed deep learning-based CADe system in sinogram
domain. Here the sinogram size of 40 × 640 is used an
example, which is converted into 16 channels as we in-
troduced above. The workflow work was adapted to ei-
ther multi-channel or single channel experiment as
described below. In general, the network contains 2 con-
volution layers with kernel sizes 7 × 7 and 5 × 5, with
max pooling layers following each convolution. Softmax
is used as the final layer for generating risk probability.
The network is trained with 25 iterations and batch size
30. Adam [26] is selected as optimizer with learning rate
1e-4, β1 = 0.9, β2 = 0.999. Early stop is adapted to avoid
overfitting. We randomly split the dataset into 80% for

Fig. 4 Examples of sinograms projected from the initial nodule candidates in Fig. 2 with different view numbers: 40 views (left) and 640
views (right)

Table 1 Convolutional neural network model settings for single
channel input

Layer Parameters

L1 Conv, 7 × 7, 32, LeakyReLU

L2 Maxpooling, 2 × 2, stride 2

L3 Conv, 5 × 5, 64, LeakyReLU

L4 Maxpooling, 2 × 2, stride 2

L5 Fully-Connected,1000, LeakyReLU

L6 Fully-Connected,2, Softmax

Table 2 Area under the curve values with different projection
views

Models with different input AUC (mean ± std)

Sinogram projection view 40 0.9048 ± 0.0007

Sinogram projection view 80 0.9104 ± 0.0005

Sinogram projection view 160 0.9109 ± 0.0003

Sinogram projection view 320 0.9113 ± 0.0004

Sinogram projection view 640 0.9121 ± 0.0001

Gao et al. Visual Computing for Industry, Biomedicine, and Art            (2019) 2:15 Page 5 of 9



training and 20% for testing. We split the dataset into
training and testing in ROI level and make sure that
same ROI will not belong to training and testing at the
same time. We evaluated their nodule classification per-
formances by the merit of area under the curve (AUC)
of receiver operating characteristic.

Comparison of the effect of projection view numbers
We first conducted a comparison study to test the effect
of projection view numbers on the performance of nod-
ule classification. An example of the sinograms projected
from the INCs in Fig. 2 with different view numbers: 40
views (left) and 640 views (right) are shown in Fig. 4.
Both sinograms contains the structure and size informa-
tion. However, the information details are different.
More views may bring more information but also redun-
dancy as we mentioned above. Therefore, we compared
to the performance of sinograms with different views in

this subsection. It is also noted that the sinogram of view
640 is scaled down for display purpose. Both sinograms
of 40 views and 640 views have the same height with the
CT image.
The settings for CNN model are listed in Table 1,

which includes the kernel size, kernel numbers, activa-
tion function and so on for each layer. Table 2 shows
the average values of AUC and its standard deviation
with different projection view numbers. It showed that
AUC value was increased as the number of projection
view increased. That is, more views will provide more
detailed information of the dataset as each view in such
case covers a smaller angle of the projection. When the
number of projection view equaled to 640, the system
achieved a higher AUC value than that of other projec-
tion views. However, we also found that the AUC cannot
always increase if we kept increasing view numbers due
to too much redundancy.

Fig. 5 Illustration of direct cut (a) and interleave-cut (b)

Fig. 6 Area under the curve values of direct-cut and interleave-cut
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Comparison of different ways of setting multi-channel
inputs
From the above experiments, we can see the more pro-
jection view can bring us more information for achieving
a high performance. However, too many views will aug-
ment input size with redundant information presenting
in the neighbor projection views. In this study, we de-
signed an experiment to convert the single channel sino-
gram into multi-channels for overcoming input size and
increasing contrast among locations. We performed a
comparison study of direct-cut and interleave-cut for
setting multi-channel inputs. Figures 4 and 5 illustrate
the methods of direct-cut and interleave-cut, respect-
ively. Different from direct-cut, which cut the whole
sinogram image into several equal sized patches with
low channel-wise relevancy, we design an interleave-cut
where each channel includes views by a step size of k. In
this study, we set k equal to 3. As shown in Fig. 6, the
interleave-cut achieved a higher AUC value comparing
with that of the direct-cut.

Comparison of performances via image domain and
sinogram domain
We further conducted a comparison study of the perfor-
mances of nodule classification via original nodule image
patch, sinogram data, and combined inputs. The corre-
sponding CNN model settings for single input and com-
bined inputs are listed in Tables 1 and 3, respectively.
Figure 7 shows that the workflow of our proposed scheme
with combined inputs from image domain and sinogram
domain. The number of projection views for sinogram is
640 in this experiment. As shown in Fig. 8, nodule classifi-
cation in the sinogram domain is feasible and achieved an
AUC value of 0.9113 which is higher than the classification
performance using image patch only (with AUC value of
0.8933). When we combined inputs from both image do-
main and sinogram domain, the AUC achieved the highest
value of 0.9154. This indicated that the sinogram domain
provided supplemental information for nodule classifica-
tion, thus improving the classification performance.

Discussion and conclusions
In this paper, we proposed an improved CADe scheme for
pulmonary nodule detection via deep learning in the sino-
gram domain. The proposed method can enhance our
CADe framework by providing additional nodule informa-
tion through different projection views in the sinogram
domain, thus improving the detection performance. It can
solve the different nodule size problem faced in the image
patch-based CADe scheme. Experimental results demon-
strated our method can improve the AUC from 0.89 to
0.91 from image domain to sinogram domain. Increasing
projection views will also improve the performance. More-
over, a combination of sinogram and CT image could fur-
ther improve the AUC to 0.92. This work has proven the
feasibility of using deep learning-based nodule detection
in the sinogram domain.

Table 3 Convolutional neural network model settings for
combined inputs (sinogram and CT image)

Layer Parameters

L1_1 (sinogram) Conv, 7 × 7, 32, LeakyReLU

L2_1 (sinogram) Maxpooling, 2 × 2, stride 2

L3_1 (sinogram) Conv, 5 × 5, 64, LeakyReLU

L4_1 (sinogram) Maxpooling, 2 × 2, stride 2

L1_2 (CT image) Conv, 7 × 7, 64, LeakyReLU

L2_2 (CT image) Maxpooling, 2 × 2, stride 2

L3_2 (CT image) Conv, 5 × 5, 64, LeakyReLU

L4_2 (CT image) Maxpooling, 2 × 2, stride 2

L5 Fully-Connected,1000, LeakyReLU

L6 Fully-Connected,2, Softmax

Fig. 7 Workflow of our proposed scheme with combined inputs from image domain and sinogram domain
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We evaluated our method on 208 patients from LIDC,
with each case having at least one juxta-pleural nodule
annotation. It is fact that the dataset is usually of rela-
tively smaller size for medical imaging comparing to that
in computer vision. Evaluation on a larger dataset is one
of our future tasks to better assess the proposed model.
To the best of our knowledge, this is a pioneer work

to perform CADe of pulmonary nodules in the sinogram
domain. Sinogram, which is named because of its sine
function alike visual representation, is the raw data ob-
tained from CT scanner. Due to its insufficient for hu-
man interpretation, sinogram are usually transformed
into CT image by tomographic reconstruction for hu-
man visual inspection, where information loss happens
during reconstruction. This work demonstrated that
deep learning can learn and extract additional effective
features from sinogram domain, thus improving nodule
detection. One possible resaon is that the sinogram can
represent the shape, size or texture information of
nodule candidates. The shape and size information can
clearly be observed in Fig. 2. More research work is
needed and under the way to interpret nodules in sino-
gram domain. This concept can be extended to other
CT-based applications for detection and diagnosis. Fur-
ther research on analyzing hand-engineered features in
the sinogram domain and infusing those extracted fea-
tures into the deep learning-based CADe scheme is
under progress. Studies on the raw sinogram data from
the detector is also one of our future research interests
to advance the development of end to end CADe system.
Additionally, including the surrounding tissues, i.e., the
environment information could be another way to fur-
ther improve the performance.
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