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Abstract

segmentation and quantification

An accurate segmentation and quantification of the superficial foveal avascular zone (sFAZ) is important to facilitate
the diagnosis and treatment of many retinal diseases, such as diabetic retinopathy and retinal vein occlusion. We
proposed a method based on deep learning for the automatic segmentation and quantification of the sFAZ in
optical coherence tomography angiography (OCTA) images with robustness to brightness and contrast (B/C)
variations. A dataset of 405 OCTA images from 45 participants was acquired with Zeiss Cirrus HD-OCT 5000 and

the ground truth (GT) was manually segmented subsequently. A deep learning network with an encoder—decoder
architecture was created to classify each pixel into an sFAZ or non-sFAZ class. Subsequently, we applied largest-
connected-region extraction and hole-filling to fine-tune the automatic segmentation results. A maximum mean
dice similarity coefficient (DSC) of 0.976 +0.011 was obtained when the automatic segmentation results were
compared against the GT. The correlation coefficient between the area calculated from the automatic segmentation
results and that calculated from the GT was 0.997. In all nine parameter groups with various brightness/contrast, all
the DSCs of the proposed method were higher than 0.96. The proposed method achieved better performance in
the sFAZ segmentation and quantification compared to two previously reported methods. In conclusion, we
proposed and successfully verified an automatic sFAZ segmentation and quantification method based on deep
learning with robustness to B/C variations. For clinical applications, this is an important progress in creating an
automated segmentation and quantification applicable to clinical analysis.

Keywords: Optical coherence tomography angiography, Deep learning, Foveal avascular zone, Automatic

Introduction

Optical coherence tomography (OCT) has significantly
advanced ophthalmic imaging, and OCT angiography
(OCTA) is a noninvasive approach that provides a high-
resolution visualization of the vasculature in the retina
and choroid without the injection of an intravenous con-
trast [1]. With the advent of high-speed OCT and effi-
cient algorithms, OCTA has been used to evaluate
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diabetic retinopathy [2], retinal vein occlusion [3], non-
exudative age-related macular degeneration [4], and
macular telangiectasia type 2 [5].

Classical histology publications expound that two par-
allel vascular networks exist at the inner retinal level [6],
the superficial network and the deep network. The foveal
avascular zone (FAZ), a region of the fovea without
blood, consists of a superficial FAZ (sFAZ) at the super-
ficial level of the retina and the deep FAZ (dFAZ) at the
deep level of the retina. The areas of the sFAZ of both
patients with diabetic retinopathy and patients with ret-
inal vein occlusion are larger than those of healthy
people [7, 8]. Meanwhile, the sFAZ is negatively corre-
lated with the best-corrected visual acuity [9]. In all eyes,
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the sFAZ is positively correlated with the logarithm of
the minimum angle of resolution of visual acuity [10].
Hence, accurate segmentation and quantification of
sFAZ is crucial for the diagnosis and treatment of the
abovementioned diseases.

Several OCTA devices provide images with different
brightness and contrast (B/C) variations. A method to
obtain quantitative metrics of vascular plexuses is to ex-
port OCTA images and use publicly available image
processing software such as Image] to manually analyze
the images. The process used by ophthalmologists, i.e.,
manually analyzing vascular plexuses to segment the
sFAZ, is labor intensive and time consuming. Mean-
while, the analysis results may vary according to the B/C
settings [11]. Binarization thresholding and B/C adjust-
ments can significantly affect quantitative metrics. Com-
pared to manual segmentation, automatic segmentation
can be more efficient, reliable, and objective. Unfortu-
nately, automatic segmentation methods previously re-
ported, which are based on human prior knowledge,
exhibit the following problems:

1. Although these methods may perform well on
singular OCTA datasets, they cannot accurately
segment the sFAZ in the OCTA images from other
datasets by overfitting to the original sample.

2. The parameters of these methods are selected
empirically, thereby causing the automatic
segmentation results of the SFAZ to be destroyed
significantly when the B/C of the image are
different from the default.

Specifically, Lu et al. [12] extracted an sFAZ by apply-
ing a region-growing approach, in which the image cen-
ter point was manually selected as a seed. The final
sFAZ segmentation result was obtained by applying
morphological operators and an active contour model.
Diaz et al. [13] identified all potential FAZ (both sFAZ
and dFAZ) candidates by applying morphological opera-
tors and edge detection techniques. Subsequently, spe-
cific domain knowledge was used to preserve the most
suitable FAZ localization from all the FAZ candidates.
Finally, a region-growing approach was applied to the
most suitable FAZ localization to obtain the final FAZ
segmentation results.

Deep learning is a technology that contributes to the
excellent performance for discovering the intricate struc-
tures of high-dimensional data. The layer used to extract
features in deep learning are learned from data using a
general-purpose learning procedure, without relying on
the design of human engineers [14]. This allows deep
learning to provide highly accurate and objective results
and perform even better in generalization with new
datasets [14]. Currently, deep learning for the automatic
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classification and segmentation of OCT images in oph-
thalmology affords excellent results [15, 16]. Further-
more, deep learning is applicable to image B/C
adjustments [17, 18]. Therefore, we herein propose a
method based on deep learning for the segmentation
and quantification of the sFAZ in OCTA images. The
method was designed to be insensitive to variations in
B/C, and applied to segment and quantify the sFAZ.

The main purpose of this study is to demonstrate the
high accuracy and significant correlation of the proposed
method based on deep learning for the segmentation
and quantification of the sFAZ in OCTA images with
robustness to B/C variations. The low contrast of the
dFAZ boundary caused by the dense and complex deep
retinal capillary network challenges the accurate seg-
mentation and quantification of the dFAZ. The robust-
ness of the proposed method to B/C variations
demonstrates the potential for the accurate segmenta-
tion and quantification of the dFAZ.

Methods

The pipeline of the proposed method is illustrated in
Fig. 1. To accelerate the training process, the original
OCTA image data were augmented [19] and normalized
[20]. Next, the sSFAZ was segmented using our proposed
deep learning network. Subsequently, we applied the
largest-connected-region extraction and hole-filling to
obtain a precise SFAZ segmentation. Finally, the sFAZ
quantification results were obtained, as detailed in Sec-
tion 2.6.

Image dataset and preparation for training and testing

From April 2017 to August 2018, randomly selected
OCTA images of 45 eyes from 45 participants were
acquired in the Optometry Clinic of the Hong Kong
Polytechnic University, which include those of 22
males and 23 females aged between 18 to 49 years.
The tenets of the Declaration of Helsinki were ad-
hered to for the study. Ethics clearance was obtained
from the Institution Review Board of the Hong Kong
Polytechnic University. Written consent forms were
obtained from all participants. Twelve participants
were high myopes with a spherical equivalent < -6D,
and 33 were low myopes (spherical equivalent >
-6D). For each eye, a 3mmx3mm OCTA image
centered on the macula was captured using Cirrus
HD-OCT 5000 with AngioPlex (Carl Zeiss Meditec,
Inc., Dublin, California). Cirrus has an A-scan rate of
68,000 scans per second and a light source with a
central wavelength of 840 nm. The axial and trans-
verse resolutions in tissue are 5 and 15 pm/pixel, re-
spectively. The default B/C setting of the superficial
retina layer is 130/20 (Group 1). The B/C was manu-
ally changed to the following settings: 90/20 (Group 2),
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Fig. 1 The proposed method pipeline

110/20 (Group 3), 150/20 (Group 4), 170/20 (Group 5),
130/0 (Group 6), 130/10 (Group 7), 130/30 (Group 8),
and 130/40 (Group 9). An example of OCTA images with
nine different brightness/contrast settings is shown in
Fig. 2. The default contrast and brightness settings are 20
and 130, respectively. The higher the values (of both con-
trast and brightness), the darker the images. More capil-
laries are visible at the contrast from 20 to 10 or the
brightness from 130 to 120; however, noise increases. On
the contrary, changing the contrast and brightness to

higher values resulted in darker images with fewer visible
capillaries. At different scales, the capillaries and noise had
different degrees of visualization. In total, 405 OCTA im-
ages of the superficial retina were exported for image
analysis.

The ground truth (GT) of the sFAZ was generated
on both training and testing sets by filling the inner
area of the sFAZ boundary manually using the “fill”
and “polygon selections” programs in the Image] soft-
ware (National Institutes of Health, Bethesda, MD).

G
(@

130/10; h 130/30; i 130/40

sEees

(h)

Fig. 2 An example of OCTA images with nine different brightness/contrast settings. a 130/20; b 90/20; ¢ 110/20; d 150/20; e 170/20; f 130/0; g

(1)
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Data preprocessing

A total of 405 OCTA images from 45 participants (12
high myopic and 33 low myopic) were rotated and
flipped to 2430 to fulfill the requirement of a large
amount of data for training a deep learning network. To
accommodate the proposed deep learning network, all
OCT images were downsized to a standard resolution of
704 x 704 pixels. To substantially improve the final
generalization error of the proposed deep learning net-
work and accelerate training, the original data were nor-
malized by applying Eq. (1):

X_Xmix

K = XK
Xmax - Xmin

(1)

X denotes the result of normalization, X the image,
Xmax the maximum pixel value in the image, and X,
the minimum pixel value in the image.
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Description of the proposed deep learning network

We designed a deep learning network, inspired by a fully
convolutional networ k[21] and U-Net [22], to perform
classification among the sFAZ and other regions for
each pixel in the OCTA image. An overview is presented
in Fig. 3. The proposed network allowed an input image
of a specific size to be mapped to an image of corre-
sponding class labels of the same size by automatically
extracting the semantic information of the input image.
The proposed network consisted of two processing com-
ponents: an encoder that extracted abstract semantic in-
formation from the input image and a decoder that
mapped the abstract semantic information to an image
of corresponding class labels at the pixel level.

The encoder (C1-C2, P1-P5) included two Conv-
Batch normalization (BN )[23] -ReLu blocks (C1-C2)
and five pooling blocks (P1-P5). A pooling block in-
cluded a Conv-BN-ReLu block, a squeeze-and-excitation
(SE) block [24], and a pooling layer (Pool); meanwhile, a
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Fig. 3 Graphical representation of the proposed deep learning network. The proposed deep learning network included an encoder and decoder.
The encoder comprised two Conv-BN- ReLu blocks (C1-C2) and five pooling blocks (P1-P5). The decoder comprised five upsampling blocks (U1-
U5) and a reconstruction block (R1). The output of each layer is a three-dimensional feature map of size (h x w x d), where h and w are the
height and width of the feature map, respectively, and d is the feature dimension
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Conv-BN-ReLu block comprised two convolutional
layers (Conv), two BN layers, and two ReLu layers
(ReLu). The SE block included one pooling layer, one re-
shape layer (Reshape), two dense layers (Dense), one
ReLu layer, one sigmoid layer (Sigmoid), and one multi-
ply layer (Multiply). The convolutional layer of a se-
quence of square filters generated a sequence of feature
maps containing the semantic information as a result of
a two-dimensional convolution. The BN layer performed
standardization on each feature map to accelerate the
training process of the proposed network and improve
the segmentation performance. The activation function
ReLu, which improves the nonlinearity of the proposed
network, was applied to calculate the output of each fea-
ture map. In the SE block, the pooling layer and the re-
shape layer changed the size of the feature map;
subsequently, a parameter between 0 and 1 for each fea-
ture map as an input to the SE-block was generated
through two dense layers: one ReLu layer and one sig-
moid layer. The Multiply layer multiplied each feature
map by the corresponding parameter as the output of
the SE block. The SE block improved the performance
of the proposed network at minimal additional computa-
tional costs. The pooling layer reduced the size of the
feature map to increase the receptive field by applying
the maximum activation over nonoverlapping square
regions.

The decoder (U1-U5, R1) reconstructed the sFAZ seg-
mentation result from 22 x 22 pixels to 704 x 704 pixels
by applying five upsampling blocks, and a reconstruction
block. The upsampling block comprised a Conv-BN-
ReLu block, SE block, and upsampling layer (Upsample).
A reconstruction block comprised one convolutional
layer and one sigmoid layer. The upsampling layer re-
stored the size of the feature maps through bilinear
interpolation. The concatenate layer (Concatenate) was
designed to solve the problem of potential missing image
details in this reconstruction by fusing the feature maps.
The feature maps were reconstructed to an image of
corresponding class labels of the same size as the ori-
ginal image after finalizing all the upsampling blocks
and the reconstruction block.

Network training strategies
The parameters for the proposed network training
process were set as follows:

1. The basic learning rate was reduced to half the
basic learning rate of the previous epoch if the loss
within 30 epochs did not reduce from an initial
value of 1 x 107 %,

2. Ada m[25] was applied as an optimization to
guarantee an efficient calculation and robustness to
the data noise of the proposed network.
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3. The program automatically saved the proposed
network model once whenever the correct rate of
the testing set had increased.

Based on the Keras framework [26], we used a GPU
NVIDIA GeForce GTX 1080TI equipped on an Intel
Xeon E5-2650 2.30 GHz machine with a Linux Ubuntu
14.04 operating system to train the proposed network.

Result post-processing

Some sFAZ segmentation results from the proposed net-
work output included tiny holes and spots. We used the
largest-connected-region extraction and hole-filling to
provide precise sFAZ segmentation results for all the
OCTA images.

Final sFAZ area calculation

The area of the sSFAZ from the segmentation results was

calculated using Eq. (2):
mm?

HxW

Area = N x (2)

N represents the number of pixels of the precise SFAZ
segmentation results, mm represents the size in millime-
ters of the OCTA image, and H and W represent the
height and width of the analyzed OCTA image,
respectively.

Cross-validation methods

We tested the proposed method using a five-fold strati-
fied cross-validation on our dataset of 45 participants.
All participants, including all nine groups of images for
each participant, were randomly divided into five groups
(participant based). At every fold, one group was used as
the test set without repetition and the remaining were
used as the training sets.

Performance evaluation

When the automatic segmentation result was compared
against the GT, each pixel of the automatic segmenta-
tion result was classified as either a true positive (TP),
true negative (TN), false positive (FP), or false negative
(EN). Metrics of dice similarity coefficient (DSC), sensi-
tivity, and specificity were calculated to evaluate the seg-
mentation performance of the proposed method. The
equation of these measurements are as follows:

TP

psC—__ 1P 3

SC = BT aTP + EN (3)

itivi TP (a)
sensitivi = =
VY = T T EN
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TN

SpeCiﬁCity = m

(5)

The correlation coefficien t[27] between the area cal-
culated from the automatic segmentation results and
that calculated from the GT were calculated to evaluate
their consistency as follows:

g,
R=—"— 6
Ox X 0y ( )

Results

Local cross-validation results

The DSC for each OCTA image was calculated and av-
eraged over all OCTA images, as shown in Fig. 4. The
red line denotes the mean DSCs of all deep learning net-
work outputs after binarization of different threshold
values. The mean DSC increases from the threshold
value at 0 with the minimum mean DSC of 0.974 to the
threshold value at 0.44 with the maximum mean DSC of
0.976. The mean DSC maintained at 0.976, while the
threshold changed from 0.44 to 0.80 and then begins to
decline. The maximum mean DSC was obtained in a
wide range of thresholds, and the mean DSC variation
over the entire threshold range was gradual, which indi-
cates that the performance was insensitive to the se-
lected threshold. A typical example of an automatic
sFAZ segmentation with a DSC of 0.990 is shown in
Fig. 5. One standard deviation below and above the
mean DSCs is marked with a dashed green line and a
dotted blue line, respectively. Qualitatively, the deviation
of the mean DSC that ranges from 0.011 to 0.013 was

small for different thresholds, with the maximum mean
DSC of 0.976+0.011 at the threshold value of 0.44,
which indicates that the performance was robust and
consistent over all OCTA images.

At the threshold value at 0.44, the mean DSC, mean
sensitivity, and mean specificity are 0.976+0.011,
0.972 £ 0.019, and 0.999 + 0.001, respectively, as shown
in Table 1. The correlation coefficient between the area
calculated from the automatic segmentation results and
that calculated from the GT was 0.997, which indicated
the significant correlation between the area calculated
from the automatic segmentation results and that calcu-
lated from the GT.

We divided all the OCTA image into nine different
B/C variation parameter groups according to the de-
scription in Section 2.1 and calculated the DSC,
sensitivity, specificity, and correlation coefficient in
each parameter group based on the threshold value of
0.44, as shown in Table 2. In the nine parameter
groups, the mean DSC, mean sensitivity, and mean
specificity of the proposed method were higher than
0.96, and the correlation coefficient exceeding 0.99 in-
dicated a significant correlation between the area cal-
culated from the automatic segmentation results and
that calculated from the GT.

Comparison with other methods

Table 3 shows the comparison of segmentation perform-
ance in terms of the DSC and the correlation coefficient
between the current results and those of published re-
sults using other methods.
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Fig. 4 Mean dice similarity coefficient of the proposed method with binarization of different threshold values. The red line denotes the mean
DSCs of all deep learning network outputs after binarization of different threshold values; the dashed green line and the dotted blue line denote
one standard deviation below and above the mean DSC, respectively. DSC: Dice similarity coefficient
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Fig. 5 A typical example of automatic superficial foveal avascular zone segmentation. The dice similarity coefficientwas 0.990. a Optical coherence
tomography angiography (OCTA) image; b Automatic segmentation result (blue area) presented on OCTA image; ¢ Ground truth (GT) (red area)
presented on OCTA image; d Magnification of the differences between automatic segmentation results (blue area) and GT (red area); the purple

area is the overlapping part of the automatic segmentation results and the GT

Discussion

In the current study, we propose a segmentation and
quantification method based on deep learning for auto-
matically segmenting and quantifying the sFAZ in the
OCTA images with the best mean DSC of 0.976. Among
the automatic segmentation results of all the OCTA im-
ages, the low standard deviation ranging from 0.011 to
0.013 for the mean DSC indicates the robustness of the
proposed method. The correlation coefficient between
the area calculated from the automatic segmentation re-
sults of the proposed method and that calculated from
the GT was 0.997, which indicated that the significant
correlation was reliable for the automatic quantification
of the sFAZ. In the nine different B/C variation groups,
the mean DSC of the proposed method was higher than
0.96 and the correlation coefficient was higher than 0.99.
This good performance indicates that our method is
robust to B/C variations. In the method evaluation, com-
pared to two similar studies in the literature, the

Table 1 Segmentation performance with threshold value of 044

proposed method provided the mean DSC of 0.976 and
the correlation coefficient of 0.997, which were superior
and indicated better accuracy and more significant cor-
relation in sFAZ segmentation. The obtained results also
indicated better consistency between the area calculated
from the automatic segmentation results and the area
calculated from GT with the proposed method than the
consistency obtained with other methods, with the best
mean DSC and the best correlation coefficient of 0.925
and 0.948, respectively. This might indicate that the pro-
posed method improved the automatic segmentation
and quantification accuracy.

Such a good performance may be attributed to the
modified U-Net architecture in the current study. The
pooling layer in the encoder reduced the size of the fea-
ture map and increased the receptive field to efficiently
extract representative global information. The decoder
was applied to perform size reduction on a small-sized
feature map to obtain a prediction image of the same

Dice similarity coefficient (mean + SD)

Sensitivity (mean + SD)

Specificity (mean + SD) R

Current study 0976 £ 0011

0.972 + 0019

0.999 + 0.001 0.997 (p =0.000< 0.5)




Guo et al. Visual Computing for Industry, Biomedicine, and Art

(2019) 2:21

Table 2 Segmentation performance of the proposed method in each parameter group

Page 8 of 9

Parameter group Dice similarity coefficient (mean + SD)

Sensitivity (mean £ SD)

Specificity (mean + SD)

R

G1 0.977 + 0.001 0972 +0.017 0.999 + 0.001 0.998 (p =0.000< 0.5)
G2 0.975 £ 0.011 0.967 + 0.022 0.999 £ 0.001 0.997 (p =0.000<0.5)
G3 0.977 £ 0.001 0972 £ 0017 0.999 £ 0.001 0.998 (p =0.000 < 0.5)
G4 0.976 + 0.010 0972 +0.018 0.999 + 0.001 0.998 (p =0.000 < 0.5)
G5 0976 £ 0010 0972 £0.018 0.999 £ 0.001 0.998 (p =0.000<0.5)
G6 0976 £ 0010 0973 £0.018 0.999 £ 0.001 0.997 (p =0.000<0.5)
G7 0.977 + 0.009 0974 + 0016 0.999 + 0.001 0.998 (p =0.000 < 0.5)
G8 0975 £ 0011 0971 £ 0.020 0.999 £ 0.001 0.998 (p =0.000<0.5)
G9 0972 £ 0013 0975+ 0018 0.999 = 0.001 0.99 (p =0.000<0.5)

size as the input image. The skip connection structure
with an SE block between the encoder and decoder was
designed to supplement the decoder with weighted focus
information that would provide more sFAZ features as
well as compensate for the loss of information during
the feature size reduction of the pooling layer.

The second reason for the good performance might be
the SE block and BN layer adopted in the current study.
The SE block assigned a weight between 0 and 1 for
each feature map by feature learning to weigh the sFAZ
at the channel level and suppress noise interference. The
essence of the deep learning network learning process is
to learn the data distribution. To solve the problem of
significantly reduced network generalization given the
distribution inconsistency of the training data and test-
ing data, we applied normalization to preprocess the
data in Section 2.2. However, the distribution of data
output at each layer of the network might change as the
training progresses. This would not only reduce the net-
work generalization significantly, but also reduce the
training speed considerably. Therefore, we applied the
BN layer behind the layer (Fig. 2), which might change
the original data distribution to achieve a high
generalization performance of the network and acceler-
ate the training process. The SE block and the BN layer
were utilized to improve the robustness to different B/C
versions and noise in the sFAZ.

The proposed deep-learning-based method may ex-
hibit some limitations. The performance of a deep-

Table 3 Comparison of the segmentation performance
between our proposed method and similar studies

Study Dice similarity coefficient R

Luetal .[12] 0.808 0.792 (p =0.000 < 0.5)
Diaz et al .[13] 0.879 0666 (p =0.000 < 0.05)
Cheng et al .[28] 0.925 0.948 (p =0.000 < 0.05)
Gharaibeh et al [29] 0915 0.940 (p =0.000 < 0.05)
Current study 0976 0.997 (p =0.000 < 0.5)

learning-based method is closely related to the quantity
of training data. More data from multicenters should be
collected to construct a more robust method and im-
prove the generalization ability of this method.

The dense and complex deep retinal capillary network
challenges the observation and quantification of the
dFAZ by artificial method s[30] and the extraction of
special anatomical information of the dFAZ using pro-
gram algorithms. A typical challenge of dFAZ segmenta-
tion is the low contrast of the dFAZ boundary. The
proposed method based on deep learning provided a
highly accurate automatic sSFAZ segmentation with ro-
bustness to B/C variations. This indicates that the pro-
posed method allows an accurate extraction of the
anatomical information of the sFAZ and is insensitive to
variations in B/C. These demonstrate the great potential
of the proposed method for the segmentation of the
dFAZ. In future studies, we plan to apply deep learning
to the automatic segmentation of the dFAZ.

Conclusions

In the current study, we proposed and successfully veri-
fied an automatic SFAZ segmentation and quantification
method based on deep learning with robustness to B/C
variations. We improved the U-Net by appending BN
layers and SE blocks, which resulted in increased accur-
acy and generalization. A comparison with the GT indi-
cated that the proposed method demonstrated high
accuracy and significant consistency in SFAZ segmenta-
tion and quantification with robustness to B/C varia-
tions. For clinical analyses, this is a key step in creating
an automatic segmentation and quantification of the
sFAZ. Future studies will include applying the proposed
method to the automatic segmentation of the dFAZ.

Abbreviations

B/C: Brightness and contrast; BN: Batch normalization; dFAZ: Deep foveal
avascular zone; DSC: Dice similarity coefficient; FAZ: Foveal avascular zone;
FN: False-negative; FP: False-positive; GT: Ground truth; OCT: Optical
coherence tomography; OCTA: Optical coherence tomography angiography;
SE: Squeeze-and-excitation; sFAZ: Superficial foveal avascular zone; TN: True-
negative; TP: True-positive
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