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Abstract

Texture features have played an essential role in the field of medical imaging for computer-aided diagnosis. The
gray-level co-occurrence matrix (GLCM)-based texture descriptor has emerged to become one of the most
successful feature sets for these applications. This study aims to increase the potential of these features by
introducing multi-scale analysis into the construction of GLCM texture descriptor. In this study, we first introduce a
new parameter - stride, to explore the definition of GLCM. Then we propose three multi-scaling GLCM models
according to its three parameters, (1) learning model by multiple displacements, (2) learning model by multiple
strides (LMS), and (3) learning model by multiple angles. These models increase the texture information by
introducing more texture patterns and mitigate direction sparsity and dense sampling problems presented in the
traditional Haralick model. To further analyze the three parameters, we test the three models by performing
classification on a dataset of 63 large polyp masses obtained from computed tomography colonoscopy consisting
of 32 adenocarcinomas and 31 benign adenomas. Finally, the proposed methods are compared to several typical
GLCM-texture descriptors and one deep learning model. LMS obtains the highest performance and enhances the

characteristics score which is a significant improvement.

prediction power to 0.9450 with standard deviation 0.0285 by area under the curve of receiver operating
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Introduction

Colorectal carcinoma (CRC) is one of the top fatal diseases
in the United States. American Cancer Society ranks CRC
as the third most common cancer and the third leading
cause of cancer-related deaths in both men and women [1].
There are two main categories of polyps, non-neoplastic and
neoplastic. In general, the larger a polyp, the greater the risk
of cancer is, especially with neoplastic polyps. Therefore,
early polyp screening could effectively reduce the incidence
of CRC [2, 3]. Computed tomographic colonography (CTC)
is a minimally-invasive, cheap and safe screening method for
polyps. However, subtle lesion diagnosis from these CTC
images is still very challenging even for radiologists [4—6].
Nevertheless, computer-aided diagnosis (CADx) via tumor

* Correspondence: jerome.liang@sunysb.edu

“The Departments of Radiology and Biomedical Engineering, Stony Brook
University, Stony Brook, NY 11794, USA

Full list of author information is available at the end of the article

@ Springer Open

heterogeneity has shown great potential to handle this chal-
lenge [7-9].

Tumor heterogeneity describes the observation that dif-
ferent tumor cells can show distinct morphological and
phenotypic profiles. It has become a critical measure in
benign and malignant differentiability. The lesion’s hetero-
geneity is closely related to the lesion image textures (Fig. 1).
However, texture pattern extraction remains a great
challenge [10-14]. The method proposed by Haralick et al.
[15], the gray-level co-occurrence matrix (GLCM)-based
texture descriptor, is identified as a promising solution for
this problem. GLCM-based textures have been a forerunner
in this field and adapted to multiple diseases such as polyps,
breast cancer, lung nodules, gliomas, bladder cancer, and
imaging modalities including CT, magnetic resonance
imaging, positron emission computed tomography [16—19].
In the past, Lam [20] extended gray level co-occurrence
matrix (CM) by gradient magnitude to extract image
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The air in polyp is labeled by red color
.

Fig. 1 Polyp heterogeneity and texture in computed tomographic colonography. The green curves are their boundaries plotted by radiologists.

textures and Guo [21] explored CM by Gaussian curvatures
to construct shape descriptors. In the recent years, Song
et al. [22] introduced some high order metrics, such as gra-
dient magnitude and curvature, to expand Haralick features
(HFs) in volumetric data for polyp classification. To further
improve the distinctions of the Haralick measures in differ-
ent directions, Hu et al. [23] used the Karhunen-Loeve
transform (KLT) to map the Haralick measures into an or-
thogonal eigenspace.

The Haralick model defines and extracts some im-
portant texture patterns from images. These patterns
reveal image intensity correlation for pixel pairs on
each two-dimensional (2D) image slice. Nevertheless,
descriptors computed using the Haralick model in the
2D presentation have certain limitations. The model
analyzes the nearest neighboring pixel in four different
directions which is described in Section 2. The HFs
are often extracted to construct rotational invariant
descriptors which are formed by the means and ranges
of Haralick measures along those four directions.
However, the potential drawbacks of four-directional-
averaging in a 2D digital image lack rotational robustness.
On the other hand, the traditional Haralick model always
counts all pixel pairs and calculates their distribution over
all slices by full sampling which could result in redundant

information and weaken the model’s performance. The
third shortcoming of the Haralick model is the consider-
ation of the nearest neighboring pixel to construct texture
features: not considering other displacements may limit
the potential to further extract textural patterns.

In this paper, we modify the definition of GLCM by
adding a new variable - stride, and introducing multiple
scaling analysis into the texture descriptor construction
via GLCM. To address the weaknesses of the Haralick
model, three schemes associated with each of the vari-
ables in GLCM, i.e., displacement, stride and angle, are
devised to evaluate the CM-texture descriptors. Each
scheme seeks to increase texture patterns through
multiple scaling analysis while being mindful of texture
information redundancy associated with the learning
method. Furthermore, we intend to find out which vari-
able would be more sensible in a multi-scale framework.
Six classification schemes are designed for our investiga-
tion by random forest (RF).

The remainder of this paper is organized as follows:
Section 2 describes and reviews the baseline Haralick
model and proposes our new adaptive sampling model.
Section 3 includes the analysis on the design and the
results of our method. The last section includes some
discussions and conclusions.
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Methods

This section begins with a review of the basic Haralick
model in 2D and 3D space. Then, the proposed multiple
scaling gray-level co-occurrence model (MSGLCM) is pre-
sented. The individual parameters from MSGLCM are
each evaluated independently in three learning models,
namely by multiple displacements, multiple strides and
multiple angles.

2D/3D Haralick model

The Haralick model was proposed to extract polyp
texture information from intensity images because of
its strong ability to discriminate polyp pathologies
[22, 23]. This model’s pipeline includes calculating
image metrics such as its intensity, gradient and
curvature, etc., image metric digitalization, GLCM
computation, Haralick measure and feature definition,

and image descriptor construction. The GLCM com-
putation defines and extracts important texture pat-
terns (distribution of pixel-pairs) from one image
along different directions (Fig. 2).

The method provides 14 measures for every matrix
computation. In a 2D gray image, four directions (0°,
45°, 90° and 135°) are analyzed (Fig. 2a). From each dir-
ection, one image would generate HFs consisting of 28
texture variables, i.e., 14 means and 14 ranges which
would be used to construct the texture descriptor. In
contrast, the number of directions in volumetric data is
13 (Fig. 2b). Hu et al. [23] expanded this model to gener-
ate 30 measures, referred to as the extended Haralick
measures (eHM), to capture more texture information
from volumetric data. Unlike the Haralick model, they
employ all measures to form the texture descriptor in-
stead of HFs.
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Fig. 2 lllustration of co-occurrence matrix of two-dimensional images. a: Two-dimensional GLCM calculation; b: Three-dimensional GLCM
calculation; ¢: A GLCM example when angle(6) = 0°, displacement = 1. GLCM: Gray-level co-occurrence matrix
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Proposed multi-scaling GLCM model

The proposed method utilizes three primary variables
for the multi-scaling model, ie., displacement scaling,
stride scaling, and angle scaling. Using these values, the
equation for the multi-scaling GLCM (MSGLCM) can
be presented as below:

Cij(d,0,s) = ZMm =1, ZNH =1 {(1) 1, m) = l’;)[tﬁg:l‘:\,:ls);r d6)=J
(1)

me—m—+s n—n-+s

I represents the grayscale image, (M, N) is the image
size, i and j are a pair of image pixel values, d is the dis-
placement between two pixels along the angle 6, and s
represents the stride. A pictorial illustration of Eq. (1) is
shown in Fig. 3. When s=d =1, the MSGLCM should
be the traditional GLCM model. This model provides a
new tool to capture more texture patterns at multiple
scales. A typical example of MSGLCM calculation is
shown by Fig. 3 where the stride is equal to 5. The
MSGLCM model for 3D volumetric data is similar to the
2D model except that its coefficients are bidirectional.

According to MSGLCM definition, there are three
important variables in the learning model, i.e., displace-
ments, strides and angles. Each variable would be inves-
tigated individually and expanded to larger magnitudes
to determine their individual behavior in the model. The
following subsections present the methods where each
of these three parameters are investigated for the contri-
bution to the multi-scaling framework.
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Fig. 3 Calculation of multi-scale gray level co-occurrence matrix
where d represents displacement, 6 is the angle, s is stride (or scale),
po is the concerned point
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Learning model by multiple displacements

The traditional Haralick model has a sampling distance of
1. In medical images, there are more complex textures
and using a displacement of 1 might limit the information
used to define texture patterns. To evaluate the effect of
displacement on the texture pattern, the other two coeffi-
cients, i.e., angle and stride, are fixed as follows:

C%D(d) = ZM m=1, ZNVI =1, {(1) {m,m) = i&i)lt(l,l(::;s);r o) =J
(2)

where 8, € {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1),
(1,1,0), (-1, 1, 0), (0, 1, -1), (1, 0, -1), (1, 1, 1), (-
1,1,1), (1,1, -1), (- 1, 1, -1)} as shown in Fig. 2b.

In learning model by multiple displacements (LMD),
we adopt an up-sampling method to get more texture
patterns. Considering the small volumes of the polyps,
large displacements are not ideal while calculating
MSGLCM. Smaller displacements, i.e., 1, 2, 3, are used
in this exploration study (Fig. 4).

The calculation produces three matrix sets for three
displacements. Each matrix set contains 13 matrices as-
sociated with 13 digital angles [23]. This method gener-
ates more texture patterns and texture descriptors for
polyp classification compared to the traditional Haralick
model.

me—m+1 n—n-+1

Learning model by multiple strides
With the increased information that can be extracted
with the MSGLCM model compared to the traditional
method, the stride can be used as a form of down sam-
pling to control multiple scaling implements while cal-
culating the CM. Suppose the current position is (x, y);
the next position for the model would be (x + stride, y)
in the row, or (x, y+stride) in the column. A similar
technology can be found in deep learning [24, 25]. In
this scheme, stride is the variable which is kept for
evaluation while the displacement and angle are con-
stants as described by the following equation.

C%S(s) _ ZMW! _1, ZNVI . (1) I(m,n) = i,I1((m,n) + dox0y) = j

otherwise

me—m+ s ne—n-+s

(3)

where d| is the fixed displacement and 6, has 13 alterna-
tives as shown in Formula (2).

This method is similar to LMD with the addition of
the stride analysis for the MSGLCM calculation. Unlike
displacement, increasing the stride will lead to a down-
sampling process. Likewise, smaller strides are consid-
ered more ideal for MSGLCM calculation since the sizes
of the polyps are always small. The strides that are eval-
uated for this method will be limited by the size of the
region of interest (ROI) volumes used. The base model
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a b C
Fig. 4 MSGLCM calculation by displacement samplings: (a) displacement =1, (b) displacement = 2, (c) displacement =3
J

for this design includes 13 directions and a displacement
of 1, though it can be further expanded with LMD to in-
crease the displacement and stride. Example cases of
using a stride of 2 and 3 are illustrated in Fig. 5.

In image classification, the performance is significantly
determined by some key features. The traditional full
sampling will generate more redundancy while decreas-
ing the ratio of key features, which will hurt the cluster-
ing performance. This method provides a solution via
decreasing the sampling frequency over the image to
lessen the number of non-critical features. Therefore,
the down-sampling method intends to enhance the roles

of key features in polyp classification to improve the
clustering results.

Learning model by multiple angles

Angle sampling rate in a 3D image array can mitigate
sparse directions in the model by including higher or-
ders of neighbors in CM. The angles in digital images or
volume data are discretized and as a result, increasing
the digital angles requires more displacements in the
digital domain. Similar to the previous designs, i.e., LMD
and learning model by multiple strides (LMS), the dis-
placements used to evaluate the new design are 1, 2 and

d

€

Fig. 5 ASGLCM calculation on one slice of a volume, containing 13 directions in the 3D space: (a) stride = 2, displacement =1, (b) stride =2,
displacement = 2, (c) stride = 2, displacement = 3, (d) stride = 3, displacement =1, (e) stride = 3, displacement = 2, (f) stride = 3, displacement = 3

f
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3 due to concern for polyp size (i.e., 3 mm and larger).
The following equation describes the MSGLCM with
variable angles and a fixed stride.

O -1, X, {} 1O <0 )
@

m«—m + 1 n—n-+1

where 0 is the digital angle represented by some 3D vec-
tors similar to Formula (2).

It is easy to see this is an up-sampling model similar
to LMD. Furthermore, LMD is a subset of learning
model by multiple angles (LMA). Each displacement
could generate a set of angles (Fig. 6a). The angles of dif-
ferent displacements are listed in Table 1. To examine
the behavior of multiple angles, the displacement and
the stride will be set as 1 for the base model. Further ob-
servation will include increasing the displacement and
increasing the stride. Note that some angles in digital
images can be duplicated as we include more directions
while increasing displacements (Fig. 6a). To investigate
the impact of these repeated angles in polyp classifica-
tion, they are removed in another scheme, as shown in
Fig. 6b.

All the proposed models could be able to generate
new texture information different from the traditional
Haralick model via multi-scaling on displacements,
strides and angles. However, with the increased pool of
information, the texture patterns would bring not only
more useful information but also some redundancies.
This can potentially lead to overfitting problems in polyp
categorization which could lower the clustering perform-
ance and consequentially hurt the classification. There
are numerous debates on this topic which could be
solved by appropriate feature selection methods [26—28].
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Table 1 Angle groups of two cases in Fig. 6 under three
different displacements

Angles Displacement Displacement Displacement
<1 <2 <3

With duplicates 13 62 171

Without duplicates 13 49 145

Polyp descriptors and classifier

Polyp descriptors

Polyp descriptors are numeric descriptions in the form
of scalars, vectors, or matrices that describe a polyp ex-
tracted from a polyp image or volume. In this article, the
eHM are utilized to construct the polyp descriptors [23].
For MSGCLM, eHM defines 30 measures that expands
the 14 traditional Haralick measures with 16 new mea-
sures. However, the 21th measure which represents clus-
ter average is always equal to 0, and the 25th and 30th
measures are equivalent after formula simplification.
Therefore, the descriptor will include 28 measures for
one direction. For multiple angles, the vector will have
N * 28 variables to represent a polyp where N is the
angle number.

Classifier and feature selection

Classification is one of the most effective tools for iden-
tifying descriptors. Its major task is to identify general
patterns belonging to one category. The simplest case is
binary classification which creates a function g:x — {1,
-1}, where g is a classifier [29].

RF classification is derived from a decision tree (DT)
method [30]. Unlike DT, RF will apply many trees to
train and test the samples, then a voting method is used
to get the probability from these trees. Another distinc-
tion is the random sampling in the tree construction
that includes randomly splitting features, combinations

-
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of features and choosing the threshold. For each process
of RF, the descriptors of all polyps are divided into train-
ing groups and testing groups. Before classification, we
first calculate the priority of each variable in the texture
descriptor. GINI coefficient is introduced to be the pri-
ority measurement in our method. Then some variable
sets are generated using the forward step feature selec-
tion method on the ranked variables [23, 31]. Thereafter,
classifications are performed on each variable set under
the parameter of 2000 trees and +/N#28 candidate vari-
able number. We utilize the area under the curve of
receiver operating characteristics (AUC) to be our evalu-
ation measurement. The feature set with the highest
AUC score would be taken to be the optimized texture
descriptor.

Some operations for volume of interests and digital
angles

Before differentiating the types of polyps, each polyp’s
position (x, y, z) in a volumetric data was labelled by
radiologist experts. Next, a semiautomatic performance
is adopted to crop the polyp patches on every image
slice. For that purpose, the labeled polyps are outlined
manually to generate ROIs on all slices according to the
labelled location. The polyp locations are continuous: lo-
cated on every slice and form a volume of interest
(VOI). Due to the manual labelling, the resulting VOIs
include additional information such as air. To separate
the air from the polyp, an adaptive air-cleansing algo-
rithm is employed to eliminate those voxels that contain
predominately air [32].

The digital angles are defined in accordance to the
grid structure of a digital image. As a result, the distance
for each digital angle may not always be integers. To ad-
dress this issue, vectors are used to provide information
on angle and magnitude which correspond to the angle
and displacement in the proposed models.

The traditional GLCM is calculated including the in-
verse angles to produce a symmetric matrix. The Hara-
lick measures are symmetrically invariant; therefore, the
matrix and its symmetric iteration can produce the same
measures. To reduce redundant measures, the inverse
directions are excluded from the digital angles. Only

Table 2 Polyp masses dataset used for experiments
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four angles are included in the 2D Haralick model corre-
sponding to (1, 0), (1, 1), (0, 1), and (1, - 1). Similarly,
the extended Haralick model in 3D would include more
directions with the increase of the displacement.

Results

Polyp dataset

A private dataset containing 59 patients with a total
number of 63 polyp masses is used for the experiments
of this study. All the polyp masses are at least 30 mm in
diameter. Each polyp was identified by radiologist ex-
perts on CTC and optical colonoscopy. All the patients
were scheduled for surgical removal intervention after
detection and confirmation. When the polyp masses
were removed, all pathology reports were obtained to
verify whether each of the polyp masses was indeed a
cancerous (adenocarcinoma) or benign (adenomatous)
polyp. The breakdown of the dataset can be seen in
Table 2. To benefit surgical intervention, it is important
to know the malignant risk of each polyp mass. Given
the pathology reports, these polyp CTC scans provide an
excellent database to develop machine learning strategies
to predict adenocarcinoma for more aggressive removals.
In addition to direct clinical impact, this database also
provides good opportunities to evaluate different ma-
chine learning strategies regarding to pathological
ground truth. This study is an example of evaluating
methodology development for polyp classification using
the pathologically approved database.

Classification needs two sub-datasets, the training
dataset and the testing dataset. From the polyp mass
database, we randomly selected 15 samples from the be-
nign polyps and 16 from the malignant polyps for train-
ing. The remaining polyps are used for testing. Thus 31
polyps are used for training and 32 for testing (Table 3).
Repeating the random sampling method, we generated
100 unique iterations for training and testing groups.

Experimental outcomes

According to the three multi-scale models, six testing
schemes are designed. We test the three models sep-
arately. Then three hybrid experiments are designed
and implemented.

Category Pathology Count Male: Female Average size (mm)
Benign (0) Serrated adenoma 2:01 343

Tubular adenoma 2:00 35

Tubulovillous adenoma 11:10 376

Villous adenoma 4:01 55
Malignant (1) Adenocarcinoma 12:20 439
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Table 3 The training samples and testing samples for polyp
classification

Dataset Total Category Number

Training 31 Benign 15
Malignant 16

Testing 32 Benign 16
Malignant 16

Results of LMD, LMS and LMA

To calculate LMD, the displacements vary between {1, 2,
3} while its stride remains constant at 1 and with 13 an-
gles. As we test LMS, its strides vary in {1, 2, 3,4, 5, 6, 7,
8, 9}. Its displacement remains 1 and 13 angles are in-
volved in the calculation. For LMA, both its displace-
ment and stride stay 1 while the total angles are set as
{13, 62, 171}. After classification, their AUC scores are
listed in Table 4. Their results tell us that the stride is
more effective to improve the descriptor distinction than
the other two parameters of displacement and angle
since its AUC score is improved by about 6%. Compared
with eHM (baseline), the LMD and LMA are almost
even and do not bring much gain for polyp classification
when we change the displacement and the angle num-
bers independently.

Hybrid results of LMD + LMS

In this experiment, LMD and LMS are combined to ex-
tract some new texture patterns. There are 3 different dis-
placements and 9 strides involved in texture descriptor
construction. Hence, 27 kinds of polyp descriptors are
generated. The number of angles is kept constant with 13
directions. After training and testing via RF, their AUC
scores are calculated and illustrated in Table 5. It retells
us that the stride is more sensitive than the displacement.
With the stride increasing, we see that the classification
performance generally increases in a staggering fashion.
However, the trend of AUC scores on each row are grad-
ually declining while the displacement is growing which

Table 4 The OCR for LMD, LMS and LMA
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means LMD introduces more redundant information for
polyp classification.

From these results, there is an increasing trend with
odd strides as the stride approaches 7. Similar outcomes
are reached with the increasing displacements. These
outcomes demonstrate that the LMA model with a larger
stride could produce more critical features and get much
better performance for polyp classification. Figure 7 is
plotted to illustrate the AUC score changes according to
stride and displacement.

Hybrid results of LMS + LMA

In this experimental scheme, we try to combine LMS
and LMA to investigate the second hybrid model with
three parameters. The angle sampling method in Fig. 6
shows that more digital angles need more displacements
which determines the digital angle number under full
sampling. That means angle group and displacement ex-
ists in a one-to-one relationship under a full sampling
scheme in digital images. Therefore, this type of hybrid
model contains two parameters, i.e., angle number and
strides. Moreover, the previous schemes indicate that
the displacement does not obtain any benefit, while the
stride produced significant impact on the AUC score.
Therefore, the following scheme keeps 3 displacements
while the stride varies from one to nine. The results of
the scheme with duplicate angles are described in Table 6
and the scheme without duplicate angles is described in
Table 7.

The best performing model follows the same conven-
tion from the previous model with an AUC of 0.9450 for
angle = 13 and S =7. However, the average AUC tells us
that this angle group is not stable with the stride varying,
as shown in Tables 6 and 7. Considering the stability of
the model, the group with 62 angles shows some advan-
tages over others. Its averaged AUC score reaches
90.55% with the smallest standard deviation 0.0378. The
results of 62 angles also indicate that the 1st and 2nd
nearest neighbors contain more distinctive texture
descriptors while the third nearest neighbor brings

Model Displac-  Stride Angles AUC (mean =+
ement std)

eHM 1 1 13 0.8818 +0.0438

LMD [1],2,3 1 13 0.8818 = 0.0438

LMS 1 1,2,3,4,5,6,[71,8,9 13 0.9450 +0.0285

LMA 1 1 13,[62],171  0.8899 +0.0378

The red number in square brackets represents the parameter for the OCR. AUC Area under the curve of receiver operating characteristic curve; OCR Optimized
classification results, eHM: Extended Haralick measure, LMD Learning model by multiple displacements, LMS Learning model by multiple strides, LMA Learning

model by multiple angles
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Table 5 AUC scores of three CM sets with nine different strides
for LMD + LMS where D represents displacement
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Table 6 AUC scores of LMA with duplicates angles over 100
training and testing groups

D=1 D=2 D=3
S=1 0.8818 + 0.0438 0.8725 £ 0.0461 0.8706 + 0.0489
S=2 0.8621 + 0.0487 0.8486 + 0.0458 0.8751 + 0.0477
S=3 0.9043 + 0.0382 0.8765 + 0.0407 0.8786 + 0.0463
S=4 0.8919 + 0.0382 0.8834 + 0.0368 0.8907 + 0.0417
S=5 0.9159 + 0.0408 0.8971 £ 0.0443 09073 + 0.0446
S=6 0.9057 + 0.0394 0.8988 + 0.0400 09042 + 0.0447
S=7 0.9450 + 0.0285 0.9303 + 0.0393 0.9223 + 0.0375
S=8 0.8887 + 0.0366 0.8924 + 0.0436 0.8838 + 0.0397
S=9 08825 £ 0.0452 0.9073 £ 0.0421 0.8714 + 0.0402
Average 0.8975 + 0.0.399 0.8896 + 0.0421 0.8893 + 0.0435

Angles=13 Angles =62 Angles =171
S=1 0.8818 + 0.0438 0.8899 + 0.0378 0.8887 + 0.0377
S=2 0.8621 + 0.0487 0.8527 + 0.0463 0.8561 + 0.0512
S=3 0.9043 £ 0.0382 0.9053 + 0.0387 0.9055 + 0.0374
S=4 0.8919 + 0.0382 0.9075 + 0.0369 0.8993 + 0.0354
S=5 0.9159 + 0.0408 0.9211 + 0.0385 0.9246 + 0.0347
S=6 0.9057 + 0.039%4 0.90764 + 0.0364 0.9093 + 0.0392
S=7 0.9450 + 0.0285 0.9457 + 0.0293 0.9378 + 0.0304
S=8 0.8887 + 0.0366 0.9004 + 0.0373 0.8959 + 0.0371
S=9 08825 + 0.0452 09194 + 0.0391 09187 + 0.0435
Average 0.8975 + 0.0399 0.9055 + 0.0378 0.9039 + 0.0385

AUC Area under the curve of receiver operating characteristic curve, CM Co-
occurrence matrix, LMS Learning model by multiple strides, LMD Learning
model by multiple displacements

redundant information which hurts the classification
performance to a small extent. Compared to the first
row in Table 5, the AUC scores improved about 1%—2%
with increasing directions. The multi-stride continues
enhancing this criterion to 94% when s = 7.

Comparisons

To illustrate the efficiency of our method, some typical
methods are introduced to compare with our models.
These methods are listed as the following.

e HF — a typical method was proposed to construct
the texture descriptor consisting of 28 HFs
extracting from CM [15].

e eHM - a new model introduced 30 measures to
represent texture characteristics extracted from

CM [23].
P
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Fig. 7 AUC score trends with the stride increasing for LMD + LMS.
“*" indicates the best result position of each curve. AUC: Area under
the curve of receiver operating characteristic curve; LMS: Learning
model by multiple strides; LMD: Learning model by
multiple displacements

AUC Area under the curve of receiver operating characteristic curve, LMA
Learning model by multiple angles

e K-L transform based eHM (eHM + KLT) — this
method introduced K-L transform to enhance the
distinction between two different image features and
reduce variation [23].

e Co-occurrence of local anisotropic gradient
orientation (CoLIAGe) — this model employed
gradient angles and extracted the entropy of every
local patch to form a global texture descriptor by
two joint histograms [33].

e VGGI16 — this method extracts 20 salient slices from
every polyp volume to feed to VGG16 for polyp
classification [34].

We choose two results from two hybrid results of our
method for this comparison, ie, LMD +LMS with
stride=7 and D=1, LMS + LMA with angles =62 and
stride = 7. Their receiver operating characteristic curves
are plotted in Fig. 8 which illustrates their different per-
formances for polyp classification. Moreover, their AUC

Table 7 AUC scores of LMA without duplicate angles over 100
training and testing groups

Angles =13 Angles =49 Angles = 145
S=1 0.8818 + 0.0438 0.8833 + 0.0387 0.8926 + 0.0383
S=2 0.8621 + 0.0487 0.8524 + 00512 0.8515 £ 0.0499
S=3 0.9043 + 0.0382 0.9054 + 0.0388 0.9062 + 0.0387
S=4 0.8919 + 0.0382 0.9084 + 0.0376 0.8918 + 0.0385
S=5 09159 + 0.0408 09176 + 0.0337 0.9263 + 0.0369
S=6 0.9057 + 0.0394 0.9077 + 0.0377 09121 £ 0.0383
S=7 0.9450 + 0.0285 0.9401 £ 0.0319 0.9388 + 0.0285
S=8 0.8887 + 0.0366 0.8962 + 0.0335 0.8939 + 0.0362
S=9 08825 + 0.0452 0.9226 + 0.0364 0.9202 + 0.0384
Average 0.8975 + 0.0399 0.9037 + 0.0377 0.9037 + 0.0382

AUC Area under the curve of receiver operating characteristic curve, LMA

Learning model by multiple angles
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Fig. 8 Receiver operating characteristic curves of six methods via
random forest except VGG16. HF: Haralick feature; eHM: Extended
Haralick measure; KLT: Karhunen-Loeve transform; LMD: Learning
model by multiple displacements; LMS: Learning model by multiple
strides; LMA: Learning model by multiple angles; CoLIAGe: Co-
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occurrence of local anisotropic gradient orientations

scores, accuracies, sensitivities and specificities are also
listed in Table 8 for further evaluation. To verify their
differences, P-values are calculated using t-test to deter-
mine if our method is significantly different from others,
as shown in Table 9. All the P-values are far smaller
than 0.05 which indicates that the proposed methods are
distinctive to all the typical methods.

Conclusions

This paper reviews the properties and evaluates the po-
tential of the Haralick model by examining several weak-
nesses observed in practice [22, 23]. The multi-scale
gray level co-occurrence matrix (MSGLCM) is proposed
and aims to improve this model by incorporating the
multi-scale analysis technique with GLCM to evaluate
the three variables: displacement, stride, and angular di-
rections. MSGLCM combines the stride and down-

Table 8 Four evaluation measurements for seven methods

Method AUC Accuracy Specificity Sensitivity
HF 0.8751 0.8151 0.8093 0.7693
eHM 0.8863 0.8363 0.8281 0.7256
eHM + KLT 0.9073 0.8873 0.8812 0.8475
ColIAGe 0.9229 0.8835 0.8393 0.8331
VGG16 0.8234 0.8404 0.8069 0.8066
LMD +LMS 0.9449 0.8934 0.9019 0.8851
LMS + LMA 0.9447 0.8915 0.8801 0.9031

HF Haralick feature, eHM Extended Haralick measure, KLT Karhunen-Loeve
transform, LMD Learning model by multiple displacements, LMS Learning
model by multiple strides, LMA Learning model by multiple angles, CoLIAGe
Co-occurrence of local anisotropic gradient orientations, AUC Area under the
curve of receiver operating characteristic curve

Page 10 of 12

Table 9 Wilcoxon signed-rank test between AUC scores of our
methods and the typical methods

Our method HF eHM eHM+KL  CollAGe  VGGI16
LMD + LMS << 0.05 << 0.05 << 0.05 << 0.05 << 0.05
LMS + LMA << 0.05 << 0.05 << 0.05 << 0.05 << 0.05

HF Haralick feature, eHM Extended Haralick measure, KLT Karhunen-Loeve
transform, LMD Learning model by multiple displacements, LMS Learning
model by multiple strides, LMA Learning model by multiple angles, CoLIAGe
Co-occurrence of local anisotropic gradient orientations, AUC Area under the
curve of receiver operating characteristic curve

sampling technology to emphasize the unique features
and lessen the number of non-critical characteristics to
improve polyp classification performance. Meanwhile,
MSGLCM adopts up-sampling techniques to integrate
the displacement and angle to get new texture patterns
which could mitigate the sparse sampling problem
within the GLCM calculation. With the increase of tex-
ture patterns and texture descriptors, the forward step
feature selection method is applied to solve the inform-
ative redundancy and overfitting issues in polyp classifi-
cation over 63 polyp masses: including 32 invasive
adenocarcinomas and 31 benign adenomas.

Experimental results reveal that increasing stride can
significantly improve polyp classification over the trad-
itional HF and eHM. On the other hand, displacement
has little if any positive effect on the results on its own.
With the addition of increasing displacements whilst
preserving the lower displacements, there were varying
results which demonstrates that there can be potential
gains in additional displacements. This proposed model
can achieve higher AUC values compared to the typical
methods discussed in section 3.3. The best model from
our experiments had a 6.23% improvement and reduced
the standard deviation by 34.95% which is a significant
advantage over them.

Discussion

Why the stride is more sensitive than the displacement
and angle is still a question for us. The reasons might be
guessed from two aspects. The type of polyp texture
might be the first reason. The polyp texture should be-
long to one type of stochastic texture which has no ap-
parent textural structures [35—37]. This type of texture
is not sensitive to the changes of directions and displace-
ment because of its isotropy. The second reason might
be informative redundancy introduced by multiple an-
gles on stochastic texture. The multi-angle sampling
produced too many similar texture patterns from polyps.
Since the classification and recognition should depend
on some unique features which should play a key role in
it, these unique features always make up a very small
proportion in the whole feature space [38]. The trad-
itional full-sampling or up-sampling technique makes its
proportion much smaller. The stride seems to lessen the
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non-critical texture patterns and improve the ratio of
unique features while down-sampling. We found that
the higher sampling rate from a low stride may drown
out those texture patterns that are necessary for distin-
guishing between pathologies.

In summary, our proposed model has shown encour-
aging performance. Nevertheless, redundant information
and over-fitting issues by descriptor variables still face
great challenges which need new feature selection tech-
nologies to solve. Further investigation is required in
implementing convolutional neural networks to solve
polyp classification on a small database [25]. Both of
these are important tasks for our research efforts in the
future.
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